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Abstract
Evaluating and mitigating bias in recommendation systems is of great practical interest in many real-world applications.
This motivates the community to call for a more rounded evaluation of recommendation solutions that not only measures
performance based on standard success metrics such as hit rate and ranking but also the quality across different user groups.
To this end, we propose integrating post-processing techniques to mitigate bias in recommendations and measure the
effectiveness of our approach in the CIKM 2022 EvalRS Challenge.
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1. Introduction
Recommendation systems are ubiquitous in several appli-
cations, and their success is often measured by point-wise
engagement metrics. Unfortunately, this might not only
hinder important information when evaluating model
performance but might also suffer from unwanted bias
across different user and item groups.

In response to the CIKM 2022 EvalRS Challenge [1],
we propose1 an approach that adds both activity-based
averaging, and post-processing steps to a collaborative
filtering baseline model for bias mitigation. Specifically,
we use equalized odds calibration [2] to perturb decisions
of the recommender conditioned on protected classes to
enhance fairness.

We tested this approach using the public Last.fm
dataset by applying bias mitigation to improve diver-
sity metrics. We then measure the difference between
the performance over the entire test set versus the “pro-
tected” classes, such as song popularity and short user
history. In the following, we provide further details on
the approach taken for the EvalRS Challenge.

2. Our Methodology
Our work revolves around a standard approach as a
baseline commonly known as Collaborative Filtering [3].
While sophisticated techniques, e.g., based on recent ad-
vances in Deep Neural Networks [4, 5] and Transformer
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models [6, 7] exist, our choice of a classical method is
motivated by the desire to quantify the attribution of our
post-processing approach for bias mitigation. We choose
to build the model based on implicit feedback from the in-
teraction data, given that we do not have access to direct
input from users, and item features are limited.

2.1. Alternating Least Squares (ALS)
The Alternating Least Squares [8] is a classical method
that treats interaction data as indication of user prefer-
ences and takes into account the associated confidence
levels. It computes the user factor 𝑥𝑢 ∈ R𝑓 and a vector
𝑦𝑖 ∈ R𝑓 for each item such that the user preference 𝑝𝑢𝑖
can be expressed as 𝑥𝑇

𝑢 𝑦𝑖. Consequently, the following
cost function is minimized:

min
𝑥⋆,𝑦⋆

∑︁
𝑢,𝑖

𝑐𝑢𝑖(𝑝𝑢𝑖−𝑥𝑇
𝑢 𝑦𝑖)

2+𝜆(
∑︁
𝑢

||𝑥𝑢||2+
∑︁
𝑖

||𝑦𝑖||2)

(1)
where the second term serves to regularize the model,

and 𝑟𝑢𝑖 denotes the confidence level of user 𝑢’s pref-
erence towards item 𝑖. Here 𝑟𝑢𝑖 can be computed as
1 + 𝛼𝑟𝑢𝑖 where 𝛼 is the weight given to positive feed-
back, and 𝑟𝑢𝑖 is the raw binarized interaction.

2.2. Beyond ALS
We propose two directions to extend the ALS model for
better performance. The first direction is to train the
model on the entire dataset as well as categorized subsets.
In the Last.fm dataset, the users are categorized into
three groups according to their user activity level. As
such, an alternating least squares model specific to the
user activity level is trained on each group. We take
the top 𝑛_𝑠𝑢𝑚 items from each model and recommend
the 𝑡𝑜𝑝−𝑘 items that score the highest in the average
preference score from both the overall model and the
categorized model in the final results.
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The second direction is post-processing. The impor-
tant insight is to view features such as gender, country,
user activity, artist, and track popularity as criteria to
create the “protected” groups. The problem can then
be formulated as adjusting the model such that discrim-
ination is mitigated from the recommendation results.
One approach to achieve this is by optimizing Equalized
Odds [9]. The equalized odds is defined as the indepen-
dence of the predictor 𝑌 and protected membership A
conditional on the prediction results. More formally;

𝑃𝑟(𝑌 = 1|𝐴 = 0, 𝑌 = 𝑦) = 𝑃𝑟(𝑌 = 1|𝐴 = 1, 𝑌 = 𝑦)
(2)

given 𝑦 ∈ (0, 1).
Conceptually, the equalized odds method works as fol-

lows. First, we find the convex hull of the ROC curves of
the contrasted groups such that any false-positive rate
(FPR), true-positive rate (TPR) pair can be satisfied by ei-
ther protected-group-conditional predictor. During train-
ing, we obtain four probabilities of flipping the likelihood
of a positive prediction. Then during prediction, we ap-
ply these learned mixing rates on the new data. The
open-source Jurity library [10] offers an implementation
of this method and helps us achieve our goal 2.

2.3. Beyond Binary Fairness Metrics
Notice, however, that there is still a gap between generat-
ing recommendations, which can be seen as multi-class,
multi-label prediction, and binary mitigation techniques,
such as equalized odds. To bridge this gap, we propose
the following approach:

• Obtain the user-item-score matrix for user-item
pairs and run softmax on it.

• Calculate a binary cutoff point per item based on
the 80% quantile scores.

• Binarize the results item-wise and run equalized
odds, using user activity as a protected class.

• In case the application of equalized odds change
the binary label, go back to the softmax scores
and use its complement, i.e., (1 - softmax).

• Re-order recommendations using the new scores.

The result of this process leads to a normalized set of
scores where for each item, the decision of whether that
item is recommended to a user is now unbiased between
high activity and low activity users. As such, we would
expect to see a lower difference in metrics when compar-
ing high activity and low activity users, which is exactly
what MRED_USER_ACTIVITY measures. This technique
can be applied to user activity and item popularity.

2https://github.com/fidelity/jurity

alpha Regularization Factors Score Hit Rate

0.1 0.1 50 -21.82 0.046

1 0.05 50 -27.19 0.062

10 0.1 50 -27.41 0.075

20 0.2 50 -26.75 0.076

40 0.1 50 -23.54 0.075

Table 1
Hyperparameter tuning of the ALS algorithm. We list 5 out of
100 configurations for brevity.

In practice, binarization across all users (items) and
equalizing odds per user (item) is costly. We need one
mitigation model per user to mitigate differences in track
popularity. Analogously, we need one mitigation model
per item when balancing user activity. To simplify the
process, we choose the 𝑡𝑜𝑝−𝑚 items with the highest
engagement the mitigation is focused on user activity.

3. Experiments
3.1. The Challenge Data
Our initial analysis is based on the transformed version
of LFM-1b dataset. This dataset contains >119K distinct
users, >820K tracks and >37M listening events. Our pri-
mary data source remains the implicit user feedback from
the interaction data. Based on MRED_USER_ACTIVITY,
we separate users into the [1, 100, 1000] activity groups,
and evaluate recommendation results across the groups.

3.2. Additional Testing
We extend the testing suite provided by RecList [11] with
a custom test aimed at fairness in recommender systems.
More specifically, we look at the intersection between the
user activity and track popularity, evaluating whether
there is a material difference in the popularity of tracks
that is recommended to users with differing activity.

To evaluate our new metric, inspired by
MRED_USER_ACTIVITY, we first binarize users
into high- and low-activity groups (using 1000 listens
as a cut-off). We then bin tracks into [1, 10, 100, 1000]
groups, similar to MRED_TRACK_POPULARITY. For
each user, we look at which track popularity groups they
are recommended and the activity group they belong to.
We then utilize the multi-class statistical parity measure
from Jurity [10] to measure fairness.

3.3. Numerical Results
We focus on optimizing the model performance in two
aspects, i) the standard performance metrics and ii) the
diversity metrics. The metrics are calculated using the
RecList [11] library provided by the organizers.

Table 1 presents the set of hyperparameters considered
when training the model on the whole dataset to find the
configuration with the highest performance score.



Model Score Hit Rate MRED_USER_ACTIVITY Runtime

CBOW Baseline -1.212 0.036 -0.022 N/A

ALS -21.823 0.046 -0.007 3 min per fold

User Activity Specific ALS -100 0.004 -0.001 10 min per fold

ALS + Averaging (with n_sum = 500) -11.31 0.027 -0.0086 19 min per fold

ALS + Averaging (with n_sum = 1000) -6.670 0.017 -0.005 25 min per fold

ALS + Post-processing -18.761 0.042 -0.006 4 min per fold

Table 2
Comparison of post-processing with hyper-parameter tuned ALS model. The parameter n_sum specifies the number of top
items from each model that is used in the calculation. Our final challenge submission is ALS + Averaging with n_sum = 500.

Table 2 summarizes our attempts that involve training
and evaluating ALS, User Activity Specific ALS, the Aver-
aged models and the Post-processing algorithm for bias
mitigation to balance performance and diversity metrics.

4. Discussion

4.1. The Impact of Averaging
We compare our work with the CBOW baseline the
challenge organizers provided and other solutions. Our
overall score is lower than the CBOW baseline, while
our hit rate is lower but similar. Remember that
our approach for averaging specifically targets the
MRED_USER_ACTIVITY metric. Hence, as expected,
our score in this metric is better than the baseline.

One immediate observation from the challenge results
presented in Leaderboard - II 3 is, due to the aggregated
scoring scheme, it is non-trivial to compare algorithms.
Different methods exhibit different strengths. Notice that
scores in Leaderboard -II are calculated based on the
previous statistics achieved in Leaderboard - I.

In terms of traditional performance metrics, it is worth
noting that our hit-rate performance is within the top-5
solutions. This is interesting, given that we only utilized
a standard recommendation algorithm. Without post-
processing, our hit rate would be even higher.

In line with the rounded evaluation objective of the
competition, the top-scoring solution does not strike a
high hit rate either. This is even the case for the two-
tower deep neural networks, as evident in Leaderboard - I,
where its performance trails behind the classical CBOW.

In terms of extended metrics, our results on
MRED_USER_ACTIVITY metric considerably improve
over the CBOW baseline and is the 7th over 14, discard-
ing solutions with -100 performance scores. Our rela-
tively good performance on MRED_USER_ACTIVITY,
even when our overall scores are not the best, is empir-
ical evidence for the efficacy of the ensemble modeling
approach. However, when targeting one specific metric,
our overall results have suffered.

3https://reclist.io/cikm2022-cup/leaderboard.html

An area for future improvement is to focus on how to
utilize averaging in such a way that benefits beyond a
single protected class.

4.2. The Impact of Post-Processing
We compare our post-processing results with the baseline
CBOW model and our baseline ALS model. Our overall
score is lower than the CBOW baseline model, while
our hit rate is higher. Our MRED_USER_ACTIVITY is
again higher than this baseline since our post-processing
targets this metric. Compared to our baseline ALS
model, our overall score increases due to an increase
in MRED_USER_ACTIVITY, and our hit rate worsens.
Further compared to our averaging model, the post-
processing sacrifices less hit rate at the expense of achiev-
ing less improvement in MRED_USER_ACTIVITY.

Since the post-processing involves fitting an equalized
odds model per item, we quickly hit high runtimes when
using more than 1000 items. By utilizing the most popular
items, we increase the impact we get from each trained
model. However, our results show that even though the
post-processing accomplishes an improvement direction-
ally, our solution based on averaging performs better.
Combining post-processing with averaging leads to the
best result on MRED_USER_ACTIVITY in the leader-
board at the expense of hit rate. Therefore, our final
submission for the CIKM 2022 EvalRS Challenge is the
averaging model with 𝑛_𝑠𝑢𝑚 = 500.

5. Conclusion
In this work, we augmented the well-known collaborative
filtering algorithm with ensembles and bias mitigation
to strike a balance between performance and diversity.
This carefully crafted CIKM Challenge goes beyond stan-
dard metrics, provides the easy-to-use RecList library,
and raises awareness for a rounded evaluation. In the
same spirit, we focused on mitigating bias on diversity
metrics, leveraged the Jurity library, and demonstrated
encouraging results. We showed how to use existing
algorithmic fairness metrics for recommendations and
extended equalized odds beyond binary classification.
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