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Abstract
Counting propositional logic was recently introduced in relation to randomized computation and shown

able to logically characterize the full counting hierarchy [1]. This paper aims to clarify the nature and

expressive power of its univariate fragment. On the one hand, we make the connection of our logic with

stochastic experiments explicit, proving that any (and only) event(s) associated with dyadic distribution

can be simulated in this formalism. On the other, we provide an effective procedure to measure the

probability of counting formulas.

Keywords
Randomized Computation, Probability Logic, Dyadic Distributions.

1. Introduction

The need for reasoning about uncertain knowledge and probability has come out in several

areas of research, from AI to economics, from linguistics to theoretical computer science (TCS,

for short). For example, probabilistic models are crucial when considering randomized programs

and algorithms or dealing with partial information, e.g. in expert systems. It was this concrete

demand that led to the first attempts to analyze probabilistic reasoning in a formal way, and to

the development of a few logical systems, starting with Nilsson’s pioneering proposal in 1986:

Because many artificial intelligence applications require the ability to reason with uncertain knowl-

edge, it is important to seek appropriate generalizations of logic from this case. [2, p. 71]

For probabilistic algorithms behavioral properties, like termination or equivalence, have quanti-

tative nature, that is computation terminates with a certain probability, and programs simulate

the desired function up to some probability of error (for instance, when dealing with learning

algorithms). Then, how can such properties be studied within a logical system?

In a series of recent works [3, 1, 4], we introduce logics with counting and measure quantifiers,

providing a new formal framework to study probability, and show them strongly related to

several aspects of randomized computation. In particular, our counting logics are shown able to

logically characterize probabilistic complexity classes, while counting-quantified formulas can

be seen as expressing that a program behaves in a certain way with a given probability. The main

goal of this paper is to clarify what the expressive power (and limit) of the simple, univariate
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fragment of counting propositional logic [1] (CPL0, for short) is, so to better understand its

connection with both randomized computation and other probability systems.

2. On Logic and Randomized Computation

The development of counting logics is part of an overall study aiming to analyze interactions

between (quantitative) logic and probabilistic computation, in order to deepen our knowledge

of both.

2.1. Overview

Our project was motivated by two main considerations. On the one hand, since their appearance

in the 1970s, probabilistic computational models have become more and more pervasive in

several fast-growing areas of computer science and technology, from statistical learning to

approximate computing. On the other, the development of different computational models

has considerably benefitted from the mutual interchanges existing between logic and TCS.

Nevertheless, there is at least one crucial aspect of the theory of computation which was only

marginally touched by such fruitful interactions, namely randomized computation. The global

purpose of our study is to lay the foundation for a new approach to bridge this gap, and its key

ingredient consists in considering new inherently quantitative logics, the language of which

includes non-standard quantifiers able to “measure” the probability of their argument formulas.

So far, we have mostly focussed on a few specific aspects of the interaction between quantita-

tive logics and randomized computation:

• Complexity theory: classical propositional logic (PL, for short) provides the first example

of an NP-complete problem [5], while its quantified version characterizes the full polyno-

mial hierarchy [6]. Instead, no analogous logical counterpart was known for probabilistic

and counting classes [7, 8, 9]. In [1], we introduce a counting propositional system, called

CPL, which offers a logical characterization of Wagner’s counting hierarchy.

• Programming language theory: type systems for randomized 𝜆-calculi, also guarantee-

ing various forms of termination properties, were introduced in the last decades, for

example in [10]. Yet, these systems are not “logically oriented” and no Curry-Howard

correspondence [11] is known for them. In [4], we define an intuitionistic version of CPL,

called iCPL0, which is able to capture quantitative behavioral properties and provides

(the logical side of) a probabilistic correspondence in the style of Curry and Howard.

• Computation theory: arithmetics and the theory of deterministic computation are linked

by numerous, deep results from logic and recursion theory. In [3], we present a quantita-

tive extension of the language of Peano Arithmetic (PA, for short). This new language,

called MQPA, allows us to formalize basic results from probability theory, which are not

expressible in PA (for example, the so-called “infinite monkey theorem” or the “ random

walk theorem”), and to establish a probabilistic version of Gödel’s arithmetization [12].
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2.2. (Univariate) Counting Propositional Logic in a Nutshell

In standard PL formulas are interpreted as single truth-values. The core idea of our counting

semantics consists in modifying this intuition in a quantitative sense, associating formulas

with measurable sets of (satisfying) valuations. Specifically, given a counting formula 𝐹 , its

interpretation is taken to correspond to the set of all maps 𝑓 ∈ 2N “making 𝐹 true”. Any such

set belongs to the standard Borel algebra over 2N, B(2N), yielding a genuinely quantitative

semantics. In particular, atomic propositions correspond to cylinder sets [13] of the form

𝐶𝑦𝑙(𝑖) = {𝑓 ∈ 2N | 𝑓(𝑖) = 1},

with 𝑖 ∈ N, while molecular expressions are interpreted in the natural way as standard opera-

tions of complementation, finite intersection and union. Clearly, such “interpretation sets” are

measurable and can be associated with the unique cylinder measure 𝜇C , where for any 𝑖 ∈ N,

𝜇C (𝐶𝑦𝑙(𝑖)) = 1
2 [13].

We can then enrich our language with new formulas expressing the measure of such sets. By

adapting Wagner’s notion of counting operator [9], we introduce two non-standard quantifiers,

C𝑞
and D𝑞

, with 𝑞 ∈ Q[0,1]. Basically, counting-quantified formulas C𝑞𝐹 and D𝑞𝐹 express that

𝐹 is satisfied in a certain portion of all its possible interpretations to be (resp.) greater or strictly

smaller than the given 𝑞. For example, the formula C1/2𝐹 intuitively says that 𝐹 is satisfied by

at least one half of its valuations. Semantically, this amounts at checking 𝜇C (J𝐹 K) ≥ 1
2 .

Definition 1. Formulas of CPL0 are defined by the grammar below:

𝐹 := i | ¬𝐹 | 𝐹 ∧ 𝐹 | 𝐹 ∨ 𝐹 | C𝑞𝐹 | D𝑞𝐹,

where 𝑖 ∈ N and 𝑞 ∈ Q[0,1]. Given the standard cylinder space P = (2N, 𝜎(C ), 𝜇C ), for each

formula of CPL0 𝐹 , its interpretation is the measurable set J𝐹 K ∈ B(2N) defined as follows:

JiK = 𝐶𝑦𝑙(𝑖)

J¬𝐺K = 2N − J𝐺K
J𝐺1 ∧𝐺2K = J𝐺1K ∩ J𝐺2K
J𝐺1 ∨𝐺2K = J𝐺1K ∪ J𝐺2K

JC𝑞𝐺K =

{︃
2N if 𝜇C (J𝐺K) ≥ 𝑞

∅ otherwise

JD𝑞𝐺K =

{︃
2N if 𝜇C (J𝐺K) < 𝑞

∅ otherwise.

Notice that, in [1], we even introduce a labelled calculus, which is proved sound and complete

for the semantics above.

3. On the Expressive Power of CPL0

Our counting logics are strongly related to probabilistic reasoning and, indeed, CPL0 offers

a natural model to express the probability of events associated with Bernoulli distributions.

In fact, we show that counting formulas can simulate experiments associated to any dyadic

probability distribution.

3
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3.1. Expressing Exact Probability

In CPL0, we can easily express that a formula is true with precisely a certain probability. For

clarity’s sake, we do so by means of auxiliary quantifiers, C𝑞
and D𝑞

, intuitively saying that

their argument formula is true with probability (resp.) strictly greater or smaller (or equal) than

the given index.

Notation 1. So-called white counting quantifiers are interpreted as follows:

JC𝑞𝐹 K :=

{︃
2N if 𝜇C (J𝐹 K) > 𝑞

∅ otherwise

JD𝑞𝐹 K :=

{︃
2N if 𝜇C (J𝐹 K) ≤ 𝑞

∅ otherwise.

Clearly, these quantifiers do not extend the expressive power of CPL0, as definable in terms of

primitive C𝑞
and D𝑞

,
1

but due to them exact probability is expressed in a compact way.

Example 1. For example, we formalize that the formula 𝐹 = 1 ∧ 2 is true with probability
1
4 as

𝐹𝑒𝑥 = C1/4(1 ∧ 2) ∧ D1/4(1 ∧ 2).

3.2. Simulating Dyadic Distributions

By their semantic definition, it is natural to interpret atomic formulas of CPL0 as infinite

sequences of independently and uniformly distributed random bits – that is, more concretely,

as infinite sequences of (independent) fair coin tosses – and, in general, counting formulas

as formally representing experiments associated with specific probability distributions. For

instance, the fact that, when tossing an unbiased coin twice, the probability that it returns

head both times is
1
4 can be expressed in CPL0 by the formula 𝐹𝑒𝑥 above (which is also easily

proved valid in our semantics). Generally speaking, counting formulas can simulate events

associated with any dyadic probability distribution, but those related to non-dyadic ones only

approximately.

In fact, we capture atomic sampling from a Bernoulli distribution of non-reducible parameter

𝑝 = 𝑚
2𝑛 by molecular formulas of CPL0, while corersponding complex events are expressed

combining such formulas in the usual way. To make this intuition less vague, let us consider

the following simple example.

Example 2. Let a biased coin return head only 25% of the time. In this case, it is clear that a

single toss cannot be formalized by an atomic formula of CPL0. Yet, it can be easily expressed

using a molecular formula, namely one in the form (i∧ j) (with 𝑖, 𝑗 ∈ N fresh). Consequently, also

properties concerning complex events can be captured in CPL0. For instance, that the probability

for at least one of two subsequent biased tosses to return head is greater than
1
3 is formalized by

the (valid) formula:

𝐹𝑏𝑖𝑎𝑠 = C1/3
(︀
(1 ∧ 2) ∨ (3 ∧ 4)

)︀
.

1

For further details, see Appendix B.1, and, in particular, Proposition 2.
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In the same way, we can (quantitatively) simulate any discrete distribution with ♯𝑋 = 2𝑛.
2

Something different happens when considering experiments related to non-dyadic distributions.

Indeed, by Lemma 1 below, formulas of CPL0 can simulate these events – such as tossing a

biased coin returning head with probability
1
3 – only in an approximate way.

3

Lemma 1. For any formula of CPL0 𝐹 , there exist 𝑛,𝑚 ∈ N, such that 𝜇C (J𝐹 K) = 𝑚
2𝑛 .

4. Measuring Formulas of CPL0

In [1], the validity of counting formulas is decided accessing an oracle for ♯SAT, counting the

satisfying models of Boolean formulas.
4

Here, we provide an effective procedure to measure

formulas of CPL0, without appealing for an external source, thus making the task done by the

oracle explicit. In our opinion, this could make the comparison with other probability logics, for

example [14], more clear and support a better understanding of the “nature” of our non-standard

quantifiers. We hope this is also the first step to shed new lights on the complexity of deciding

formulas of CPL0 (and of proofs in the corresponding calculus LKCPL0 [1, Sec. 2.2]).
5

The skeleton of our procedure is as follows. Given a formula of CPL0, we first consider its

(inner) not-quantified formulas. We do so by passing through a special form, the measure of

which can be computed in a straightforward way (Lemma 3). We prove that any formula of

CPL0 without quantifiers can be converted into such measurable form (Lemma 4). Notably,

the procedure we offer is effective, but not necessarily “feasible” as requiring argument for-

mulas to be put in disjunctive normal form (DNF, for short). Finally, we can deal with nested

quantifications: by measuring argument formulas, one can substitute the corresponding inner

counting-quantified expression with either ⊤ or ⊥.

4.1. Measurable Normal Form

For simplicity, before defining so-called measurable normal forms, we introduce notational

conventions and the so-called auxiliary, polite forms.

Notation 2. We use 𝐿1, 𝐿2... for literals, i.e. atomic formulas or their negations. Given 𝐿𝑖 =
literal, we define 𝐿𝑖 as follows:

𝐿𝑖 =

{︃
j if 𝐿𝑖 = ¬j
¬j if 𝐿𝑖 = j,

with 𝑗 ∈ N. We use ⊥ as a shorthand for 𝐿𝑗 ∧ 𝐿𝑗 and ⊤ for 𝐿𝑗 ∨ 𝐿𝑗 .

2

Of course, any information concerning the nature of variables involved in the experiment is lost, but quantitative

aspects, that is events’ probability, are all preserved through the formalization. For further details, see Appendix B.2.

3

Generalizations of CPL0 associated with a probability space (2N, 𝜎(C ), 𝜇), where 𝜇 is not necessarily the measure

of i.i.d. sequences of random bits, are cursorily presented in Appendix B.2. Observe that, differently from standard

CPL0, the logics presented in the quoted Appendix can naturally formalize also events related to (any) non-dyadic

Bernoulli distributions.

4

In [1], a CPL0-formula 𝐹 is said to be valid when J𝐹 K = 2N and invalid when J𝐹 K = ∅.

5

Indeed, one can even introduce syntactical expressions of the form meas(𝐹 ) = 𝑞, where 𝐹 is a counting formula

without quantifiers and 𝑞 ∈ Q[0,1], to be interpreted as predictable: Jmeas(𝐹 ) = 𝑞K is true when 𝜇C (J𝐹 K) = J𝑞KQ.

Basing on them, LKCPL0 can be modified so to become purely syntactical (without loosing completeness).

5
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Definition 2 (Polite Normal Forms). A formula of CPL0 in conjunctive normal form (CNF,

for short) 𝐶 =
⋀︀

𝑖∈{1,...,𝑛} 𝐿𝑖, is said to be in conjunctive polite form (CPF, for short) if either

𝐶 ∈ {⊥,⊤} or both 𝐿𝑘 ̸= 𝐿𝑘′ and 𝐿𝑘 ̸= 𝐿𝑘′ , for any 𝑘 ̸= 𝑘′ ∈ {1, . . . , 𝑛}. A formula of CPL0

in DNF 𝐷 =
⋁︀

𝑗∈{1,...,𝑚}𝐶𝑗 , is said to be in disjunctive polite form (DPF, for short) if either

𝐷 ∈ {⊥,⊤} or for each 𝑘 ∈ {1, . . . ,𝑚}, 𝐶𝑘 is in CPF and 𝐶𝑘 ̸∈ {⊥,⊤}.

Lemma 2. Given a formula of CPL0 in DNF 𝐷, there is a 𝐷*
such that 𝐷*

is in DPF and 𝐷 ≡ 𝐷*
.

4.2. Conversion into MNF

Now, as anticipated, we introduce a special form, such that expressions in this form can be

“measured” in a straightforward way. We start by defining contradictory pairs, that is formulas

(in CPF) the conjunction of which is invalid.

Definition 3 (Contradictory Pair). Two formulas of CPL0 in CPF, 𝐶𝑖 =
⋀︀

𝑗∈{1,...,𝑛} 𝐿𝑗 and

𝐶𝑗 =
⋀︀

𝑘∈{1,...,𝑚} 𝐿𝑘, are said to be mutually contradictory when there exist a 𝑗 ∈ {1, ..., 𝑛}
and a 𝑘 ∈ {1, ...,𝑚} such that 𝐿𝑗 = 𝐿𝑘 (or 𝐿𝑘 = 𝐿𝑗).

By Definition 1 plus basic measure theory, it is easy to see that the measure of the disjunction

of two contradictory formulas in CPF is the sum of the measure of each disjunct (which, being

themselves in CPF, are measurable as well). The generalization of this intuition leads to the

definition below.

Definition 4 (Measurable Normal Form). A formula of CPL0 𝐹 =
⋁︀

𝑖∈{1,...,𝑛}𝐶𝑖 is in mea-

surable normal form (MNF, for short), if either 𝐹 ∈ {⊥,⊤} or 𝐹 is in DPF and for each

𝑗, 𝑘 ∈ {1, . . . , 𝑛}, 𝐶𝑗 and 𝐶𝑘 are mutually contradictory.

Lemma 3. Given a formula of CPL0 in MNF, say 𝐹 =
⋁︀

𝑖∈{1,...,𝑛}𝐶𝑖: 𝑖. if 𝐹 = ⊤, then

𝜇C (J𝐹 K) = 1, 𝑖𝑖. if 𝐹 = ⊥, then 𝜇C (J𝐹 K) = 0, 𝑖𝑖𝑖. otherwise 𝜇C (J𝐹 K) =
∑︀

𝑖∈{1,...,𝑛} 𝜇C (J𝐶𝑖K).

Observe that, as said, each disjunct is in CPF, so, again by basic measure theory, its measure is

easily computable as well and any J𝐶𝑖K can effectively be measured.
6

We conclude our proof showing that each formula in DPF can actually be “converted” into

MNF. To do so, we notice that two disjuncts can be mutually related in three ways only: (1) if

one is a sub-formula of the other, the former is simply removed;
7

(2) if they are a contradictory

pair, the form is already as desired and the next pair is considered; (3) if one of the two disjuncts,

say 𝐶𝑖, contains a literal 𝐿𝑘 , such that neither 𝐿𝑘 or 𝐿𝑘 occurs in the other disjunct, say 𝐶𝑗 , we

substitute 𝐶𝑗 with 𝐶 ′
𝑗 = 𝐶𝑗 ∧ 𝐿𝑘 and 𝐶 ′′

𝑗 = 𝐶𝑗 ∧ 𝐿𝑘 to be both taken into account again.

Lemma 4. For each CPL0-formula in DPF 𝐹 , there is a formula in MNF 𝐹 **
such that 𝐹 ≡ 𝐹 **

.

We conclude by putting Lemmas 4 and 2 and Lemma 3 together, so to obtain the desired

procedure that, for any formula of CPL0, effectively computes the measure of its probability.

6

For further details, see Corollary 1.

7

A formula in CPF, say 𝐶𝑖 =
⋀︀

𝑘∈{1,...,𝑛} 𝐿𝑘 , is said to be a sub-formula of another formula in CPF, say 𝐶𝑗 =⋀︀
𝑘′∈{1,...,𝑚} 𝐿𝑘′ , when (they are not a contradictory pairs or 𝐶𝑗 ∈ {⊥,⊤} or 𝐶𝑖 ∈ {⊥,⊤} and) for each

𝑘′ ∈ {1, . . . ,𝑚}, there is a 𝑘 ∈ {1, . . . , 𝑛}, such that 𝐿𝑘 = 𝐿𝑘′ . For example, a formula 1∧2∧3 is a sub-formula

of 1 ∧ 2.

6



Melissa Antonelli CEUR Workshop Proceedings 1–13

References

[1] M. Antonelli, U. Dal Lago, P. Pistone, On Counting Propositional Logic and Wagner’s

Hierarchy, in: Proc. ICTCS, 2021, pp. 107–121.

[2] N. Nilsson, Probabilistic Logic, Artificial Intelligence 28 (1986) 71–87.

[3] M. Antonelli, U. Dal Lago, P. Pistone, On Measure Quantifiers in First-Order Arithmetic,

in: Proc. CiE, 2021, pp. 12–24.

[4] M. Antonelli, P. Pistone, U. Dal Lago, Curry and Howard Meet Borel, in: Proc. LICS, 2022,

pp. 1–13.

[5] S. Cook, The Complexity of Theorem-Proving Procedures, in: Proc. STOC, 1971, pp.

151–158.

[6] A. Meyer, L. Stockmeyer, The Equivalence Problem for Regular Expressions with Squaring

Requires Exponential Space, in: Proc. SWAT, 1972, pp. 125–129.

[7] J. Gill, Computational Complexity of Probabilistic Turing machines, J. Comput. 6 (1977)

675–695.

[8] L. Valiant, The Complexity of Computing the Permanent, TCS 8 (1979) 189–201.

[9] K. Wagner, The Complexity of Combinatorial Problems with Succinct Input Representation,

Acta Informatica 23 (1986) 325–356.

[10] U. Dal Lago, G. Guerrieri, W. Heijltjes, Decomposing Probabilistic Lambda-Calculi, in:

Proc. FoSSaCS, 2020, pp. 136–156.

[11] M. Sorensen, P. Urzyczyn, Lectures on the Curry-Howard Isomorphism, Elsevier, 2006.

[12] K. Gödel, On Formally Undecidable Propositions of Principia Mathematica and Related

Systems, Dover Publications, Inc., 1992.

[13] P. Billingsley, Probability and Measure, Wiley, 1995.

[14] R. Fagin, J. Halpern, N. Megiddo, A Logic for Reasoning about Probabilities, Inf. Comput.

87 (1990) 78–128.

[15] A. Kolmogorov, Grundbegriffe der Wahrscheinllichkeitrechnung, in: Ergebnisse Der

Mathematik, 1933.

Appendix

A. Section 2

Preliminaries. In order to avoid clash in terminology, we briefly recap a few standard notions

from probability theory. An outcome or point is the result of a single execution of an experiment,

the sample space Ω is the set of all possible outcomes, and an event is a subset of Ω. Two events,

say 𝐸1 and 𝐸2, are disjoint or mutually exclusive, when they cannot happen at the same time,

that is 𝐸1 ∩𝐸2 = ∅. Two events are independent when the occurrence of one does not affect the

probability for the other to occur. A class of subsets of Ω is a (𝜎-)field if containing Ω itself and

being closed under the formation of complements and (in)finite unions. A probability measure

Prob(·) is a real-valued function defined on a field satisfying Kolmogorov’s axioms [15]. So,

in particular, given two disjoint events, 𝐸1 and 𝐸2, Prob(𝐸1 ∪ 𝐸2) = Prob(𝐸1) + Prob(𝐸2),
while for two independent events, 𝐸′

1 and 𝐸′
2, Prob(𝐸′

1 ∩ 𝐸′
2) = Prob(𝐸′

1) · Prob(𝐸′
2).

7
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Following [13], infinite sequences of (random) tosses can be represented as 𝜔 =
(𝜔(1), 𝜔(2), 𝜔(3), . . . ), where for any 𝜔 ∈ 2N and 𝑘 ≥ 1, 𝜔(𝑘) ∈ 2, being 2 = {0, 1}. Then, 2𝑛

is the Cartesian product consisting of the 𝑛-long sequences 𝑢1, . . . , 𝑢𝑛, with 𝑢𝑖 ∈ 2 for any

𝑖 ∈ {1, . . . , 𝑛} and 2N is the set of all infinite sequences of elements in 2. A cylinder of rank k is

a set of the form C𝐻 = {𝜔 : (𝜔(1), . . . , 𝜔(𝑘)) ∈ 𝐻}, where 𝐻 ⊂ 2𝑘. When 𝐻 is a singleton,

C𝐻 is a thin cylinder, corresponding to the fact that the first 𝑘 repetitions of the experiment

have outcomes 𝑢1, . . . , 𝑢𝑘 in sequence. The class of cylinders of all ranks, denoted as C , is

a field and a standard probability measure can be defined over it. In particular, we assign a

probability measure 𝜇C to any cylinder of rank 𝑘, such that for any 𝑗 ∈ {1, . . . , 𝑘}, 𝑢𝑗 ∈ 2, and

corresponding probability 𝑝𝑢𝑗 of getting 𝑢𝑗 ,

𝜇C (C𝐻) =
∑︁
𝐻

𝑝𝑢1 · · · 𝑝𝑢𝑘
.

So, as a special case, when C𝐻 is a thin cylinder, 𝜇C {𝜔 : (𝜔(1), . . . , 𝜔(𝑛)) = (𝑢1, . . . , 𝑢𝑛)} =
𝑝𝑢1 · · · 𝑝𝑢𝑛 . Notice also that if the coin is fair, for each tossing 𝑝0 = 𝑝1 =

1
2 . In this case (since

for any 𝑘 > 0, 𝐻 is finite) the Proposition 1 below follows.

Proposition 1. If 𝑝0 = 𝑝1 =
1
2 , then for any cylinder of rank 𝑘, call it C𝐻 , there exist 𝑚,𝑛 ∈ N,

such that 𝜇C (C𝐻) = 𝑚
2𝑛 .

Going back to 𝜎(C ), i.e. the smallest 𝜎-algebra including C and which is Borel, a well-defined

probability measure is assigned to it by generalizing in the natural way the measure defined

above for a cylinder of rank 𝑘.

B. Section 3

B.1. Section 3.1

Proofs from Section 3.1.

Lemma 5. For every formula of CPL0 𝐹 , and 𝑞 ∈ Q[0,1],

𝜇C (J𝐹 K) ◁ 𝑞 ⇔ 𝜇C (J¬𝐹 K) ▷ 1− 𝑞,

with (◁, ▷) ∈ {(≥,≤), (≤,≥), (>,<), (<,>)}.

Proof. Let us consider the case ≤,≥. By Definition 1 𝜇C (J¬𝐹 K) = 𝜇C (2
N − J𝐹 K) = 1 −

𝜇C (J𝐹 K). So, trivially, 𝜇C (J𝐹 K) ≥ 𝑞 iff 1 − 𝜇C (J𝐹 K) ≤ 1 − 𝑞 iff 𝜇C (J¬𝐹 K) ≤ 1 − 𝑞. All the

other cases are proved in a similar way.

Proposition 2. For any formula of CPL0 𝐹 , and 𝑞 ∈ Q[0,1]:

C𝑞¬𝐹 ≡ D1−𝑞𝐹

C𝑞¬𝐹 ≡ ¬C1−𝑞𝐹

D𝑞¬𝐹 ≡ C1−𝑞𝐹

D𝑞¬𝐹 ≡ ¬D1−𝑞𝐹.

8
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Proof. The proof relies on Definition 1 and Lemma 5:

JC𝑞¬𝐹 K =

{︃
2N if 𝜇C (J¬𝐹 K) ≥ 𝑞

∅ otherwise

=

{︃
2N if 𝜇C (J𝐹 K) ≤ 1− 𝑞

∅ otherwise

= JD1−𝑞𝐹 K

JC𝑞¬𝐹 K = J¬D𝑞¬𝐹 K

= J¬C1−𝑞𝐹 K

JD𝑞¬𝐹 K =

{︃
2N if 𝜇C (J¬𝐹 K) < 𝑞

∅ otherwise

=

{︃
2N if 𝜇C (J𝐹 K) > 1− 𝑞

∅ otherwise

= JC1−𝑞𝐹 K

JD𝑞¬𝐹 K = J¬C𝑞¬𝐹 K

= J¬D1−𝑞𝐹 K.

B.2. Section 3.2

Proof from Section 3.2. We prove that formulas of CPL0 are interpreted as events associated

with dyadic distributions relying on Proposition 1. To do so, we show that any counting formula

is interpreted as a cylinder of rank 𝑘, for some 𝑘 ∈ N.

Lemma 6. For any formula of CPL0 𝐹 , there is a cylinder of rank 𝑘 C𝐻 , such that J𝐹 K = C𝐻 .

Proof. The proof is by induction on the structure of 𝐹 :

• 𝐹 = i for some 𝑖 ∈ N. Then JiK = 𝐶𝑦𝑙(𝑖), which is a thin cylinder.

• 𝐹 = ¬𝐺. By IH, there is a 𝑘 and a cylinder of rank 𝑘, C𝐻 , such that J𝐺K = C𝐻 . Let

𝐻 ′ = 2𝑘 − C𝐻(≡ 2N − C𝐻). Then, J¬𝐺K = 2N − J𝐺K = 2N − C𝐻 = C𝐻′ , which is

clearly a cylinder of rank 𝑘 as well.

• 𝐹 = 𝐺1 ∧𝐺2. By IH, there exist 𝑘1, 𝑘2 ∈ N and cylinders of rank 𝑘1, 𝑘2, C𝐻1 and C𝐻2 ,

such that (resp.) J𝐺1K = C𝐻1 and J𝐺2K = C𝐻2 . Then, if 𝑘1 = 𝑘2, J𝐹 K = J𝐺1K ∩ J𝐺2K =
C𝐻1 ∩C𝐻2 = C𝐻1∩𝐻2 , which is a cylinder of rank 𝑘1 as well. Otherwise, assume 𝑘1 > 𝑘2
(the case 𝑘2 > 𝑘1 is equivalent). Let 𝐻 ′

2 consists of the sequences (𝑢1, . . . , 𝑢𝑘1) in

2𝑘1 such that the truncated sequence (𝑢1, . . . , 𝑢𝑘2) is in 𝐻2. Then, C𝐻2 ≡ C′
𝐻2

= {𝜔 :
(𝜔(1), . . . , 𝜔(𝑘1)) ∈ 𝐻 ′

2}. We conclude that J𝐹 K = J𝐺1K∩J𝐺2K = C𝐻1∩C′
𝐻2

= C𝐻1∩𝐻′
2
,

which is a cylinder of rank 𝑘1.

• 𝐹 = 𝐺1 ∧𝐺2. Similar to the case above.

• 𝐹 = C𝑞𝐺 and 𝐹 = D𝑞𝐺. Then, either J𝐹 K = 2N or J𝐹 K = ∅, which are both cylinders

of rank 𝑘 (in particular, in the former case 𝑘 = 0).

Proof of Lemma 1. By putting Proposition 1 and Lemma 6 together.

Notice also that a “syntactic” proof of Lemma 1 is obtained as a corollary of the results provided

in Section 4.

9
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Non-Dyadic Bernoulli Distributions. As said, one can simulate events associated with

non-dyadic distributions in an approximate way only.

Example 3. Let us consider a biased coin returning head only
1
3 of the time. We cannot simulate

this event in CPL0, but “approximate” it with 𝑛 = 2𝑚 variables of CPL0 in the following sense. If

𝑚 = 2 we can down-approximate a single toss of the biased coin as:

𝐹𝑛𝑑𝑦 = (1 ∧ 2) ∨
(︀
(¬1 ∧ 2) ∧ (3 ∧ 4)

)︀
.

Observe that disjuncts are mutually contradictory, so 𝜇C (J𝐹𝑛𝑑𝑦K) = 5
16 . If 𝑚 = 3, (down-

)approximation is obtained as,

𝐹 ′
𝑛𝑑𝑦 = (1 ∧ 2) ∨

(︀
(¬1 ∧ 2) ∧ (3 ∧ 4)

)︀
∨
(︀
(¬1 ∧ 2) ∧ (¬3 ∧ 4) ∧ (5 ∧ 6)

)︀
.

Then, 𝜇C (J𝐹 ′
𝑛𝑑𝑦K) =

21
64 . In general, the more 𝑛 is increased, the more precise is the approximation

of the desired event.

Although events associated with non-dyadic distributions cannot be expressed in CPL0 in a

precise way, when switching to (CPL⋆
0 or) the measure-quantified language MQPA [3] such

formalization becomes possible.

Generalizing CPL0. As seen, the semantics for CPL0 is associated with a canonical cylin-

der space (2N, 𝜎(C ), 𝜇C ), where 𝜇C is the standard measure 𝜇C (𝐶𝑦𝑙(𝑖)) = 1
2 for any 𝑖 ∈ N,

corresponding to tossing fair coins [13]. It is possible to generalize this framework in a straight-

forward way, so to allow the measure to be associated with distributions other than dyadic ones.

Indeed, we can define extended CPL⋆
0 associated with a probability space P⋆ = (2N, 𝜎(C ), 𝜇⋆),

where 𝜇⋆
is any properly-defined probability measure over 𝜎(C ). Then, the grammar and

semantics for CPL⋆
0 is as for CPL0 except for counting-quantified formulas.

Definition 5. Extended formulas are defined by substituting standard counting quantifiers

with C𝑞
𝜇⋆ and D𝑞

𝜇⋆ , the interpretation of which is now based on P*
:

JC𝑞
𝜇⋆𝐹 K =

{︃
2N if 𝜇⋆(J𝐹 K) ≥ 𝑞

∅ otherwise

JD𝑞
𝜇⋆𝐹 K =

{︃
2N if 𝜇⋆(J𝐹 K) < 𝑞

∅ otherwise.

Then, CPL0-formulas C𝑞𝐹 and D𝑞𝐹 become special cases of extended ones, namely C𝑞
𝜇⋆𝐹

and D𝑞
𝜇⋆𝐹 (resp.), where 𝜇⋆ = 𝜇C . On the other hand, in CPL⋆

0 we can simulate experiments

corresponding to tossing (arbitrarily) biased coins.

Example 4. Let us consider a biased coin, which returns head only
1
3 of the time. Then, letting

𝜇⋆(𝐶𝑦𝑙(𝑖)) = 1
3 (for any 𝑖 ∈ N), we can express that the probability for subsequent tosses to be

successful is greater than
1
9 as

𝐹𝑠𝑡𝑎𝑟 = C
1/9
𝜇⋆ (1 ∧ 2).

Clearly, since 𝜇⋆
(︀
J1 ∧ 2K) = 1

3 · 1
3 , the formula is valid, i.e. JC1/9

𝜇* (1 ∨ 2)K = 2N.

10
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One can even define a calculus LKCPL⋆0 for this extended semantics, with no substantial

change with respect to the proof system LKCPL0 , introduced in [1]. Indeed, only so-called

external hypotheses are related to probability measure and, consequently, no rule, except those

involving such measuring conditions, needs to be modified. Generalizations are obtained in the

following way:

𝜇⋆(JbK) = 0
𝑅↣

𝜇⋆⊢ b ↣ 𝐹

⊢ c ↣ 𝐹 𝜇⋆(JcK) ≥ 𝑞
𝑅↣

C⋆
⊢ b ↣ C𝑞

𝜇⋆𝐹

C. Proofs from Section 4

C.1. Section 4.1

Measurable Normal Form.

Proof of Lemma 2. Let 𝐷 =
⋁︀

𝑖∈{1,...,𝑛}𝐶𝑖 be in DNF. For any 𝐶𝑖 =
⋀︀

𝑗∈{1,...,𝑚} 𝐿𝑗 , with

𝑖 ∈ {1, . . . , 𝑛}, we define 𝐶*
𝑖 applying the transformations below:

* if 𝐶𝑖 = ⊤, then 𝐶*
𝑖 = ⊤.

* otherwise, consider each 𝑗 ∈ {1, . . . ,𝑚}, starting with 𝑗 = 1:

𝑖. if 𝐿𝑗 = ⊥, then 𝐶*
𝑖 = ⊥.

𝑖𝑖. if 𝐿𝑗 = ⊤, then 𝐿𝑗 is removed and 𝑗 + 1 is considered.

𝑖𝑖𝑖. if 𝐿𝑗 ̸∈ {⊥,⊤}, we consider each pedex 𝑘 ̸= 𝑗 ∈ {1, . . . ,𝑚}, starting with the first:

𝑎. if 𝐿𝑗 = 𝐿𝑘 , then 𝐿𝑘 is removed and the subsequent pedex (different from 𝑗 and

𝑘) is considered.

𝑏. if 𝐿𝑗 = 𝐿𝑘, then 𝐶*
𝑖 = ⊥.

8

𝑐. otherwise, 𝐿𝑗 is left unchanged and 𝑘 + 1 is considered.

It is clear that 𝐶𝑖 ≡ 𝐶*
𝑖 . We now consider 𝐷′ =

⋁︀
𝑖∈{1,...,𝑛′}𝐶

*
𝑖 and define 𝐷*

applying the

following transformations:

* if 𝐶*
𝑖 = ⊥ for any 𝑖 ∈ {1, . . . , 𝑛′}, then 𝐷* = ⊥.

* otherwise, we consider each 𝑖 ∈ {1, . . . , 𝑛′} starting with 𝑖 = 1:

𝑖. if 𝐶𝑖 = ⊤, then 𝐷* = ⊤.

𝑖𝑖. if 𝐶𝑖 = ⊥, then 𝐶𝑖 is removed and 𝑖+ 1 is considered.

𝑖𝑖𝑖. if 𝐶𝑖 ∈ {⊤,⊥}, we consider each pedex starting with the first 𝑘′ ̸= 𝑖 ∈ {1, . . . , 𝑛′}:

𝑎. if 𝐶𝑖 and 𝐶𝑘′ contain exactly the same literals, then 𝐶𝑘′ is removed and the

subsequent pedex (different from both 𝑘′, 𝑖) is considered.

𝑏. otherwise, 𝐶𝑖 is (at least temporarily) left unchanged and the subsequent pedex

(different from both 𝑘′, 𝑖) is considered.

Again it is clear that 𝐷 ≡ 𝐷*
.

8

Actually, due to Notation 2, case 𝑏. should already be considered as the first case *.

11
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Observe that for any formula 𝐹 in DPF, either 𝐹 ∈ {⊥,⊤} or no instance of ⊥,⊤ occurs in it.

As anticipated in Section 4, it is easy to measure the probability of a formula in CPF.

Proposition 3. Given a formula 𝐶 in CPF: 𝑖. if 𝐶 = ⊤, then 𝜇C (J𝐶K) = 1, 𝑖𝑖. if 𝐶 = ⊥, then

𝜇C (J𝐶K) = 0, 𝑖𝑖𝑖. otherwise, 𝐶 =
⋀︀

𝑖∈{1,...,𝑛} 𝐿𝑖 and 𝜇C (J𝐶K) = 1
2𝑛 .

Proof. Case 𝑖., 𝑖𝑖. are trivial consequences of Definition 1 and basic measure theory. Case 𝑖𝑖𝑖.
relies on Definition 2. Since 𝐶 does not contain ⊥,⊤ (or contradictions) or repetitions, by

semantic definition, its literals have to be interpreted as independent events, the measure of which

is known. Thus, for basic measure theory, 𝜇C

(︀q⋀︀
𝑖∈{1,...,𝑛} 𝐿𝑖

y)︀
= 𝜇C

(︀⋂︀
𝑖∈{1,...,𝑛}J𝐿𝑖K

)︀
=

1
2𝑛 .

Proof of Lemma 3. As before, cases 𝑖., 𝑖𝑖. hold by Definition 1 and basic measure theory. Case 𝑖𝑖𝑖.
is proved relying on Definition 4: for any 𝑗 ̸= 𝑘 ∈ {1, . . . , 𝑛}, (𝐶𝑗 , 𝐶𝑘) is a contradictory pair.

Then, by Definition 3, J𝐶𝑗K ∩ J𝐶𝑘K = ∅ for any 𝑖, 𝑘. So, we conclude 𝜇C

(︀q⋁︀
𝑖∈{1,...,𝑛}𝐶𝑖

y)︀
=

𝜇C

(︀⋃︀
𝑖∈{1,...,𝑛}J𝐶𝑖K

)︀
=

∑︀
𝑖∈{1,...,𝑛} 𝜇C (J𝐶𝑖K).

Corollary 1. Given a formula of CPL0 in MNF, 𝐹 =
⋀︁

𝑖∈{1,...,𝑚1}

𝐿𝑖 ∨ · · · ∨
⋀︁

𝑗∈{1,...,𝑚𝑛}

𝐿𝑗⏟  ⏞  
𝑛 𝑡𝑖𝑚𝑒𝑠

:

𝑖. if 𝐹 = ⊤, then 𝜇C (J𝐹 K) = 1,

𝑖𝑖. if 𝐹 = ⊥, then 𝜇C (J𝐹 K) = 0,

𝑖𝑖𝑖. otherwise 𝜇C (J𝐹 K) = 1/2𝑚1 + · · ·+ 1/2𝑚𝑛⏟  ⏞  
𝑛 𝑡𝑖𝑚𝑒𝑠

.

Proof. By Proposition 3 and Lemma 3.

C.2. Section 4.2

Conversion into MNF. We show how to convert a CPL0-formula in DPF into an equivalent

formula in MNF.

Proof of Lemma 4. Given a formula of CPL0 in DPF 𝐹 =
⋁︀

𝑖∈{1,...,𝑛}𝐶𝑖, we define a formula

𝐹 **
in MNF such that 𝐹 ≡ 𝐹 **

as follows:

* if 𝐹 ∈ {⊥,⊤}, then 𝐹 ** = 𝐹 .

* otherwise, we consider each 𝑖 ∈ {1, . . . , 𝑛}, starting with 𝑖 = 1:

𝑖. if there is a 𝑗 ̸= 𝑖 ∈ {1, . . . , 𝑛} such that 𝐶𝑖 is a sub-formula of 𝐶𝑗 , then 𝐶𝑖 is

removed and 𝑖+ 1 is considered.

𝑖𝑖. otherwise, we consider each pedex 𝑗 ̸= 𝑖 ∈ {1, . . . , 𝑛} starting from the first one:

𝑎. if 𝐶𝑖 and 𝐶𝑗 are mutually contradictory, then 𝑗 + 1 is considered.

𝑏. otherwise, for 𝐶𝑖 =
⋀︀

𝑘∈{1,...,𝑙} 𝐿𝑘 and 𝐶𝑗 =
⋀︀

𝑘′∈{1,...,𝑙′} 𝐿𝑘′ , we consider each

𝑘 ∈ {1, . . . , 𝑙} starting with 𝑘 = 1:

· if there is a 𝑘′ ∈ {1, . . . , 𝑙′} such that 𝐿𝑘 = 𝐿𝑘′ , then 𝐿𝑘 is left unchanged

and 𝑘 + 1 is considered.

12
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· if there is no 𝑘′ ∈ {1, . . . , 𝑙′} such that 𝐿𝑘 = 𝐿𝑘′ , then 𝐶𝑖 is replaced by

two formulas 𝐶 ′
𝑖 = 𝐶𝑖∧𝐿𝑘′ and 𝐶 ′′

𝑖 = 𝐶𝑖∧𝐿𝑘′ and 𝑎.-𝑏. are applied again

to both.

We consider each 𝑘′ ∈ {1, . . . , 𝑙′} starting with 𝑘′ = 1:

· if there is a 𝑘 ∈ {1, . . . , 𝑙} such that 𝐿𝑘 = 𝐿𝑘′ , then 𝐿𝑘′ is left unchanged

and 𝑘′ + 1 is considered.

· if there is no 𝑘 ∈ {1, . . . , 𝑙} such that 𝐿𝑘 = 𝐿𝑘′ , then 𝐶𝑗 is replaced by

𝐶 ′
𝑗 = 𝐶𝑗 ∧ 𝐿𝑘′ and 𝐶 ′′

𝑗 = 𝐶𝑗 ∧ 𝐿𝑘′ and 𝑎.-𝑏. are applied again to both.

Then, we consider 𝑗 + 1.

When 𝑗 + 1 = 𝑛, 𝑖+ 1 is considered (until also 𝑖+ 1 = 𝑛).
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