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Abstract
We present our work [1, 2] on modal logics for binary-input classifiers and their explanations. They are
able to represent classifiers that propositional logic cannot. In particular, black box classifier is understood
as uncertainty among admissible classifiers which are coherent with an agent’s partial knowledge, and
represented in a product modal logic framework. We also briefly show the logics’ application to XAI.
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1. Introduction

The notions of explanation and explainability have been extensively investigated by philosophers
[3, 4, 5] and are key aspects of AI-based systems. Classifier systems compute a given function in
the context of a classification or prediction task. Explaining why the system has classified a given
instance in a certain way is crucial for making the system intelligible and for finding biases in
the classification process. Thus, a variety of notions of explanations have been discussed in the
area of explainable AI (XAI) including abductive, contrastive and counterfactual explanations
[6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

At the mathematical level, a Boolean classifier is nothing but a Boolean function 𝑓, and
traditionally is represented by a propositional formula 𝜑. Using modal logic we can model
binary-input classifiers which have finite-valued output and are possibly partial. Moreover, it
enables us to represent black box classifiers which are key research objects in XAI. A classifier
is a white box, if it is determined and given in the model, while black box is understood as
uncertainty (indeterminacy) among admissible classifiers which are coherent with an agent’s
partial knowledge about the classifier. In this paper we present fourmodal logics for binary-input
classifiers in a unified framework: BCL (Binary-input Classifier Logic) and WBCL (Weak BCL);
PLC (Product logic for binary-input Classifier) andWPLC (Weak PLC), according to whether the
set of atomic propositions is finite or countably infinite, and whether the represented classifiers
are white box or black box, see Table 1.

1st Workshop on Bias, Ethical AI, Explainability and the role of Logic and Logic Programming, BEWARE-22, co-located
with AIxIA 2022, University of Udine, Udine, Italy, 2022
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open xinghan.liu@univ-toulouse.fr (X. Liu); Emiliano.Lorini@irit.fr (E. Lorini)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:xinghan.liu@univ-toulouse.fr
mailto:Emiliano.Lorini@irit.fr
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


BCL WBCL PLC WPLC

Cardinality of language is finite infinite finite infinite
Classifiers are white box white box black box black box

Table 1
Four modal logics for classifiers

Furthermore, we exemplify how to apply them to XAI by a) expressing abductive explanation
in our language; b) defining its counterpart in the case of black box classifiers; c) formalizing
the explanation verification as a model checking problem.

2. Four Logics: BCL, WBCL, PLC and WPLC

Language Let Atm0 be a countable set of atomic propositions with elements noted 𝑝, 𝑝′, …
to denote input variables of classifiers. We introduce a finite set Val to denote the output values
(classifications, decisions) of the classifier. Elements of Val are noted 𝑐, 𝑐′, … for classes. For any
𝑐 ∈ Val, we call t(𝑐) a decision atom, to be read as “the actual decision (or output) takes value 𝑐”,
and have Dec = {t(𝑐) ∶ 𝑐 ∈ Val}. Finally, let Atm = Atm0 ∪ Dec. The modal language ℒ(Atm)
is hence defined by the following grammar:

𝜑 ∶∶= 𝑝 ∣ t(𝑐) ∣ ¬𝜑 ∣ 𝜑 ∧ 𝜑 ∣ 2I𝜑 ∣ 2F𝜑,

where 𝑝 ranges over Atm0, 𝑐 ranges over Val, and 𝑋 is a finite subset of Atm0 which we
note 𝑋 ⊆fin Atm0. Connectives ∨,→,↔,◇I and ◇F are defined in the normal way. Let
Atm(𝜑),Atm0(𝜑),Dec(𝜑) denote the set of all atomic propositions, input variables, and de-
cision atoms in the formula 𝜑 respectively. Finally, let ℒ−2F (Atm) denote the 2F -free fragment
of ℒ(Atm).

Semantics The language is built to model (possibly partial) functions from 2Atm0 to Val, and
their interactions. Let us begin with the language ℒ−2F (Atm), which is interpreted relative to
classifier models whose class is defined as follows.

Definition 1 (Classifier model). A classifier model (CM) is a tuple 𝐶 = (𝑆, 𝑓 ) where:

• 𝑆 ⊆ 2Atm0 is the set of states, and
• 𝑓 ∶ 𝑆 ⟶ Val is a decision (or classification) function.

A pointed CM is a pair (𝐶, 𝑠) where 𝐶 is a CM and 𝑠 ∈ 𝑆. We call 𝐶 = (𝑆, 𝑓 ) finite if 𝑆 is finite. The
class of (finite) classifier models is noted CM (finite-CM).

Hence, the classifier 𝑓 has more than 2 outputs if |𝑟𝑎𝑛(𝑓 )| > 2; has countably infinite variables
if Atm0 is countably infinite; and is partial if 𝑆 ≠ 2Atm0 . Essentially, one can view a CM just
as an S5 model on Atm0 with partition labelled by elements in Val, which is indicated by the
satisfaction relation defined below, where 2I tentatively seems nothing but an S5 operator.



Definition 2 (Satisfaction relation 1). Let 𝜑 ∈ ℒ−2F (Atm), 𝐶 = (𝑆, 𝑓 ) be a CM and 𝑠 ∈ 𝑆:

(𝐶, 𝑠) ⊧ 𝑝 ⟺ 𝑝 ∈ 𝑠,
(𝐶, 𝑠) ⊧ t(𝑐) ⟺ 𝑓 (𝑠) = 𝑐,
(𝐶, 𝑠) ⊧ ¬𝜑 ⟺ (𝐶, 𝑠) ̸⊧ 𝜑,

(𝐶, 𝑠) ⊧ 𝜑 ∧ 𝜓 ⟺ (𝐶, 𝑠) ⊧ 𝜑 and (𝐶, 𝑠) ⊧ 𝜓 ,
(𝐶, 𝑠) ⊧ 2I𝜑 ⟺ ∀𝑠′ ∈ 𝑆, (𝐶, 𝑠′) ⊧ 𝜑.

Asmentioned, we think of black box classifier as uncertainty over a set of admissible classifiers
coherent with the agent’s partial knowledge. This thought is formalized as the multi-classifier
model defined below, which is nothing but a set of CMs with the same set of states.

Definition 3 (Multi-classifier model). A multi-classifier model (MCM) is a pair Γ= (𝑆, Φ)
where 𝑆 ⊆ 2Atm0 and Φ ⊆ Val𝑆, where Val𝑆 is the set of functions with domain 𝑆 and codomain Val .
A pointed MCM is a triple (Γ, 𝑠, 𝑓 ) where Γ= (𝑆, Φ) is an MCM, 𝑠 ∈ 𝑆 and 𝑓 ∈ Φ. We call Γ= (𝑆, Φ)
finite if 𝑆 is finite. The class of all (finite) multi-classifier models is noted MCM (finite-MCM).

Definition 4 (Satisfaction relation 2). Let 𝜑 ∈ ℒ(Atm), Γ= (𝑆, Φ) an MCM, 𝑠 ∈ 𝑆 and 𝑓 ∈ Φ:

(Γ, 𝑠, 𝑓 ) ⊧ 𝑝 ⟺ 𝑝 ∈ 𝑠,
(Γ, 𝑠, 𝑓 ) ⊧ t(𝑐) ⟺ 𝑓 (𝑠) = 𝑐,
(Γ, 𝑠, 𝑓 ) ⊧ ¬𝜑 ⟺ (Γ, 𝑠, 𝑓 ) ̸⊧ 𝜑,

(Γ, 𝑠, 𝑓 ) ⊧ 𝜑 ∧ 𝜓 ⟺ (Γ, 𝑠, 𝑓 ) ⊧ 𝜑 and (Γ, 𝑠, 𝑓 ) ⊧ 𝜓 ,
(Γ, 𝑠, 𝑓 ) ⊧ 2I𝜑 ⟺ ∀𝑠′ ∈ 𝑆 ∶ (Γ, 𝑠′, 𝑓 ) ⊧ 𝜑,
(Γ, 𝑠, 𝑓 ) ⊧ 2F𝜑 ⟺ ∀𝑓 ′ ∈ Φ ∶ (Γ, 𝑠, 𝑓 ′) ⊧ 𝜑.

Both 2I𝜑 and 2F𝜑 have standard modal reading but range over different sets. 2I𝜑 has to
be read “𝜑 necessarily holds for the actual function, regardless of the input instance”, while
its dual ◇I𝜑 =def ¬2I¬𝜑 has to be read “𝜑 possibly holds for the actual function, regardless
of the input instance”. Similarly, 2F𝜑 has to be read “𝜑 necessarily holds for the actual input
instance, regardless of the function” and its dual ◇F𝜑 has to be read “𝜑 possibly holds for the
actual input instance, regardless of the function”. Therefore, the agent knows that the actual
classification for 𝑠 is 𝑐, if (Γ, 𝑠, 𝑓 ) ⊧ 2F t(𝑐), i.e. only classifiers outputting 𝑐 for 𝑠 are admissible;
and (Γ, 𝑠, 𝑓 ) ⊧ ◇F t(𝑐) means that classifying 𝑠 as 𝑐 is coherent with agent’s partial knowledge.
With these two modal dimensions, our framework subjects to the so-called product modal logic.

An important abbreviation is the following, where 𝑋 ⊆finAtm0:

[𝑋]𝜑 =def ⋀
𝑌⊆𝑋

((⋀
𝑝∈𝑌

𝑝 ∧ ⋀
𝑝∈𝑋⧵𝑌

¬𝑝) → 2I ((⋀
𝑝∈𝑌

𝑝 ∧ ⋀
𝑝∈𝑋⧵𝑌

¬𝑝) → 𝜑)).

Complex as it seems, [𝑋]𝜑 means nothing but “𝜑 necessarily holds, if the values of the input
variables in 𝑋 are kept fixed”. It can be justified by checking that (Γ, 𝑠, 𝑓 ) ⊧ [𝑋]𝜑, if and only if
∀𝑠′ ∈ 𝑆, if 𝑠 ∩ 𝑋 = 𝑠′ ∩ 𝑋 then (Γ, 𝑠′, 𝑓 ) ⊧ 𝜑. Its dual ⟨𝑋⟩𝜑 =def ¬[𝑋]¬𝜑 has to be read “𝜑 possibly
holds, if the values of the input variables in 𝑋 are kept fixed”. These modalities have a ceteris
paribus reading and were first introduced in [16]. Notice when 𝑋 = ∅, [∅] coincides with 2I .



Axiomatics We have to separate two cases, when Atm0 is finite or countably infinite. The
reason lays on the axiom Funct in Table 2, which intends to express the “functionality” property
syntactically. We define cn𝑋,Atm0 =def ⋀𝑝∈𝑋 𝑝 ∧ ⋀𝑝∈Atm0⧵𝑋 ¬𝑝. But when Atm0 is infinite,
cn𝑋,Atm0 is not a well-formed formula, and Funct has to be abandoned.

Definition 5 (Axiomatics). We define PLC as the extension of classical propositional logic with
all axioms and inference rules in Table 2; WPLC as PLC minus Funct; BCL as all 2F -free axioms
and inference rule in Table 2; and WBCL as BCL minus Funct.

(■𝜑 ∧■(𝜑 → 𝜓)) → ■𝜓 (K■)

■𝜑 → 𝜑 (T■)

■𝜑 → ■■𝜑 (4■)

¬■𝜑 → ■¬■𝜑 (5■)

2F2I𝜑 ↔ 2I2F𝜙 (Comm)

⋁
𝑐∈Val

t(𝑐) (AtLeastt(𝑐))

t(𝑐) → ¬t(𝑐′) if 𝑐 ≠ 𝑐′ (AtMostt(𝑐))
(cn𝑋,Atm0

∧ t(𝑐)) → 2I(cn𝑋,Atm0
→ t(𝑐)) (Funct)

𝑝 → 2F𝑝 (Indep2F ,𝑝)

¬𝑝 → 2F¬𝑝 (Indep2F ,¬𝑝)
𝜑
■𝜑

(Nec■)

Table 2
Axioms and rules of inference, with ■ ∈ {2I ,2F }

We obtained the technical results in Theorem 1 and Table 3, whose proofs are in [1, 2].

Theorem 1. Let Atm0 be finite, then BCL and PLC are sound and complete with respect to CM
and MCM respectively. Let Atm0 be infinite, then WBCL and WPLC are sound and complete with
respect to CM and MCM respectively.

Finite variables Infinite variables
Fragmentℒ−2F (Atm) Polynomial NP-complete
Full language ℒ(Atm) Polynomial in NEXPTIME

Table 3
Summary of complexity results

3. Classifier Explanations: Objective and Subjective

In the jargon of Boolean functions, a term or a property is a conjunction of literals (an atom or
its negation), which we denote by 𝜆. We use 𝑇 𝑒𝑟𝑚(𝑋) to denote all terms whose atoms are in 𝑋.



In the XAI literature recently people have focused on local explanation, namely to answer why
the given instance is classified as such and so. A central notion is called abductive explanation
[11] (or sufficient reason [17]). It is expressible in ℒ(Atm) as follows:

AXp(𝜆, 𝑐) =def 𝜆 ∧ [Atm(𝜆)]t(𝑐) ∧ ⋁
𝑝∈Atm(𝜆)

⟨Atm(𝜆) ⧵ {𝑝}⟩¬t(𝑐).

The three conjuncts mean that 1) 𝜆 is a “part” of the instance; 2) atoms in Atm(𝜆) staying the
same valuation as in 𝑠, t(𝑐) necessarily holds regardless of other atoms; 3) 𝜆 is the “minimal”
such property, in the sense that any its proper part 𝜆′ ⊂ 𝜆 fails condition 2). Hence intuitively,
it is sufficient and necessary to answer why the actual classification is 𝑐 by saying “because the
instance obtains property 𝜆”.

Let 𝐶 = (𝑆, 𝑓 ) be a CM. We say that 𝑓 is 𝑋-definite for 𝑋 ⊆finAtm0, if ∀𝑠, 𝑠′ ∈ 𝑆, 𝑠 ∩ 𝑋 = 𝑠′ ∩ 𝑋
then 𝑓 (𝑠) = 𝑓 ′(𝑠). And it is easy to see that 𝑓 is 𝑋-definite, iff (𝐶, 𝑠) ⊧ Def(𝑋) where Def(𝑋) =def
⋀𝑐∈Val 2I (⟨𝑋⟩t(𝑐) → [𝑋]t(𝑐)). When the classifier is 𝑋-definiteness for some 𝑋 ⊆fin Atm0 ,
AXp always exists for the actual classification. We may call it the “principle of sufficient reason”
(PSR) in term of Spinoza [Ethics, 1p11d2], and obtain the following validity.

⊧CM (t(𝑐) ∧ Def(𝑋)) → ⋁
𝜆∈Term(𝑋)

AXp(𝜆, 𝑐)

However, a sufficient reason may not be known to the agent when the classifier is a black box.
We define 𝜆 as a subjective abductive explanation of the actual classification 𝑐, noted SubAXp(𝜆, 𝑐),
if the agent knows that 𝜆 is an abductive explanation of the actual classification 𝑐, that is:

SubAXp(𝜆, 𝑐) =def 2F AXp(𝜆, 𝑐).

To see how SubAXp fails PSR, consider the following example. Suppose a classifier trained
for deciding whether a paper is acceptable for a conference which has four input features:
significance, or iginality, clarity and anonymity. Let 1 and 0 denote acceptance and rejection
respectively.

Example 1 (Fail of PSR in black box). Let Γ= (𝑆, Φ) be an MCM of this black box, where 𝑆 =
2{𝑠𝑖,𝑜𝑟 ,𝑐𝑙,𝑎𝑛} and 𝑠1 = {𝑠𝑖, 𝑜𝑟 , 𝑎𝑛} ∈ 𝑆. Consider 𝑓1, 𝑓2 ∈ Φ whose syntactic expressions are 2I (t(1) ↔
((𝑜𝑟 ∧ 𝑎𝑛) ∨ (𝑐𝑙 ∧ 𝑎𝑛)), and 2I (t(1) ↔ (𝑠𝑖 ∧ 𝑎𝑛)) resp.. Then,

(Γ, 𝑠1, 𝑓1) ⊧ AXp(𝑜𝑟 ∧ 𝑎𝑛, 1) ∧ ⋀
𝜆∈𝑇 𝑒𝑟𝑚({𝑠𝑖,𝑜𝑟 ,𝑐𝑙,𝑎𝑛})

¬SubAXp(𝜆, 1).

Therefore, it is of particular interest to determine how much knowledge is needed to verify
subjective AXps. This problem can be studied in form of model checking. Let ΓΣ,𝑆,𝑠0 = (𝑆, ΦΣ,𝑆,𝑠0)
denote an MCM induced by Σ a finite subset ofℒ−2F (Atm), 𝑆 ⊆ 2Atm0 , 𝑠0 ∈ 𝑆, where ΦΣ,𝑆,𝑠0 =def

{𝑓 ∈ Val𝑆 ∶ ∀𝜓 ∈ Σ, (𝑆, 𝑓 , 𝑠0) ⊧ 𝜓 }. We can formalize the following model checking problem.
Subjective AXp existence

Given: finite Σ ⊂ ℒ−2F (Atm), 𝑆 ⊆ 2Atm0 , 𝑠0 ∈ 𝑆.
Question: Does it exist a term 𝜆 s.t. (ΓΣ,𝑆,𝑠0 , 𝑠0, 𝑓 ) ⊧ AXp(𝜆, 𝑓 (𝑠0)) for all 𝑓 ∈ ΦΣ,𝑆,𝑠0?

There are many other explanation notions, and logical extensions discussed in [1, 2]. And we
are working on applying this family of modal logics to more topics in XAI.
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