
A low-resource approach to SemTab 2022
Laurent Mertens1

1KU Leuven, De Nayer Campus, Dept. of Computer Science
J.-P. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
and
Leuven.AI - KU Leuven Institute for AI, B-3000 Leuven, Belgium

Abstract
Mapping tabular data to a Knowledge Graph is a common task that often involves the use
of considerable resources in terms of disk space, system memory and processing power. This
paper introduces a barebones system that needs only modest computer hardware and only
relies on Python, yet still achieves 77.0% F1 and 84.6% F1 on the SemTab 2022 Round 1 CTA
and CEA tasks respectively. In its current form, the system can only solve specific kinds of
cases, but pointers are provided as to how it could be expanded to become more versatile. Our
source code has been made available online.

Keywords
Entity Linking, Cell Entity Annotation, Column Type Annotation, Column Property Annota-
tion, Table to Knowledge Graph

1. Introduction
Storing data in tabular format is popular, as the format combines a clear structure
imposed by its rows and columns, with a compact size. This compactness often comes at
the price of not clearly describing the properties of, and relations between the elements
in the data, which can be a hindrance when attempting to interpret the data correctly.
This gave rise to “Tabular data to Knowledge Graph matching” (T2KG), the task of
automatically mapping tabular data to appropriate entries in an external knowledge
graph (KG) such as Wikidata or DBpedia.

The SemTab challenge was introduced in 2019 [1] as a means of collecting benchmark
T2KG datasets and systematically evaluating T2KG systems. This year sees the fourth
edition of the challenge, which consists of two tracks: a Dataset track which invites par-
ticipants to submit new benchmark datasets, and an Accuracy track aimed at evaluating
T2KG system performance. The Accuracy track consists of three Tasks: CTA (assigning
a semantic type to a column), CEA (matching a cell to a KG entity) and CPA (assigning
a KG property to the relationships between two columns). These tasks are organized in
three separate rounds, with each round using a more challenging benchmark dataset.

This paper describes our submission to Round 1 of the Accuracy track using Wikidata as

ISWC2022, October 23–27, 2022, Hangzhou, China
 laurent.mertens@kuleuven.be (L. Mertens)
� 0000-0001-5175-2673 (L. Mertens)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 Interna-
tional (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:laurent.mertens@kuleuven.be
https://orcid.org/0000-0001-5175-2673
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


external KG. In the remainder of this text, we will refer to a Wikidata article, designated
by a unique Q-ID, as an entity.

The novelty of our approach lies not in its algorithm, which essentially aims at
maximizing the property overlap between 1) the cells within a key column and 2) a
pair of cells taken from the key column and one other column, and which shares many
similarities with existing approaches such as, e.g., [2, 3, 4]. Rather, existing systems
either make intensive use of web APIs to query the KG [5, 6] or locally hosted third-party
search engines such as Elastic Search [7, 8]. Our goal is not to obtain the highest results,
but rather to provide a prototype for an alternative to these complex and resource-
intensive systems with a barebones system that is local, fully self-contained and only
requires Python. We do not use an external DB API or search engine, but instead opted
to create custom data indexes and build our own API on top of those. The results
reported in this paper were obtained using a system that ran on a i7-8850H laptop with
32GB of RAM and needed as little as ∼40GB of hard drive space, specs that put the
system within reach of edge computing applications. The source code is available at
https://gitlab.com/EAVISE/lme/semweb2022.

In what follows we will first sketch the general approach taken to the problem in
Section 2. In Section 3 we describe our data pre-processing approach, followed by a
detailed description of the table parsing algorithm in Section 4. Results are reported and
discussed in Section 5, with pointers for future work given in Section 6, and a summary
and final conclusions given in Section 7.

2. Generic algorithm
Our system follows the general approach of first identifying a table column, called key
column, whose entries can all be mapped onto KG entities and, specifically for Wikidata,
these entities share a common category-like property named instance of. E.g., in Wikdata,
the entity “Robert Smith” (Q491252) is an “instance of” (Wikidata property P31) the
concept “human” (Q5). At this stage, it is possible that multiple sets of KG entities
match the key column. Subsequently, the system will attempt to match the other columns
to properties of the entities in these entity sets, enforcing the constraint that all mapped
onto properties for values in a non-key column, if matchable to a set of entities, should
share the same property tag. E.g., if the key column identifies entities of category
“human”, all values in some other column might be matchable as values of the property
“age” of the entities the key column is mapped onto. If on the other hand, say, one of the
column values can be mapped onto the property “retirement age” instead of “age”, whilst
all the others can be mapped onto “age”, this particular mapping will be considered
invalid. The set of key-column entities that allows to best match the other columns is
the one that is ultimately put forward as the winning set.

To this end, we need to be able to perform the following KG queries: retrieve candidate
entities for a given string; retrieve all “instance of” values of a given entity; and finally,
retrieve all RDF triplets pertaining to a specific entity from the compressed KG. In the
following sections we explain how we set this system up and use it to parse tables.

https://gitlab.com/EAVISE/lme/semweb2022


3. Data preparation
3.1. Splitting of the Knowledge Graph
The SemTab 2022 challenge uses a Wikidata dump dated 21th of May, 2022. Compressed,
the data is 33.4 GB. Uncompressed, this amounts to a considerable 1TB+ of textual data
representing RDF triples, which are then typically ingested into some type of structured
database such as MongoDB1, or a framework that supports the SPARQL query language.

We opted to work on the compressed data directly, without using any third party
database or search engine, hereby greatly reducing the necessary hard drive space.
However, querying the original compressed file directly is not an option, knowing that
parsing it to the end (equivalent to fully uncompressing it) takes no less than a couple of
days on a typical laptop. To circumvent this issue, we split the original data into chunks
of 10,000 articles, each identified by a unique Q-ID, by uncompressing the main file on
the fly2 whilst filling a 10,000 article buffer. Note that the buffersize is customizable,
with lower buffersizes resulting in smaller files, and hence, increased query speed later on.
Once full, the buffer is compressed to disc, emptied, and filled up again. This results in
10,084 chunks. Besides dividing the data up into manageable chunks, it also adds the
benefit of allowing to process the data in parallel later on.

After splitting the data, we perform two extraction phases, each with a different focus:

• First, we extract all unique tokens making up the names of the Wikidata entities.
We will come back to what constitutes an entity’s name in §3.2.

• Second, we reparse the data, using the unique tokens extracted in the previous step
to map the entity names to a numerical representation by replacing each token with
its index in the sorted list of unique tokens. Simultaneously, we extract for each
entity its “instance of” property (which might have multiple values) and generate a
table of contents (TOC) that describes in what chunk and at what position in the
chunk each entity’s article (i.e., its RDF triplets) is to be found.

In the following subsections, these steps are discussed in more detail.

3.2. Unique token extraction
The goal of this step is to gather a sorted list of unique tokens that make up all the
entity names in the database. This list is used as a basis for storing the names in an
efficient way by simply storing the indices of the tokens making up the names, instead of
the tokens themselves. Efficient index look-up is achieved by using binary search.

Wikidata entity descriptions do not contain an explicit “name” property, so we heuris-
tically assembled a list of properties that are considered namelike by browsing through a
list of all occuring properties sorted by occurence frequency, and inspecting typical values
for some random entities. We selected the Wikidata properties (P-IDs in parentheses)
“Wikimedia commons category” (P373), “official name” (P1448), “short name” (P1813),

1https://www.mongodb.com/
2So we still fully uncompress the data once, but we do not save the uncompressed data to disk.

https://www.mongodb.com/


“label” (P2561) and “kbpedia id” (8408), as well as the non-Wikidata property “schema
name”. All values of these properties for a specific entity are interpreted as names of that
entity.3 Potential names are processed as follows:

• If the literal property value contains a ‘@’ value delimiting a language specification
(e.g., "George"@en), then this language specification is removed.

• Names are filtered using the following RegEx that defines the allowed charac-
ters: “[À-žß\w\s.\-()\[\]{}]+”. Names containing other characters are ignored.
Mostly, this aims at filtering out names containing non-Latin characters, with the
exception of some special characters such as brackets. This entails that as of now,
our system does not support resolving entities using non-Latin names.

Valid names are split into tokens simply by splitting on whitespaces. By repeating this
process over all entities and keeping track of all unique tokens, we obtain the desired set
of all unique tokens making up all valid names, which is then sorted alphabetically and
saved to disc as a binary file, storing one token per line. For the work described in this
paper, this amounted to 48,645,067 unique tokens stored in a 916MB file.

3.3. Name, “instance of” and TOC extraction
During the second parse, all entities are again parsed in order to extract their names
using the same method as described in §3.2, as well as their “instance of” IDs. Entities
for which no valid names can be extracted, either because they do not have any specified
names or because their names are filtered out, are ignored. Extracted names are converted
to a numerical representation by replacing each constituent token with its index in the
sorted list of unique tokens, a process that can be done efficiently using binary search.

Finaly, the list of names and “instance of” IDs for each entity are saved to disk, creating
one new file per chunk, using the following binary file format:

• First, 4 bytes are used to store the entity’s Q-ID.
• Next are 2 bytes representing the number of extracted names for this entity.
• This is followed by, per name, a sequence of 2 bytes representing the number of

tokens in this particular name, followed by (number of tokens)*4 bytes encoding
the sequence of token IDs constituting this name.

• After the listing of names, 2 bytes are used to store the number of “instance of”
values for this entity, followed by (number of “instance of” IDs)*4 bytes encoding
all “instance of” Q-IDs for this entity.

This format allows to very efficienty store all the extracted data. File size varies from
chunk to chunk, but is typically in the order a tens of KBs, to a few hundreds of KBs for
the larger files.

Simultaneously, a TOC is created by for each chunk appending the relevant information
to the single binary TOC file (contrary to the “one file per chunk”-approach for the
names), using the following format:
3Note that an entity can have multiple values sharing a same property, e.g., more than one “official
name”.



• First, 4 bytes encode the ID of the chunk file.
• The next 4 bytes encode the number of entities in the chunk.
• This is then followed for each entity by a sequence of 4 bytes encoding its Q-ID, 4

bytes encoding the start position of the data pertaining to this Q-ID in the chunk
file and another 4 bytes encoding the length of this Q-ID’s data.

So, in order to retrieve the data for a specific Q-ID, one needs to open the corresponding
(compressed) chunk file, put the reader head at the starting position described in the
TOC and read out the appropriate number of bytes, as described in the TOC. The
number of entities left after filtering is 96,809,376. The corresponding TOC file is 619MB.

3.4. A note on multiprocessing
As noted in 3.1, a bonus advantage of dividing up the data in chunks is that it can be
processed in parallel. One should be careful however how to approach this in Python.
The most straightforward way is to divide the data chunks up into batches, and process
each batch using a multprocessing.Pool object, but this risks running out of RAM,
because each process comes with a full copy of the data contained in the main process
that spawns it. Moreover, the time it takes to process a chunk varies greatly from chunk
to chunk, with larger chunks4 taking up considerably more time. As long as a single
process is running it will block the entire pool from finishing, leaving the other processes
to idle until the entire pool is finished and the next batch of chunks can be processed.

To alleviate both issues at once, we use a double multiprocessing queue system in
which one queue is used to launch several parallel processes that each process a single
chunk, and each of those processes then puts its results on the second queue which digests
the results and writes them to disk. This way, whenever a process has finished parsing a
chunk, it can immediately be reused to process a different chunk.

4. Table processing
Processing the CSV tables requires the possibility to query the extracted information
described in Section 3 in an online way, i.e., without having to reload the data for each
CSV, which would be inefficient to the point of making the system inoperable. To make
this possible, we opted to use a local Python-based web server. Once the data is loaded
into RAM and can be queried, the CSV tables can be processed. In §4.1 the server setup
is described in detail, followed by a description of the table processing algorithm in §4.2.

4.1. Local server setup
As local web server, we use CherryPy5. This allows us to load all necessary data into
memory, and make it queryable through local URL requests using custom API endpoints
4“Larger” in terms of disk space, not in terms of the number of entities. All chunks, except for the last
one, describe 10,000 entities. However, the size of entity descriptions varies greatly, with more data
being known for some entities than for others, resulting in varying chunk sizes.

5https://cherrypy.dev/

https://cherrypy.dev/


and Python’s built-in urllib package.
Loading the data into RAM happens as follows.6 The process might look a bit

convoluted, but essentially, it all revolves around storing data into RAM in such a way
that it can be conveniently and efficiently searched using binary search.7

First, we parse all “names and instance of” files created in §3.3, extracting the
information contained therein. To make things slightly more efficient, we parse the files in
batches, processing all gathered results per batch at once. During the parsing of the files,
we fill up two arrays: one containing the entity IDs, and one containing the “instance of”
IDs. The important point is that both arrays are filled up in the same order, i.e., position
𝑥 in the “instance of” array corresponds to the entity stored in position 𝑥 of the entity
IDs array. At this stage, we also write out all unique entity names to a temporary file on
disk, together with all the entity IDs to which they correspond (a name can be shared by
many entities). These unique files are written away per processed batch of files, and may
hence contain duplicates; the names are unique within their respective file batch.

Once all files have been parsed this way, we sort the entity IDs array, and let the
“instance of” array follow the same order. This way, one can easily look up the index
of a specific entity ID using binary search on the entity IDs array, and use this index
to retrieve the entity’s “instance of” values in the corresponding array. To make things
more memory efficient, we actually use two arrays to store the “instance of” IDs. After
sorting, we convert the array of IDs to a contiguous bytearray, and store the ending
positions of the data chunks corresponding to each ID in a second array. In other words,
position 𝑥 in the second array tells us at which position in the first (contiguous) array
the data chunk corresponding to the entity ID stored in position 𝑥 in the entity IDs
array ends (exclusive). To get the start position of the data chunk, one simply needs to
look at position 𝑥 − 1. In case 𝑥 = 0, the start position is also 0. This is represented
schematically in Figure 4.1. Similarly, the entity IDs array is converted to a contiguous
bytearray, where each ID takes up 4 bytes. Binary search can be performed on this
contiguous array by taking positions that are multiples of 4 as pivot points.

Once this part is done, we proceed to collect all unique names saved to the temporary
file generated in §3.3, ignoring the saved entities at this point. We essentially apply
the same trick as for the “instance of” IDs, where the names, or to be precise their
corresponding token IDs, are stored alphabetically in a contiguous array of bytes, with a
second “parallel” array containing the end positions of each name. This allows us to use
binary search on the names array, using the end positions as pivot points.

Once we have this information, we then proceed to parse the temporary file a second
time, this time focusing on the entities each name belongs to. From this, we create two
mappings: one that maps from each entity ID to the indices in the unique names array
of its corresponding names, and inversely a map that for every unique name maps onto
those entity IDs to which it belongs. The ordering of both maps follows the ordering of

6Note that this approach can be cached, i.e., the resulting Python objects saved to disk, so that they can
be loaded directly at later times instead of having to restart the process from scratch.

7On a technical note, it is imperative to use Python bytearrays and Numpy8 arrays instead of Python
structures such as lists and dictionaries whenever possible, as the Python structures are simply too
memory consuming.



Figure 1: Schematic illustration of indexing mechanism. As an example, to retrieve the “instance
of”-ids for entity Q24, first binary search for target “24” is performed on array “Entity IDs”, which
returns 2. So the start and end positions of the relevant “instance of”-ids are located in the “Instance
Of ID end positions”-array at positions 𝑥− 1 (start) and 𝑥 (end), with 𝑥 = 2, which gives start=5,
end=7. Hence, the “instance of”-ids are [35, 7153].

Table 1
Toy example of a table to be solved.

col 1 col 2

Robert De Niro Greenwich Village
Maggie Smith Ilford

the entity ID array and unique names array respectively. Both maps are again stored
using the “two parallel arrays”-approach.

The CherryPy API offers four endpoints to query the data:

• An endpoint to query all entity IDs relating to a specific name.
• An endpoint to query all known names relating to a specific entity ID.
• An endpoint to query all “instance of” IDs relating to a specific entity ID.
• An endpoint to request the raw data (i.e., the RDF triplets as stored in the Wikidata

dump) for a specific entity ID.

4.2. Table processing proper
Now that all data has been loaded into RAM and we are able to query it using our API,
we are ready to process the CSV files.

4.2.1. Finding a key column

First, we attempt to find a key column in the table. For this, we start with the first
entry in the first column, and request all known entities for this entry. There is an interal
conversion from string to token indices taking place. If the column value can not be
mapped onto known token indices, or no entities can be linked to this name, we move on
to the next column. If entities are retrieved, we retrieve the “instance of” IDs for each
retrieved entity.

We then move on to the next entry in the column, and retrieve its corresponding entities.
Again, we construct a set of all the unique “instace of” IDs relating to these entities, and
for each entity consider the entities gathered for the previous column entry, and look at



the intersection of the sets of “instance of” IDs relating to both. If this intersection is
empty, then we know that these two entities do not share a common “instance of” ID,
and we further ignore this sequence of entities. If however the intersection is not empty,
we keep this sequence of entities as a potential explanation of the column so far.

This process then continues on until the end of the column is reached. All surviving
entity sequences are considered potential explanations of the column. If the end of the
column was not reached or no sequences survive, we move onto the next column until a
key column is found. If no key column can be found, the table can not be solved.

Considering the toy example depicted in Table 1, “col 1” is a key column for which
the cell value “Robert De Niro” can be mapped onto either Q36949 or Q951321 and
“Maggie Smith” onto Q172653, Q19666077 and a few others. This results in explanations
(Q36949, Q172653), (Q951321, Q172653), (Q36949, Q172653), etc. Each explanation
shares the “instance of” ID Q5, which is “human”. In words: each explanation represents
a tuple of two humans, one named “Robert De Niro”, the other named “Maggie Smith”.
To figure out which of these explanations is the most probable, we need to look at the
other information present in the table.

4.2.2. Use the key column to explain the other columns

Assuming a key column and matching explanations were found using the steps explained
in §4.2.1, we can move on to the next step: try to match the other columns by checking
if we can find the values in these other columns within the data pertaining to the entities
in the (explanations for the) key column.

In order to do so, we take as our starting point the explanations previously found. For
each of these explanations, we loop over all columns other than the key column, and
check that not only can the values in these columns be found back in the raw RDF triplet
data for the entities in the explanation, but moreover the matching triplets over all rows
(i.e., across all entities in the explanation) share the same predicate. Only then will we
consider the column as solved by this particular key column explanation. If all non-key
columns can be solved this way, we say that the explanation solves the entire table.

The way we go about doing this can be summarized as follows. For each entry in the
(non-key) column to be parsed, i.e., for each row, we check whether entities can be found
for which this entry is a known name. If so, we also take their corresponding Q-IDs into
consideration in what follows. This gives us a set of targets: the original cell value plus
any possible corresponding Q-IDs.

Next, we retrieve the raw RDF triples (this is essentially a chunk of text consisting of
multiple strings, each encoding an RDF triplet) for the entity in the explanation under
consideration that corresponds to the current table row. For each target we then check
whether we can find it back in the object part of an RDF triplet by means of string
matching. For each match, we retrieve the predicate of the triple and add it to the set
of predicates over all matched targets for this particular column entry and explanation
entity. We then take the intersection of this predicate set with the set of predicates so far
shared amongst previously parsed column entries. If this is the first entry to be parsed, its
predicate set will serve as starting point for this iterative process. If at some point during



the processing of column entries this shared predicate set becomes empty, this either
means that for the currently processed column entry/explanation entity combination no
target value could be found in the entity’s raw data, or one or more targets could be
found, but their predicates do not overlap with the predicates of the previously matched
targets for previously processed column entries.

If when having parsed all column entries, starting from a key column explanation,
there remain shared predicates amongst the matched targets, the column is solved by
the explanation.

To make this all a bit more concrete, let us refer back to the toy example in Table 1.
§4.2.1 left us with, a.o., the explanations (Q36949, Q172653), (Q951321, Q172653) and
(Q36949, Q172653).

Let us consider (Q36949, Q172653) first. The first entry in column 2 is “Greenwich
Village”. The targets under consideration are the original cell value “Greenwich Village”,
but also the string encoded entity IDs “Q205380” and “Q5604897”, of which “Greenwich
Village” is a known name in our database. We then retrieve all RDF triples for entity
Q36949, and try to string match the aformentioned targets. It turns out we find a match
for “Q205380”, namely in the following triple:

<http://www.wikidata.org/entity/Q36949>
<http://www.wikidata.org/prop/direct/P19>
<http://www.wikidata.org/entity/Q205380> .

From this triple, we extract the predicate “P19”, which is “place of birth”, and add it to
the set of shared predicates 𝑆 = {P19}. We then turn to the next entry in this column,
which is “Ilford”. The corresponding entity for this explanation is Q172653. The name
“Ilford” can be mapped onto entities Q2297044, Q5997730, Q5997725 and Q5997728, so
we have five targets to look for. In the raw triples data for entity Q172653 we find a
string match for “Q2297044”:

<http://www.wikidata.org/entity/Q172653>
<http://www.wikidata.org/prop/direct/P19>
<http://www.wikidata.org/entity/Q2297044> .

Hence, the set of predicates for entity/value combination Q172653/“Ilford” is 𝐷 = {P19}.
We update the set of shared predicates by doing 𝑆 ← 𝑆 ∩𝐷, and are left with the non-
empty predicate set 𝑆 = {P19}. In other words, for the explanation (Q36949, Q172653)
the values in column 2 can be mapped onto the same property with predicate P19, i.e.,
“place of birth”. Put even differently, it appears that column 2 encodes the place of birth
of the entities (Q36949, Q172653). Hence, explanation (Q36949, Q172653) solves column
2, and since column 2 is the only non-key column in this table, also solves the table itself.

Moving on to explanation (Q951321, Q172653), we find that we can not find back any
of the “Greenwich Village” targets in the triples for entity Q951321. Hence, explanation
(Q951321, Q172653) does not allow to solve column 2. Analogously, we find that all the
other explanations are unable to solve column 2.



Table 2
Results for the SemTab 2022 Round 1 CTA and CEA tasks.

CTA CEA
Team Avg. Prec. Avg. Rec. Avg. F1 Avg. Prec. Avg. Rec. Avg. F1

Laurent 0.785 0.755 0.770 0.972 0.749 0.846

KGCODE-Tab 0.944 0.940 0.942 0.916 0.871 0.893
JenTab 0.940 0.936 0.938 0.946 0.944 0.945
s-elBat 0.961 0.952 0.957 0.964 0.926 0.945

DAGOBAH – – – 0.955 0.952 0.954
Kepler-aSI 0.944 0.944 0.944 – – –

Semlnt 0.794 0.794 0.794 – – –

5. Results
The results of our system on the SemTab 2022 Accuracy Challenge Track, Round 1 CTA
and CEA tasks are shown in Table 2. These results were taken from the official website9.
We also submitted a submission for the CPA task, but unfortunately our submission
contained duplicate rows due to the results being appended to an earlier aborted run,
making our submission invalid. The submitted run took 3h50min to complete.

Our system achieved an F1 score of 77.0% on the CTA task and 84.6% on the CEA
task. Current system performance is markedly inferior to the top-performing systems
(95.7% for CTA, 95.4% for CEA), yet managed to squeeze in a best performance in
precision for CEA at 97.2%.

6. Future Work
The biggest drawback of our system at present is its lack of support for fuzzy matching.
This means that a table cell entry can only be matched to a KG entry if its value exactly
matches a known name of the KG entry. Similarly, cell values in non-key columns are
currently only checked literally against the candidate entities’ known properties.

In the following subsections we will provide some pointers as to how these issues could
be resolved.

6.1. Fuzzy name matching
Adding fuzzy name matching to our system is somewhat tricky, mainly because of the
self-imposed limit to have the system be self-contained and run on a 32GB machine.
Currently, only about 10GB of free RAM is needed to load all necessary data into memory,
but on top of that comes the memory requirements during table parsing. Data pertaining
to candidate entities is buffered into memory, which in case of many candidates quickly
runs into several GBs of RAM as well, leaving only so much wiggle room.

9https://sem-tab-challenge.github.io/2022/

https://sem-tab-challenge.github.io/2022/


After submitting our competition results, we experimented with using 𝑛-gram based
matching to allow for fuzzy matching. Two paths were explored, one focused on token
matching, the other focused on full string matching. Both paths proved unsatisfactory,
albeit for different reasons. We will first discuss both, and present a possible way forward.

The idea behind 𝑛-gram based matching is that one creates an index mapping strings
onto 𝑛-grams, analogous to how indices are created mapping documents to salient terms
for document retrieval purposes. Such an index is typically stored in a sparse matrix,
with rows representing the indexed terms, and columns the values to be indexed on. For
our purposes this is a matrix with rows representing names and columns representing
𝑛-grams. To perform fuzzy matching, one then simply has to convert the search query
(i.e., the name to be matched) to a vector representing its decomposition in 𝑛-grams, and
compute the cosine similarity (or other preferred metric) with the index matrix. The
matrix rows with the highest cosine similarity values are then considered the best matches
to the search query. The issue with this, of course, is the potential size of the index
matrix. Specifically, we are dealing with 48,645,067 unique tokens making up 94,714,857
unique names, resulting in gigantic index matrices in terms of memory, even using sparse
encoding10. This is compounded by the fact that matrix multiplication consumes heaps
of memory as well, further limiting the acceptable size of the index matrix.

Our first experiment was indexing the tokens rather than the full names, resulting in a
smaller index matrix, and performing fuzzy matching on a per-token basis. This way a
query string is first split into tokens, and each token is fuzzy matched against the index.
The resulting lists of matches for each token are subsequently combined to form possible
candidates. E.g., consider the query string “Robaert Smith”. Fuzzy matching would
possibly return matches “Robert” and “Robart” for the first token, and some variations
on “Smith” for the second token. Potential candidates would then be “Robert Smith”,
“Robart Smith”, and all combinations with the “Smith”-variations. For each of these
candidate strings the corresponding KG candidates then have to be retrieved (potentially
none; e.g., “Robart” is a known surname, but not a known firstname, so “Robart Smith”
would return no results). The main issue with this approach is the quickly exploding
number of candidate entities, making this potential solution unworkable.

The second experiment was to index the full names, albeit after heavily filtering
them11. Moreover, 𝑛-grams were binned, such that, e.g., the 100 most common n-grams
would map to the same index. Unfortunately, despite experimenting with several 𝑛-gram
binnings, we did not manage to get the system to work. When entering an exactly
matchable query, the top result would be the exact match, as expected, followed by some
variations in casing when present. But whenever a query with a typo would be presented,
the returned results would not contain the correct name.

A step in the right direction might be to return to the token-based setup, and (quite
heavily) filter the result combinations. For starters, one might begin by only keeping
those combinations that fall within a certain edit distance from the full query term. This
would also allow to greatly increase the speed of the result product taking, as entire

10The sparse index matrix for the unique names is ∼10GB.
11E.g., we removed all names containing brackets.



branches could be cut off early on. E.g., for any name with more than one token, all
combinations whereby the match for the first token already violates the “within edit
distance” contstraint can be ignored.

6.2. Fuzzy property matching
To address the issue of not being able to fuzzy match non-key column values, we propose
the following approach. When retrieving the raw KG triplets for an entity, the tuples (or
at least their predicate/object pairs; the subject is of course the same) should be buffered.
At this stage, one could already make a distinction between numerical and textual values.
One could imagine a global variance threshold being defined that explicits how much a
cell value and KG property value may differ in order to be explored as candidate match.
For textual values, this could be a maximum edit distance, potentially as a function of
length (i.e., longer strings could be allowed to differ by more than smaller strings), whilst
for numerical values the logical choice would be a percentage. Finding candidate matches
would then simply be a matter of going through the candidate KG entry’s properties,
and seeking out those values that are within the allowed variance bounds from the cell’s
value. From there on out, the further processing would remain the same. Specifically, all
column value matches should still have the same predicate in order to be accepted.

6.3. Property relations extraction
We actually used a third extraction phase in which property relations were extracted.
Concretely, for each article we extracted the values for the following relations (Wikidata
P-ID in parentheses): “subclass of” (P279), “said to be the same as” (P460), “subproperty
of” (P1647), “related properties” (P1659) and “next lower rank” (P3729). Currently,
this information is not used, but it could be used to look for property matches between
entities with “instance of” IDs that are related, rather than equal.

7. Conclusion
We presented a low-resource system to map tabular data to Wikidata, and validated
it on Round 1 of the Accuracy Challenge Track of SemTab 2022. Our system differs
from existing solutions in that it is completely self-contained, relies only on Python and
works directly on a compressed Wikidata dump, hence needing only modest computer
resources. It achieved 77.0% and 84.6% average F1 on the CTA en CEA tasks respectively.
Currently, our system does not support fuzzy matching, putting an inherent limit on
obtainable performance. Pointers are provided on how the system could be modified to
circumvent this issue. Although we only used our system together with Wikidata, it is in
principle usable with any database in RDF triplet format.

8. Acknowledgments
We are grateful to Prof. Joost Vennekens for helpful remarks regarding this paper.



References
[1] E. Jiménez-Ruiz, O. Hassanzadeh, V. Efthymiou, J. Chen, K. Srinivas, Semtab 2019:

Resources to benchmark tabular data to knowledge graph matching systems, in:
A. Harth, S. Kirrane, A.-C. Ngonga Ngomo, H. Paulheim, A. Rula, A. L. Gentile,
P. Haase, M. Cochez (Eds.), The Semantic Web, Springer International Publishing,
Cham, 2020, pp. 514–530.

[2] G. Limaye, S. Sarawagi, S. Chakrabarti, Annotating and searching web tables using
entities, types and relationships, PVLDB 3 (2010) 1338–1347. doi:10.14778/1920841.
1921005.

[3] D. Deng, Y. Jiang, G. Li, J. Li, C. Yu, Scalable column concept determination for
web tables using large knowledge bases, Proceedings of the VLDB Endowment 6
(2013) 1606–1617. doi:10.14778/2536258.2536271.

[4] P. T. Nguyen, N. Kertkeidkachorn, R. Ichise, H. Takeda, Mtab: Matching tabular
data to knowledge graph using probability models, in: Semantic Web Challenge on
Tabular Data to Knowledge Graph Matching 2019, CEUR Workshop Proceedings,
2019.

[5] W. Baazouzi, M. Kachroudi, S. Faiz, Kepler-asi : Kepler as a semantic interpreter,
in: Semantic Web Challenge on Tabular Data to Knowledge Graph Matching 2020,
CEUR Workshop Proceedings, 2020.

[6] W. Z. G. Z. C. J. T. H. P. W. Xinhe Li, Shuxin Wang, Kgcode-tab results for semtab
2022, in: Semantic Web Challenge on Tabular Data to Knowledge Graph Matching
2022, CEUR Workshop Proceedings, 2022.

[7] J. L. R. T. Yoan Chabot, Thomas Labbe, Dagobah: An end-to-end context-free
tabular data semantic annotation system, in: Semantic Web Challenge on Tabular
Data to Knowledge Graph Matching 2019, CEUR Workshop Proceedings, 2019.

[8] M. Cremaschi, R. Avogadro, A. Barazzetti, D. Chieregato, E. Jiménez-Ruiz, Man-
tistable se: an efficient approach for the semantic table interpretation, in: Semantic
Web Challenge on Tabular Data to Knowledge Graph Matching 2020, CEUR Work-
shop Proceedings, 2020.

http://dx.doi.org/10.14778/1920841.1921005
http://dx.doi.org/10.14778/1920841.1921005
http://dx.doi.org/10.14778/2536258.2536271

	1 Introduction
	2 Generic algorithm
	3 Data preparation
	3.1 Splitting of the Knowledge Graph
	3.2 Unique token extraction
	3.3 Name, ``instance of'' and TOC extraction
	3.4 A note on multiprocessing

	4 Table processing
	4.1 Local server setup
	4.2 Table processing proper
	4.2.1 Finding a key column
	4.2.2 Use the key column to explain the other columns


	5 Results
	6 Future Work
	6.1 Fuzzy name matching
	6.2 Fuzzy property matching
	6.3 Property relations extraction

	7 Conclusion
	8 Acknowledgments

