
Using Moose platform for the implementation of a
Software Product Line according to model-based
Delta-Oriented Programming⋆

Boubou T. Niang1,2, Giacomo Kahn1, Nawel Amokrane2, Yacine Ouzrout1,
Mustapha Derras2 and Jannik Laval1

1Univ Lyon, Univ Lumière Lyon 2, INSA Lyon, Université Claude Bernard Lyon 1, DISP, EA4570, 69676 Bron, France
2Berger-Levrault, 1 Pl. Giovanni da Verrazzano, 69009 Lyon, France

Abstract
Software product line engineering allows common features to be reused to implement a set of products.
Implementing a product line can be done using several paradigms, including delta-oriented program-
ming. However, due to a lack of available tools, most works are limited to theory without concrete
implementation on real case studies. This paper proposes a framework that lays the foundations of a
tool for implementing software product lines according to the delta-oriented programming paradigm.
The framework is developed using the Moose platform and will support model-based engineering to
manage better the variability of product lines at a high level of abstraction. An industrial use case is
proposed to illustrate the interest of the tool whose prototype is presented.

Keywords
Delta-Oriented Programming, Model-Based Engineering, Software Product Lines.

1. Introduction

A software product line (SPL) [1] is a set of products with common characteristics to which
variability is applied to create software that meets a specific need. SPL-based architectures have
the advantage of being designed to increase the reusability of functionalities across multiple
products. The literature presents several paradigms for implementing a software product line,
classified into compositional and annotative approaches [2]. Although research focuses mainly
on compositional approaches such as feature-oriented programming (FOP) [3], aspect-oriented
programming (AOP) [3] or delta-oriented programming (DOP) [4], as they allow for feature
traceability and modularity, in practice, annotative approaches such as pre-processors are more
common because they are more accessible to adopt [5]. Moreover, Model-Driven Engineering
(MDE) [6] is a discipline that considers models as first-class entities to facilitate the development
and analysis of complex software systems. As such, the adoption of MDE can provide more
abstraction and the ability to automatically generate source code for software products and thus
reduce the effort required to develop, maintain and evolve them. Thus, even if many research

IWST’22: International Workshop on Smalltalk Technnologies
Envelope-Open boubou-thiam.niang@univ-lyon2.fr (B. T. Niang); giacomo.kahn@univ-lyon2.fr (G. Kahn);
nawel.amokrane@berger-levrault.com (N. Amokrane); yacine.ouzrout@univ-lyon2.fr (Y. Ouzrout);
mustapha.derras@berger-levrault.com (M. Derras); jannik.laval@univ-lyon2.fr (J. Laval)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:boubou-thiam.niang@univ-lyon2.fr
mailto:giacomo.kahn@univ-lyon2.fr
mailto:nawel.amokrane@berger-levrault.com
mailto:yacine.ouzrout@univ-lyon2.fr
mailto:mustapha.derras@berger-levrault.com
mailto:jannik.laval@univ-lyon2.fr
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


works on software product lines using compositional approaches and tools have proposed
their implementation according to certain paradigms, few of them propose an implementation
according to the DOP paradigm, especially at the model level.
This article aims to introduce the prototype of a tool under development that supports the

implementation of software product lines following the DOP paradigm. The choice of DOP is
motivated by its ability to introduce variability into an existing software product [7], which
is very interesting for ensuring the scalability of software and systems. With DOP, a product
line is represented by a core module and a set of delta modules. The core module provides an
implementation of a valid product. The delta modules contain operations called delta actions to
specify the changes applied to the core module to create a derived product by adding, modifying,
or removing features. However, these changes can be seen at different levels of abstraction.
At a low level of abstraction, delta modules can represent modifications that can be applied
to the source code of a core product. In this case, creating delta modules can be laborious
and time-consuming. In this paper, we focus on model-based DOP for more abstraction and,
therefore, more flexibility, scalability, and better management of change operations. To do so,
we rely on the metamodeling possibilities of Moose [8], an open-source platform for software
and data analysis.

The paper is organized as follows: In section 2 we discuss related work. The prototype of the
tool is described in section 3. An illustrative case study is provided in section 4. The section 5
outlines the future works. Finally, we present perspectives and a conclusion.

2. Related Works

Delta-oriented programming [4] is a recent paradigm for the implementation of software prod-
uct lines. Following this paradigm, an SPL is implemented as a core module with a set of delta
modules. The core module contains a complete product implementation for some valid configu-
ration, which conventional single-application engineering techniques can develop. The delta
modules specify changes to be applied to the core model to implement other products. However,
there are not many examples of concrete implementations of product lines following the DOP
paradigm in the literature. This section presents the main existing tools and frameworks.

DeltaJ [9] is a prototype-oriented programming language that supports the basic operations
of DOP. DeltaJ allows adding, modifying, and deleting methods and classes’ fields with different
operations. However, DeltaJ requires manual development such as core modules, delta modules,
and decorators. Thus, although DeltaJ can cover all stages of product line implementation,
leveraging MDE engineering will improve the expected time savings through reuse to motivate
the choice of the SPL approach. Moreover, the implementation of DeltaJ is done at the code
level, which may require making some choices beforehand. For example, applications derived
with DeltaJ generate java code. This can be seen as a limitation of the need to create derived
applications in another language.
DeltaEcore [10] is a suite of tools for the rapid creation of delta languages that can be

seamlessly integrated into the variant derivation process of a software product line. Indeed,
delta modules define changes associated with different configurations in realization artifacts,
such as source code, by adding, modifying, or removing relevant elements. This is where a



dedicated delta language is required for each realization language, for example, DeltaJava for
Java 1.

SiPL [11] is a model-based delta-oriented framework built on the Eclipse Modeling technology
stack. SiPL offers several functions such as the manual specification of delta modules using
a domain-specific language or automatic derivation of delta modules from model differences,
automatic generation of products from a given configuration, and analysis of a set of delta
modules. However, we can identify some additional features that our tool should consider.
Indeed, SiPL allows to automatically calculate delta modules based on the modifications applied
to a core model, i.e., the difference between an original model and a modified version of the
model. These tasks are performed manually by an operator who prepares some delta operations
by making the possible modifications. It can therefore be difficult to predict all possible delta
modules, limiting the number of reusable operations to create a derivative, especially for large-
scale models. Moreover, even if the configuration is done manually, it could be interesting to
integrate a decision aid to choose the best configuration or choose between the best possible
configurations according to the specification.

3. The Model-Based DOP Framework

The proposed framework is inspired by existing solutions such as DeltaJ, and SiPL introduced
in Section 2 that have already made a considerable effort to implement a software product line
according to the DOP paradigm, to which we want to add additional functionalities to simplify
or automate steps in the software product derivation process. For this, we chose to develop the
tool with the Pharo language. Pharo is an object-oriented programming language influenced by
Smalltalk. The choice of Pharo is motivated by the fact that it comes with an extensible and
flexible programming environment. Thus, it will be easier to create the different bricks of the
framework, such as parsers and importers, according to the need. On the other hand, as our
objective is to implement the SPL following the DOP programming at the model level, we use
the Moose platform [8]. The Moose platform allows us to manipulate metamodels flexibly and
to perform operations such as adding and deleting entities and calculating differences between
versions of the metamodels, which is necessary for the DOP paradigm.

3.1. The Perimeter of the Model-Based DOP Framework

Software product line engineering consists of two sub-processes: Domain Engineering (DE) and
Application Engineering (AE) [12]. The DE sub-process allows the implementation of software
product lines. It concerns feature detection, variability modeling, and the implementation of
reusable artifacts. The AE sub-process specifies an expected product, chooses the corresponding
configuration by selecting the required features, and derives the desired outcome by reusing
artifacts implemented in the DE sub-process. Each sub-processes is split into two parts, the
problem space, and the solution space. The problem space deals with variability analysis and
software variability modeling for the DE sub-process, while the AE sub-process deals with the
specification of the target software product and corresponding configuration. As far as the

1http://deltaecore.org/

http://deltaecore.org/


solution space is concerned, it allows the implementation of the product line itself for the DE
sub-process and the use of the product line to obtain the target product through derivation. Our
proposal focuses on the product line’s implementation and operation. It does not support the
definition of the problem space except for the configuration in the AE. However, the tool uses
the problem space, which represents the entry point of our tool. Figure 1 The figure shows the
software product line engineering process, highlighting the steps our tool should cover.

Figure 1: Perimeters of the model-based DOP tool for the software product line implementation - here
with interoperability connectors as a SPL use case .

3.2. Description of the Framework Process

The proposed framework requires external input such as a feature model (FM) [13], which
is a model representing all possible features to create a product, and a software specification
that computes the expected software model. The specification is currently not formalized, and
human intervention is required to understand it and select the configuration that matches the
specified software. The tool allows performing several intermediate operations to provide the
expected software product. The tool includes an importer and a parser, which reads the feature
model in XML format. The parser produces an Expression Product line (EPL) corresponding to a
logical equation establishing the relationships and constraints between the features. A validator
is applied to the EPL. The configurator selects the features required to create a specific software
product based on the validated constraints and the product specification. The base model of
the product line, a metamodel, must also be created manually based on the feature model.
Thus, several versions of the metamodel are created manually from the original metamodel
representing the product line or from another version of the metamodel. A difference calculation
engine allows the preparation of ready-to-use delta actions from the different models. The
features chosen in the configurator determine the delta actions. Then we can apply deltas to
the metamodel referenced in the derivation to obtain a product model corresponding to the
specification automatically.
Figure 2 summarizes the different steps of the framework prototype.

• Importer and Parser This step consists in importing the feature model into the tool. To



Figure 2: Overview of the prototype tool. It shows the steps required to obtain an expected product
model from a given feature model and a product specification. The prototype uses Moose platform.

create a software product, we must first parse the feature model that represents all possible
product configurations. We consider the XML representation of the feature model as
available in featureIDE 2 tool. The parser parses the input XML file into an EPL. The EPL
is a textual language and grammar representing the feature model, features, constraints,
and relations, using logic functions such as and, or, not, implies operations. Once the
feature model is imported, validation is required to ensure that the imported feature
model respects the grammar defined for the EPL.

• Metamodel and delta modules creation To implement the SPL using model-based DOP
paradigms, we need first to create the metamodel that represents a valid product of the
product line. Our tool allows for creating a metamodel, which is initially possible in
Moose. However, using Moose is not enough to implement our product line since it is
also necessary to create delta modules. To this end, the present tool relies on Orion [14],
an interactive prototyping tool for reengineering, which allows to simulate changes
on different versions of software source code models and compare their impact. The
philosophy of Orion is that each modification triggers an Orion action which is in charge
of adding the modification to the data model. The use of Orion is motivated by creating
different versions of a metamodel and to keep the link between the original metamodel
and the new metamodels. Maintaining these links between the different versions of the
metamodel allows Orion to define the modifications made to the original metamodel. This
allows us to have the necessary information about the modifications and thus information
to create our delta modules. The delta actions are possible operations to bring to the core
model for the derivation, such as removing an entity from the model name, adding an
entity from the model name, removing an attribute from the entity name, and adding an
attribute from to name.

• Product configuration and generation using human-machine interaction To exploit the
software product line implemented in the DE sub-process to derive a product in the

2https://featureide.github.io/

https://featureide.github.io/


AE sub-process, we need some interfaces, e.g. for configuration or product generation
purposes. For this, we will set up a graphical interface to interact with the tool. To do so,
we opted for Spec2 3 a framework in Pharo for describing user interfaces.

4. Use Case

In order to demonstrate the usefulness of the framework whose prototype we are proposing
today, we have considered a case study reflecting the needs of our partner Berger-Levrault (BL)4.
Our case study focuses on implementing a software product line for interoperability connectors
in this context. Connectors are components that enable interaction between applications,
regardless of their heterogeneity [15]. Indeed, the information systems of companies such
as our industrial partner BL have different types of connectors. Some connectors allow the
transfer of files, others allow asynchronous communication, and still, others are a mixture
of synchronous and synchronous communication. Connectors share common characteristics
while each may have its variants, and we can therefore consider them as software product lines
as stated [16]. In addition, component evolutions are ubiquitous. To create a new connector,
developers copy an existing interoperability mechanism and adapt it to the new connector,
removing and adding new features that look like a semblance of the manual of delta-oriented
programming in this article. Figure 3 illustrates an example of interoperability connectors that
present some variability.

Figure 3: Industrial case study that represents two interoperability connectors that establish communi-
cation between several heterogeneous application.

In the Figure 3, we notice the presence of two interoperability connectors that share some
common features, such as a source that receives messages from applications, a sink that transmits
messages to other applications, and eventually a processor if the information that passes through
the connector need to be processed, the processor is a common feature but is not required. We
also identify some variability depending on the communication need. We note, for example,

3https://github.com/pharo-spec/Spec
4Berger-Levrault is a software provider specialized in the fields of education, health, sanitary, social and territorial
management.

https://github.com/pharo-spec/Spec


that the ”Connector One” has a Rabbit Source, while the ”Connector Two” has an HTTP source.
Figure 4 show the feature model that presents all the possible configurations to create connectors.
The feature model presented in Figure 4 is used as one input for the tool, the other being the

Figure 4: The feature model of the use case, created with the FeatureIDE tool. It presents all possible
configurations to create a valid interoperability connector product.

target connector specification.
The next step is to create the software product line, i.e., the solution space of the DE sub-

process. This will consist of creating the connector core model and required delta modules to
prepare delta actions that will provide the expected product model at the output and solution
space of the AE sub-process.
The metamodel shown in Figure 5 upper box represents the core model that allows the

creation of a valid connector core model with respect to the feature model.

Figure 5: The connector metamodel of the use case is presented in the upper box. The box below
represents an example of a delta operation that consist in creating a delta module.

Once the base model is available, we can prepare to apply delta modules, i.e., modification
operation to change the core model. Delta modules are applied to the core model according
to constraints defined by the feature. The lower box on Figure 5 shows an example of delta
module that modifies a core model.

As presented in Figure 5, applying a delta module to a core model generates a delta action for



a given configuration. The resulting delta actions are added to the delta action set for further
use, i.e., in application engineering. Then, several delta actions can be applied to a core model
to produce the model of an expected product. The proposed prototype is designed to cover the
requirements of the realization process.

5. Future Works

The first stage of reflection allows us to identify the needs and the different functional blocks
required for our tool. First of all, the parsing stage of a feature model in XML format is
well advanced but still in progress. The XML file is provided to extract each listed feature
using the XMLDOMParser class available in Pharo. Indeed, in addition to isolating all the
functionalities, we have to keep the relationships and dependencies between features to propose
a product line expression, a textual representation corresponding to the feature model as a
logical equation. In the short term, we want to work on the EPL validator, which allows us to
validate the imported feature model. For future work, in the short term, we want to work on the
product line expression validator, which allows us to validate the import feature model and the
configurator. The configurator will be a graphical interface proposing a visual representation
of the different features in the form of a box with hierarchical links between them, allowing
the user to select features according to an expected specification of the software product while
respecting the constraints imposed by the EPL validator. Then we will work on the difference
calculation engine between models based on the Orion framework and the automatic recovery
of all delta modules with the action deltas that contain them. Here we want to enable the
tool to compute all possible module deltas exhaustively based on the relationships between
entities in an original base model with mandatory and optional entities, e.g., compositional
relationships and cardinalities. However, some tasks are planned in a second step. These are
the semi-automatic transformation of the feature model into a base model representing the
product line and the formalization of the expected product specification for a semi-automatic
configuration.

6. Conclusion

In this paper, we present the prototype of a future tool that aims to implement a software product
line using the model-based delta-oriented paradigm. An industrial case study describes the
different steps of the framework on which the tool is based. The article provided the theoretical
and technical basis for the realization of the tool. The next step will be the concrete implemen-
tation of the tool using the Moose platform and the Orion frameworks. This environment offers
complete control of the steps and underlying meta-modeling and transformation techniques
that will allow us to practice our SPL approach.

References

[1] P. C. Clements, L. M. Northrop, Salion, inc.: A software product line case study, Technical
Report, Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst, 2002.



[2] G. C. S. Ferreira, F. N. Gaia, E. Figueiredo, M. de Almeida Maia, On the use of feature-
oriented programming for evolving software product lines—a comparative study, Science
of Computer programming 93 (2014) 65–85.

[3] D. Batory, Feature-oriented programming and the ahead tool suite, in: Proceedings. 26th
International Conference on Software Engineering, IEEE, 2004, pp. 702–703.

[4] S. Schulze, O. Richers, I. Schaefer, Refactoring delta-oriented software product lines, in:
Proceedings of the 12th annual international conference on Aspect-oriented software
development, 2013, pp. 73–84.

[5] C. Kästner, S. Apel, Integrating compositional and annotative approaches for product line
engineering, in: Proc. GPCE Workshop on Modularization, Composition and Generative
Techniques for Product Line Engineering, 2008, pp. 35–40.

[6] D. C. Schmidt, Model-driven engineering, Computer-IEEE Computer Society- 39 (2006) 25.
[7] M. Nieke, A. Hoff, I. Schaefer, C. Seidl, Experiences with constructing and evolving

asoftware product line with delta-oriented programming, in: Proceedings of the 16th
International Working Conference on Variability Modelling of Software-Intensive Systems,
2022, pp. 1–9.

[8] N. Anquetil, A. Etien, M. H. Houekpetodji, B. Verhaeghe, S. Ducasse, C. Toullec, F. Djareddir,
J. Sudich, M. Derras, Modular moose: A new generation of software reverse engineering
platform, in: International Conference on Software and Software Reuse, Springer, 2020,
pp. 119–134.

[9] J. Koscielny, S. Holthusen, I. Schaefer, S. Schulze, L. Bettini, F. Damiani, Deltaj 1.5: delta-
oriented programming for java 1.5, in: Proceedings of the 2014 International Conference
on Principles and Practices of Programming on the Java platform: Virtual machines,
Languages, and Tools, 2014, pp. 63–74.

[10] C. Seidl, I. Schaefer, U. Aßmann, Deltaecore-a model-based delta language generation
framework, Modellierung 2014 (2014).

[11] C. Pietsch, T. Kehrer, U. Kelter, D. Reuling, M. Ohrndorf, Sipl–a delta-based modeling
framework for software product line engineering, in: 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), IEEE, 2015, pp. 852–857.

[12] R. Mazo, C. Salinesi, D. Diaz, O. Djebbi, A. Lora-Michiels, Constraints: The heart of domain
and application engineering in the product lines engineering strategy, International Journal
of Information System Modeling and Design (IJISMD) 3 (2012) 33–68.

[13] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson, Feature-oriented domain
analysis (FODA) feasibility study, Technical Report, Carnegie-Mellon Univ Pittsburgh Pa
Software Engineering Inst, 1990.

[14] J. Laval, S. Denier, S. Ducasse, J.-R. Falleri, Supporting simultaneous versions for software
evolution assessment, Science of Computer Programming 76 (2011) 1177–1193.

[15] M. C. Kaya, M. S. Nikoo, S. Suloglu, B. Tekinerdogan, A. H. Dogru, Managing heteroge-
neous communication challenges in the internet of things using connector variability, in:
Connected Environments for the Internet of Things, Springer, 2017, pp. 127–149.

[16] B. Niang, G. Kahn, N. Amokrane, Y. Ouzrout, M. Derras, J. Laval, Towards the generation
of interoperability connectors using software product line engineering, 2021. Presented
at 9ème Conférence en IngénieriE du Logiciel CIEL 2021. Available on HAL archive, no
proceedings.


	1 Introduction
	2 Related Works
	3 The Model-Based DOP Framework
	3.1 The Perimeter of the Model-Based DOP Framework
	3.2 Description of the Framework Process

	4 Use Case
	5 Future Works
	6 Conclusion

