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Abstract
Prefixes encoding the Kripke semantics and an additional prefix unification can be used when performing

proof search in some popular non-classical logics. The paper presents two techniques that optimize this

approach for the first-order modal logics D and S5. The first one improves backtracking in the modal

connection provers MleanCoP and nanoCoP-M, the second one provides an embedding from the modal

logics D and S5 into classical first-order logic. Both techniques have been implemented. A practical

evaluation on the QMLTP benchmark library shows a significant performance improvement.
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1. Introduction

Modal logics extend the language of classical logic with the unary modal operators □ and ♢

representing the modalities ”it is necessarily true that” and ”it is possibly true that”, respectively.

The Kripke semantics of the standard modal logics is defined by a set of worlds and a binary

accessibility relation between these worlds. Imposing certain restrictions on this relation, such

as reflexivity or transitivity, results in different modal logics, such as D, T, S4 or S5 [1].

Some of the most successful automated theorem proving systems for non-classical logics [2, 3,

4] are based on matrix characterizations for these logics [5], which use prefixes (or world paths)

to capture the Kripke semantics of, e.g., intuitionistic logic or modal logics. Connection calculi

provide a basis for an efficient proof search [6, 7], while prefixes are used to directly encode

sequences of accessible worlds of the Kripke semantics. The calculi for the various modal logics

differ only in the prefix unification, which makes connections complementary and has to take

the accessibility relation of the specific modal logic into account.

This paper presents proof search optimization techniques for the modal logics D and S5,

which are based on prefixes as used in the matrix characterizations for these logics (Section 2).

For these modal logics the prefix unification can be simplified as prefix variables are assigned

exactly one character (modal D) or prefixes only consists of at most one character (modal S5).

This allows (i) to improve backtracking in the connection proversMleanCoP and nanoCoP, and

(ii) an embedding into classical logic for the constant domains (Section 3). These optimizations

have been implemented (Section 4) and evaluated on the modal QMLTP library (Section 5).
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2. Prefixes and Matrix Characterization

This section introduces the basic concepts of prefixes and the modal matrix characterization of

logical validity for the modal logics D, T, S4 and S5. See [1] for an introduction to modal logics.

2.1. Modal Syntax and Semantics

A first-order modal formula F (or G,H) is composed of atomic formulae, the standard connec-

tives ¬, ∧, ∨, ⇒, the standard quantifiers ∀ and ∃, and the unary modal operators □ and ♢.

The Kripke semantics of the standard modal logics is defined by a set of worlds W and a binary

accessibility relation R ⊆ W × W between these worlds. In each single world w ∈ W the

classical semantics applies to the standard connectives and quantifiers. The modal operators

are interpreted with respect to accessible worlds: □F /♢F is true in a world w iff F is true in

all/some world(s) w′ with (w,w′)∈R, i.e., accessible from w.

The properties of the accessibility relation R determine the specific modal logic. For example,

the accessibility relation can be serial (modal logic D)1, reflexive (modal logic T), reflexive and

transitive (modal logic S4), or an equivalence relation (modal logic S5). The standard semantics

is considered with rigid term designation, i.e. every term denotes the same object in every world,

and terms are local, i.e. any ground term denotes an existing object in every world.

2.2. Modal Prefixes

A prefix is used to name a sequence of accessible worlds in which a formula holds and is assigned

to each subformula of a given formula F . For example, the prefix w1 . . . wn of a modal formula

F denotes that F is true in world wn that is accessible from a world wn−1, . . . , that is accessible

from a world w1.
2

Definition 1 (Modal prefix). A prefix (denoted by p) is a string (i.e. a sequence of characters)

over an alphabet ν ∪ Π, in which ν is a set of prefix variables (V1, ...) and Π is a set of prefix

constants (a1, ...). If a formula F with polarity pol ∈ {0, 1} has the prefix p, written F pol : p,
then the prefixes (and polarities) of its subformulae G and H are defined inductively according to

the table below. It is ⊙ ∈ {∧,∨}, Q ∈ {∀, ∃}; V ∈ ν and a ∈ Π are new prefix characters that

have not been used before. The (modal) prefix of a given (modal) formula F is the empty string

ε, the prefixes of its subformulae are the prefixes of the corresponding formula F 0 : ε. The prefix
pre(x) of a term variable x occurring in a (sub)formula QxG is the prefix of the subformula G.

F pol : p Gpol′ : p′ Hpol′′ : p′′

(G⊙H)pol : p Gpol : p Hpol : p
(G ⇒ H)pol : p G1−pol : p Hpol : p
(¬G)pol : p G1−pol : p

(Qx G)pol : p Gpol : p

F pol : p Gpol′ : p′

(□G)1 : p G1 : pV
(♢G)0 : p G0 : pV
(□G)0 : p G0 : pa
(♢G)1 : p G1 : pa

1A relation R ⊆ W ×W is serial iff for all w1 ∈ W there is some w2 ∈ W with (w1, w2) ∈ R.
2The start world, e.g. w0, is omitted from all prefixes. Therefore, a prefix can also be empty.
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Example 1. Consider the Barcan formula

FB = (∀x□ p(x)) ⇒ (□ ∀y p(y)) .

The prefixes of FB and its subformulae are: F 0
B : ε, (∀x□ p(x))1 : ε, (□ p(x))1 : ε, p(x)1 : V1,

(□ ∀y p(y))0 : ε, (∀y p(y))0 : a1, and p(y)
0 : a1, in which V1 is a new prefix variable and a1 is a

new prefix constant. It is pre(x) = ε and pre(y) = a1.

Proof-theoretically, prefix variables and constants represent applications of the rules□-left/♢-

right (ν-rules) and □-right/♢-left (π-rules), respectively, in the modal sequent calculus. A prefix

of a formula F specifies the sequence of modal rules that have to be applied (analytically or

bottom-up) in order to obtain the formula F in the sequent.

In Fitting’s modal tableau calculus [1], prefixes consists only of constant characters and

prefixes of literals that close a branch need to denote the same world, i.e., they need to be

identical. This is achieved by “guessing the right” sequence of constants by which prefixes are

extended whenever a modal ν-rule of the calculus is applied. This “guessing” approach results

in a large search space and an inefficient proof search due to necessary backtracking in case the

wrong sequence was added.

A more efficient proof search adds a prefix variable whenever a modal ν-rule is applied

and delays choosing an appropriate sequence of constant characters until a branch is closed.

This resembles the approach of using free variables in classical (tableau or sequent) calculi,

i.e. using term variables instead of guessing an appropriate first-order term whenever a (non-

Eigenvariable) quantifier rule is applied and using term unification whenever a branch is closed

in order to assign actual terms to these free term variables. Using prefix variables requires a

prefix substitution in order to make prefixes of literals that close a branch identical.

Definition 2 (Prefix substitution). A prefix substitution σP : ν → (ν ∪Π)∗ maps elements

of ν to strings over ν ∪Π. In σP (p) prefix variables are replaced according to σP .

The accessibility condition and the domain condition ensure that the prefix substitution

respects the accessibility relation and the domain variant of the considered modal logic.

Depending on the accessibility relation, variables may be substituted by exactly one prefix

character (modal logic D), by at most one prefix character (modal logic T) or by an arbitrary

string (modal logic S4). For the modal logic S5 only the last character of each prefix is considered

(or the the empty string if the prefix is empty).

Definition 3 (Accessibility condition). For the modal logics D and T the accessibility condi-

tion is |σP (V )|=1 and |σP (V )|≤1 for all V ∈ ν , respectively.

Each first-order modal logic can have different domain conditions. If D(w) is the (first-

order) domain of a world w, then a modal logic has constant domains if D(w1) = D(w2) for
all w1, w2 ∈ W and it has cumulative (or increasing) domains if D(w1) ⊆ D(w2) for all
w1, w2 ∈ W with (w1, w2) ∈ R. A modal logic has varying domains if there are no restrictions

on the domains of the worlds.
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In case of varying domains, objects may only exists in the world in which they are introduced.

For cumulative domains, Eigenvariables3 have to be introduced before the term variable they

are assigned to. For constant domains, there is no such restriction as every object exists in all

worlds. The domain condition captures these restrictions on prefixes of first-order variables.

Definition 4 (Domain condition). Let σT be a term (or first-order) substitution and σP a

prefix substitution. The domain condition for (a) varying and (b) cumulative domains states that

for all term variables x and all Eigenvariables x̄ occurring in the term σ(x): (a) σP (pre(x̄)) =
σP (pre(x)) and (b) σP (pre(x̄)) � σP (pre(x)), respectively.

4 For constant domains and S5 with

cumulative domains the domain condition is always true.

Definition 5 (Admissible substitution). A combined substitution σ = (σT , σP ) is admissi-

ble with respect to a specific modal logic iff the accessibility condition holds for σP and the domain

condition holds for σT /σP for that logic. Furthermore, the reduction ordering induced by σ has to

be irreflexive (see [5] for details).

Example 2. Consider the formula FB from Example 1. The prefix substitution σP (V1) = a1
makes the prefixes of the two atomic formulae p(x) : V1 and p(y) : a1 identical. As |σP (V1)| = 1,
σP fulfills the accessibility condition for D, T, S4 and S5. For the term substitution σT (x) = y it is

σP (pre(y)) = a1 6� ε = σP (pre(x)), hence, σB = (σT , σP ) is only admissible for D, T, S4 and S5

with constant domains and for S5 with cumulative domains.

2.3. Modal Matrix Characterization

A modal formula can be translated into a prefixed clausal (disjunctive normal) form, where

prefixes are added to atomic formulae. This is called a prefixed matrix. It is a compact represen-

tation of the proof search space. The clausal modal matrix characterization presented in the

following is derived from Wallen’s original non-clausal characterization of logical validity [5].

Definition 6 (Prefixed matrix and paths). The (prefixed) matrixM(F ) representing a modal

formula F , is a set of clauses, in which each clause is a set of atomic formulae annotated with

their prefixes (see [8]). A path through a matrixM = {C1, . . . , Cn} is a set containing one atomic

formula from each clause, i.e.
⋃n

i=1{Ai} with Ai ∈Ci is a path.

A path represents the set of all atomic formulae in a “final sequent” in the classical sequent

calculus [9]. Two atomic formulae in a path represent an axiom if they have the same predicate

symbol, but different polarities (see Definition 1). They represent an axiom in the first-order “free-

variable” modal calculus, if their arguments and prefixes unify under a combined substitution.

Definition 7 (Complementary connection). A connection {(A1)
0 : p1, (A2)

1 : p2} is a set

of atomic formulae with the same predicate symbol but different polarities. A connection is σ-

complementary for a substitution σ=(σT , σP ) iff σT (A1)=σT (A2) and σP (p1)=σP (p2).

3Eigenvariables x̄ are exactly those term variables that are quantified in formulae of the form (∀x̄ G)0 or (∃x̄ G)1.
4u ⪯ w holds iff u is an initial substring of w or u=w.
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A multiplicity µ :M → IN specifies the number of clause copies used in a proof. Mµ denotes

the matrix that includes clause copies according to µ. Clause copies correspond to applications

of the contraction rule in the sequent calculus.

If (and only if) all paths through a matrix of a formula contain a σ-complementary connection

for some admissible substitution σ, the formula is valid. In this case every final sequent of the

corresponding derivation in the (free-variable) sequent calculus would contain an axiom (as

paths represent final sequents and complementary connections represent axioms).

Theorem 1 (Matrix characterization for modal logics). A modal formula F is valid in the

modal logic L iff there is

1. a multiplicity µ,

2. a combined substitution σ = (σT , σP ) that is admissible with respect to L, and

3. a set S of σ-complementary connections,

such that every path throughMµ(F ) contains a connection from S . (See [8, 5] for details.)

Example 3. Consider the Barcan formula FB and σB from Example 1 and 2. Its prefixed matrix is

MB=M(FB)={{p(x)1:V1}, {p(y)
0:a1}}. The only path through MB is {p(x)1:V1, p(y)

0:a1}.
It contains the σB-complementary connection {p(x)1:V1, p(y)

0:a1}, which is (only) admissible

for D, T, S4, S5 with constant domains and S5 with cumulative domains. Hence, FB is (only) valid

for the modal logics D, T, S4, S5 with constant domains and S5 with cumulative domains.

3. Proof Search Optimizations for D and S5

A proof search based on the presented matrix characterization has to calculate an appropriate

combined substitution σ=(σT , σP ). Whereas the term substitution σT is calculated by one of

the known algorithms for term unification, calculating the prefix substitution σP has to be done

by a special prefix unification algorithm [8, 10].

The prefix unification problem is a special case of string unification (the monoid problem for

word equations) that takes the prefix property (or T-string property) of the modal prefixes into

account: for all prefixes p1 = u1Xw1 and p2 = u2Xw2 it is u1 = u2 (with X ∈ ν ∪ Π and

u1, u2, w1, w2 ∈ (ν ∪Π)∗).

In contrast to term unification, which has only a singlemost general unifier (mgu), the number

of mgus for prefix unification might grow exponentially. More specifically, in the worst case the

number of mgus is 1
2
(2n)!
n!)2

∈ O(2
2n√
n
)when unifying the two prefixes V1 . . . Vn and a1 . . . an [11].

For general string unification, the number of mgus might not even be finite, e.g., consider the

unification of the two strings V a and aV (with the set of mgus {σP (V ) = ai | i ∈ IN}). For
the modal logics T and S4, prefix unification procedures that calculate minimal sets of mgus

were developed in [11, 8]. In case of the modal logics D the accessibility condition requires

|σP (V )| = 1, for the modal logic S5 the prefix is a single character or empty. Hence, for these

modal logics the proof search can be optimized as (1) there is only one mgu and (2) the prefix

unification can be realized by term unification, allowing an embedding into classical logic.
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3.1. Optimizing Prefix Unfication

As the number of mgus for prefix unification can grow, in general, exponentially, it is in practice

more efficient to first search for a classical proof, i.e. ignoring all prefixes, and perform the

prefix unification and the check of the domain condition afterwards, as pictured below.

1. classical proof search: calculate (only) S and σT
2. check domain condition: calculate σ′

P

3. prefix unification: calculate σP (based on σ′
P )

This approach is used by the modal connection proversMleanCoP [3] and nanoCoP-M [4],

and also turned out to be successful for intuitionistic provers [12, 4]. But for the modal logics D

and S5, for which there is at most one prefix unifier, this leads to redundant backtracking in the

classical proof search, which is completely separated from the prefix unification process.

To improve efficiency, the domain condition check and the prefix unification is integrated into

the classical proof search, i.e. the prefix substitution σP is calculated directly after a connection

is identified. This results in a (modal) proof search that consists of only one (major) step instead

of three, as pictured below.

1. modal proof search: calculate S , σT and σP (simultaneously)

This approach ensures that the calculated set of connections is always σ-complementary and

a failed check of the domain condition or prefix unification is quickly detected. Even though

this also leads to some overhead, in general, this results in a more efficient proof search for the

modal logics D and S5.

Example 4. Consider the formula ( ∀x♢ p(x) ) ⇒ (□ p(b1) ∨ . . . ∨ □ p(bn) ∨ ♢ p(c) )
with the matrix {{p(x)0: a}, {p(b1)

1: a1}, . . . {p(bn)
1: an}, {p(c)

1:V1}}}. So far, MleanCoP

and nanoCoP-M first perform a (purely) classical proof search by identifying the connection

S = {p(x)0: a, p(b1)
1: a1} with the term substitution σT (x) = b1. But the prefix unification

of the two prefixes a and a1 fails (the domain condition is always true). Afterwards, back-

tracking within the classical proof search is done. This results in the next classical proof with

S = {p(x)0: a, p(b2)
1: a2} and σT (x) = b2. Again, the prefix unification of a and a2 fails.

Backtracking within the classical proof continues and results in, altogether, n different classical

proofs for which the subsequent prefix unification fails. Only for the last possible classical proof

with S = {p(x)0: a, p(c)1:V1} and σT (x) = c the prefix unification of a and V1 succeeds with

σP (V1) = a. An improved procedure that calculates the prefix substitution directly after a con-

nection is identified would immediately identify the modal proof with S = {p(x)0: a, p1(c):V1},
σT (x) = c and σP (V1) = a, avoiding any backtracking within the classical proof search. That

this approach is more efficient becomes clearer for slightly larger formulae with a larger classical

proof (search) and, hence, more choices for backtracking.

3.2. Embedding into Classical Logic

As |σ(V )| = 1 for the modal logic D and |p| ≤ 1 for all prefixes p in S5, the prefixes of atomic

formulae can be included in their arguments and unified by the standard term unification. This

yields an embedding for these modal logics into classical logic.
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Definition 8 (Translation into classical logic). The translation T of a prefixed modal for-

mula into a classical formula is defined according to Table 1. In this table, P (. . .) is an atomic

formula, t1, . . . , tn are (first-order) terms, pol ∈ {0, 1} is a polarity, V is a set of term and

prefix variables, p and c1 . . . cm are prefixes. fm
pre is a new function symbol with arity m≥1,

epspre is a unique constant, V ∈ ν is a new prefix variable, and c
|V|
sk (V) is a new (skolemized)

prefix constant parametrized with the variables in V . The translation of a modal formula F is

T (F ) := T (F : ǫ, {}).

Table 1

The translation T from the first-order modal logics D and S5 to first-order classical logic

T (P (t1, . . . , tn)
pol : ε,V) = P (t1, . . . , tn, f

1

pre(epspre)) for D and S5

T (P (t1, . . . , tn)
pol : c1 . . . cm,V) = P (t1, . . . , tn, f

1

pre(cm)) only for S5

T (P (t1, . . . , tn)
pol : c1 . . . cm,V) = P (t1, . . . , tn, f

m
pre(c1, . . . , cm)) only for D

T ((G⊙H)pol : p,V) = (T (Gpol : p,V)⊙ T (Hpol : p,V)) ⊙ ∈ {∧,∨}
T ((G ⇒ H)pol : p,V) = (T (G1−pol : p,V) ⇒ T (Hpol : p,V))
T ((¬G)pol : p,V) = (¬T (G1−pol : p,V))

T ((∀x G)1 : p,V) = (∀x T (G1 : p,V∪{x}))

T ((∃x G)0 : p,V) = (∃x T (G0 : p,V∪{x}))

T ((∀x G)0 : p,V) = (∀x T (G0 : p,V))

T ((∃x G)1 : p,V) = (∃x T (G1 : p,V))

T ((□G)1 : p,V) = (∀V T (G1 : p V,V∪{V }))
T ((♢G)0 : p,V) = (∃V T (G0 : p V,V∪{V }))

T ((□G)0 : p,V) = T (G0 : p c
|V|
sk (V),V)

T ((♢G)1 : p,V) = T (G1 : p c
|V|
sk (V),V)

The prefixes of atomic formulae are now part of the function fpre, which is added as last

argument to each atomic formula. Skolemization is extended to the prefix constants (function

csk) in order to check the irreflexivity of the reduction ordering by the occurs check of the term

unification.5 This embedding works for the modal logics that do not have any domain condition,

i.e., for D and S5 with constant domains (and, hence, also for S5 with cumulative domains).

Theorem 2 (Correctness of translation T ). A modal formula F is valid in the modal logics

D or S5 with constant domains iff its translated formula T (F ) is valid in classical logic.

This theorem follows from the matrix characterization (Theorem 1) and the restriction of the

accessibility condition for D and S5. The translation T preserves the structure of the formula,

only the modal operators are eliminated and one argument is added to all atomic formulae.

Example 5. Consider again the Barcan formula

FB = (∀x□ p(x)) ⇒ (□ ∀y p(y)) .

Its translation (for both D and S5) is T (FB) = (∀x ∀V p(x, f1
pre(V ) ⇒ (∀y p(y, f1

pre(csk))). As
T (FB) is classically valid, FB is valid for the modal logics D and S5 with constant domains (and

also for the modal logic S5 with cumulative domains).
5This proof-theoretical view on Skolemization is crucial for its extension to prefixes, see also [6, 12, 8].
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4. The Implementations

The optimization and embedding of Section 3 have been implemented within three systems for

the first-order modal logics D and S5.

1. MleanCoP-DS5 is an optimized version of the clausal connection proverMleanCoP,

2. nanoCoP-M-DS5 is an optimized version of the non-clausal prover nanoCoP-M,

3. nano-M2C implements an embedding of modal logic into classical logic.

4.1. The Modal Provers MleanCoP-DS5 and nanoCoP-M-DS5

The optimization described in Section 3.1 was integrated into the provers MleanCoP 1.3 [3]

and nanoCoP-M 2.0 [4]. MleanCoP and nanoCoP-M are very compact Prolog implementations

of the clausal and non-clausal modal connection calculus, respectively. They are based on the

modal matrix characterization of logical validity as specified in Theorem 1 in Section 2.3. In

connection calculi the proof search is guided by connections in order to calculate a set S of

σ-complementary connections [13, 6].

In the originalMleanCoP and nanoCoP-M provers the (rigid) prefix substitution σP is cal-

culated only after a classical proof (and an appropriate set of connections S) is found. In the

optimized “DS5” versions, the prefix substitution σP is calculated/extended directly after a new

connection is identified. This is done by unifying the prefixes of each new connection and

checking the appropriate domain condition. Since there is only a single most general prefix

unifier for D and S5, no backtracking over alternative prefix substitutions is necessary.

The optimized proversMleanCoP-DS5 and nanoCoP-M-DS5 support the first-order modal

logics D and S5 with constant, cumulative and varying domains.6

4.2. The Translation nano-M2C into Classical Logic

The translation T introduced in Definition 8 of Section 3.2 was implemented by the compact

Prolog program nano-M2C. The translation takes a modal formula/problem in QMLTP syntax

as input and translates it into a validity preserving formula in classical first-order logic according

to Table 1. The translated formula is written into a file and can be further processed by any

classical first-order prover, such as leanCoP [14, 2], nanoCoP [15] or E [16].

The translation nano-M2C supports the first-order modal logics D with constant domains

and S5 with constant and cumulative domains.7

Example 6. The Barcan formula (∀x□ p(x)) ⇒ (□ ∀y p(y)) from Example 1 is included in the

QMLTP library [17] as problem SYM001+1.p where it is presented in the following way:

qmf(con,conjecture,

(( ! [X] : (#box : ( f(X) ) ) ) => (#box : ( ! [X] : ( f(X) ) )) ) ).

It is translated by nano-M2C into the following classical formula (pr/c_sko are new symbols):

fof(con, conjecture,

( ! [X] : ! [V] : f(X, pre(V)) => ! [X] : f(X, pre(c_sko(1))) ) ).

6MleanCoP-DS5/nanoCoP-M-DS5 are available at http://leancop.de/mleancop/ and http://leancop.de/nanocop-m/.
7nano-M2C is available at http://leancop.de/nano-m2c/.
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5. Experimental Evaluation

The three new implementations MleanCoP-DS5, nanoCoP-M-DS5 and nano-M2Cdescribed in

Section 4 were evaluated on all 580 unimodal problems of the QMLTP library v1.1 [17].

All evaluations were conducted on a LIFEBOOK U9311 with a 4-core i7-1185G7 CPU and

16GB of RAM, running Linux 5.13.0. ECLiPSe Prolog version 5.108 was used for all Prolog

provers and the E prover was compiled with GNU gcc version 9.4.0. The time limit for all test

runs was set to 100 seconds.

5.1. MleanCoP-DS5 and nanoCoP-M-DS5

Table 2 shows the results for the modal clausal connection prover MleanCoP 1.3 [3] and

its optimized version MleanCoP-DS5 1.0, for the modal non-clausal connection prover

nanoCoP-M 2.0 [4] and its optimized version nanoCoP-M-DS5 1.0. The total number of solved

problems and the number of proved (valid) and refuted (invalid) problems is given.

Compared to the non-optimized versions, the optimized “‘DS5” connection provers solve

between 21 and 38 more problems for the modal logic D. For the modal logic S5 the improvement

is less significant, the optimized versions solve between two and seven more problems.

Table 2

Results of the modal connection provers on the QMLTP library [total (proved/refuted)]

Logic MleanCoP MleanCoP-DS5 nanoCoP-M nanoCoP-M-DS5

D varying 458 (185/273) 487 (195/292) 451 (185/266) 489 (193/296)

D cumulative 453 (206/247) 474 (215/259) 451 (205/246) 484 (213/271)

D constant 445 (223/222) 466 (232/234) 451 (222/229) 472 (230/242)

S5 varying 454 (360/94) 458 (360/98) 457 (365/92) 464 (367/97)

S5 cumulative 477 (436/41) 483 (441/42) 484 (440/44) 486 (441/45)

S5 constant 477 (436/41) 483 (441/42) 484 (440/44) 486 (441/45)

5.2. nano-M2C

Table 3 shows the results for the nano-M2C embedding into classical logic combined with the

classical provers leanCoP 2.1 [2, 7], nanoCoP 2.0 [4], E 2.6 [16] with the options -s --satauto

--proof-object --cpu-limit=100, and E 2.6 “sched” with the strategy scheduling option

--satauto-schedule instead of --satauto. Again, the total number of solved problems and

the number of proved (valid) and refuted (invalid) problems is given.

The results using nano-M2C in combination with the classical connection provers leanCoP

and nanoCoP are very similar to the optimized “DS5” versions of the modal connection provers.

In combination with the E “sched” prover, the nano-M2C translation solves between 44 and 67

more problems thanMleanCoP and nanoCoP-M.9

8ECLiPSe Prolog 5.x is available at https://eclipseclp.org/Distribution/Builds/. All newer versions of ECLiPSe Prolog

are missing important features and have a significantly lower performance.
9Surprisingly, the non-strategy-scheduling version of E proves less problems than the classical connection provers.
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Table 3

Results of the nano-M2C translation on the QMLTP library [total (proved/refuted)]

Logic M2C+leanCoP M2C+nanoCoP M2C+E M2C+E(sched)

D constant 461 (234/227) 472 (230/242) 500 (229/271) 512 (234/278)

S5 cumulative 485 (443/42) 486 (441/45) 517 (435/82) 528 (446/82)

S5 constant 485 (443/42) 486 (441/45) 517 (435/82) 528 (446/82)

6. Conclusion

This paper presents two techniques for advancing automated theorem proving for the first-order

modal logics D and S5. It introduces an optimization of the prefix unification for two of the

fastest existing modal provers, MleanCoP and nanoCoP-M, and an embedding of the modal

logics D and S5 into classical logic.

Experiences from the development of nanoCoP-M have shown that it is getting increasingly

difficult to improve the performance of modal theorem provers on the QMLTP libray [10,

4]. Nevertheless, the two new optimized provers MleanCoP-DS5 and nanoCoP-M-DS5, and

the implementation nano-M2C of the embedding into classical logic solve significantly more

problems than theMleanCoP and nanoCoP-M provers. The improvement is rather small for

S5 with varying domains, but more significant for D with varying and cumulative domains

(MleanCoP-DS5 and nanoCoP-M-DS5) and for D and S5 with constant domains and S5 with

cumulative domains (nano-M2C in combination with the E prover).

Ohlbach uses so-called world path to deal with the Kripke semantics of different modal

logics [18, 19]. His approach is very similar to Wallen’s matrix characterization on which the

work in this paper is based. Ohlbach has based his work on the resolution calculus and uses a

less refined prefix unification procedure. Up to the author’s knowledge, Ohlbach’s procedure

has never been implemented. The higher-order prover Leo-III uses the relational translation

(modeling the Kripke semantics) of first-order modal logic into typed higher-order logic to deal

with a wide range of modal logics [20].10

Future work includes improvements of the prefix unification algorithm for some other modal

logics, such as T and S4. This includes solving prefix equations in a more parallel way and using

information about failed prefix unifications directly in the classical proof search carried out in

the first step. For a restricted set of modal first-order formulae, the embedding and translation

nano-M2C into classical logic can also be used for the non-constant domains. This set includes,

e.g., formulae for which the proof does not assign Eigenvariables to term variables.
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