
Proceedings of the 29th C&ESAR (2022) 83

PALANTIR: Zero-trust architecture for Managed Security Service
Provider

Maxime Compastié 1, Silvia Sisinni 2, Supreshna Gurung 3, Carolina Fernández 1, Ludovic

Jacquin 3, Izidor Mlakar 4,5, Valentino Šafran 4, Antonio Lioy 2 and Ignazio Pedone 2

1
 i2CAT Foundation, C\ Gran Capità 2-4 Edifici Nexus I, Barcelona, Catalonia, Spain

2 Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
3 Hewlett Packard Enterprise, 1 Enterprise Park, Long Down Avenue, Stoke Gifford, BS34 8QZ, Bristol, UK
4 University of Maribor Faculty of Electrical Engineering and Computer Science, Koroška cesta 46, 2000 Maribor

Slovenia
5 Sfera IT d.o.o., Beloruska ulica 7, 2000 Maribor, Slovenia

Abstract
The H2020 PALANTIR project aims at delivering a Security-as-a-Service solution to SMEs

and microenterprises via the exploitation of containerised Network Functions. However, these

functions are conceived by third-party developers and can also be deployed in untrustworthy

virtualisation layers, depending on the subscribed delivery model. Therefore, they cannot be

trusted and require a stringent monitoring to ensure their harmlessness, as well as adequate

measures to remediate any nefarious activities. This paper justifies, details and evaluates a

Zero-Trust architecture supporting PALANTIR’s solution. Specifically, PALANTIR

periodically attests the service and infrastructure’s components for signs of compromise by

implementing the Trusted Computing paradigm. Verification addresses the firmware, OS and

software using UEFI measured boot and Linux Integrity Measurement Architecture, extended

to support containerised application attestation. Mitigation actions are supervised by the

Recovery Service and the Security Orchestrator based on OSM to, respectively, determine the

adequate remediation actions from a recovery policy and enforce them down to the lower layers

of the infrastructure through local authenticated enablers. We detail an implementation

prototype serving a baseline for quantitative evaluation of our work.

Keywords 1
Trusted Computing, Zero-Trust, Integrity Measurement, Remediation, Managed Security

1. Introduction

The recent years have witnessed a flourishing diversity of cyber-attacks and techniques jeopardising

organisation's activity and assets. While large companies and public bodies promptly reacted by

acquiring necessary skills, processes and tooling to handle such risks, SMEs and microenterprises are

facing fierce obstacles due to their limited investment capabilities and manpower to allocate. For those

actors, contracting a Managed Security Service Provider (MSSP) has become a practical option to

delegate the prevention and the management of cybersecurity incidents. In this context, H2020

PALANTIR project [1] is an innovation action from the European commission and ambitions at

conceiving and delivering a solution for MSSPs and organisations' internal usage. The platform exploits

security enablers offered as extended virtual network functions (VNF) to leverage the detection and

C&ESAR’22: Computer & Electronics Security Application Rendezvous, Nov. 15-16, 2022, Rennes, France

EMAIL: maxime.compastie@i2cat.net (M. Compastié); silvia.sisinni@polito.it (S. Sisinni); supreshna.gurung@hpe.com (S. Gurung);

carolina.fernandez@i2cat.net; (C. Fernández); ludovic.jacquin@hpe.com (L. Jacquin); izidor.mlakar@um.si (I. Mlakar);

valentino.safran@um.si (V. Šafran); lioy@polito.it (A. Lioy); ignazio.pedone@polito.it (I. Pedone)

ORCID: 0000-0001-7399-709X (M. Compastié); 0000-0002-0877-7063 (S. Sisinni); 0000-0002-0877-7063 (S. Gurung); 0000-0003-1865-

7177 (C. Fernández); 0000-0002-0877-7063 (L. Jacquin); 0000-0002-4910-1879 (I. Mlakar); 0000-0002-3664-3564 (V. Šafran); 0000-0002-
0877-7063 (A. Lioy); 0000-0002-0877-7063 (I. Pedone);

©️ 2022 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

PALANTIR: Zero-Trust Architecture for Managed Security Service Provider

84 Proceedings of the 29th C&ESAR (2022)

mitigation of malevolent activities on the customer's premise. To ensure PALANTIR extensibility, they

are proposed in an as-a-service market open to contributions from third-party developers.

However, if not properly controlled, inviting external contributions exposes PALANTIR platform

to the risk of being weaponised against their customers: not only a security service could deliberately

be converted into a threat vector (e.g. disguised malware), but developed appliances remain subject to

unintended software flaws likely to be exploited by a malevolent actor. These defects can appear at

design time as a result of limited quality assurance and secured development practices, but also during

their operation, as software vulnerabilities are discovered. Another risk item is induced by the

PALANTIR infrastructure hosting the deployed security enablers: as they encompass distributed

resources hosted by both the MSSP (e.g. cloud and edge environments) and the customers (e.g.

customer premise equipment), they represent attractive targets. This is so since their disruption will

impact the reliability of deployed security enablers (as stated by governmental cybersecurity agencies

[2]), while offering a tremendous opportunity for lateral movements to access several organisations at

once. In practice, if an attacker manages to gain control of a security enabler instance or the physical

node hosting it and compromise its components (for example, configuration, executable files, sections

of the platform's firmware or kernel), this impacts the reliability of the security services offered to SMEs

and MEs, undermining their cyber-protection capabilities and exposing their assets to further threats.

Attacks on critical infrastructures are nowadays considered unrelenting and increasingly sophisticated

while PALANTIR platform carries a wide exposure to numerous stakeholders and potential malevolent

actors. Consequently, PALANTIR's security paradigm does not assume that the infrastructure nodes

and service instances are trusted a priori but it enforces that they prove their identity and integrity before

being deployed, as well as periodically, throughout the entire life cycle of their operations.

 Given the prevalence of the MSSP concept in the delivery models offered by PALANTIR and the

potential distribution of some elements in the stack, it is necessary to define a trust model that can assess

the integrity level of any asset under the PALANTIR protection, disregarding the location of its

deployment. The effective enforcement of such model is also contemplated, considering security

orchestration techniques. This paper delves into the main question on how to elaborate a trust model

for a distributed MSSP. The contributions of this work span (i) the definition of the trust model for an

MSSP deployment, (ii) the assessment strategies that ensure continued integrity of the assets, (iii) the

orchestration techniques and interactions in place to enforce these strategies, and finally details (iv) the

implementation and evaluation of the technical stack contributing to the fulfilment of the integrity

assessment in the ZTA architecture within the project.

The remainder of this paper is organised as follows: Section 2 discusses previous trust assessment

research initiatives in the cloud-to-edge continuum, Section 3 comprehensively exposes the foundations

of PALANTIR's ZTA architecture. We present our implementation and evaluation work in Section 4.

Section 5 introduces the current limitations of our approach and proposes several options to tackle them.

Finally, Section 6 concludes this paper and provides paths for future work.

2. Related work

The management of trust in distributed environments has been already largely explored in the

literature. Specifically, the software network community has been confronted early to the involvement

of multiple parties sharing the same infrastructure with possible competing objectives. For instance, the

European Telecommunications Standards Institute (ETSI) has published a threat analysis [3] affecting

NFV networks from the perspective of different deployment models and stakeholders. This work

identifies several areas of concerns including the trusted boot technologies and the user/tenant

authorisation and authentication; but does not provide specific guidelines to tackle them. The

management of multiple parties bringing their own constraints represents a certain complexity to cope

with, as involved parties are becoming more and more technically diversified and their number increase.

Darabseh et al. [4] have proposed an initial framework to decouple the security decision-making process

from the enforcement on network devices. This approach permits to optimise the decision-making

process to adapt it with the variability of the network topology. In PALANTIR, we consider several

threats identified by ETSI, since Security Capabilities (SCs) are extending VNF design and aligned

with some proposed deployment model. We also separate the security management from the enablers

M. Compastié, S. Sisinni, S. Gurung et al

Proceedings of the 29th C&ESAR (2022) 85

in the PALANTIR architecture and apply this principle to the whole management of cybersecurity

incidents by exploiting programmable SCs.

At the scale of a single node in distributed environment, virtualisation technologies can play a key

role to maintain trust through resource isolation. In [5], the authors analyse the vulnerabilities and

possible attacks at different levels of the system architectures. Their threats models include an attacker

controlling the host & virtualisation layer or initially subduing a virtualised resource. They conclude on

the necessity of (i) integrating security mechanisms in resources needing protection (ii) minimising

their attack surface and (iii) leveraging an adequate security management aligned with the security

posture. Specifically, as per the integration of security mechanisms, involving a hardware root-of-trust

has proven to leverage trust assessment from the system layer perspective or from the virtualised

resource perspective. In the latter case, Haven [6] is a solution defending application against malevolent

actors having control of the operating system and lower system layer by leveraging Intel SGX enclaves.

In opposition to vendor-locked solutions, the Trusted Computing Group (TCG) sustains industry

standards for vendor-agnostic hardware root-of-trust specification, noticeably the Trusted Platform

Module (TPM) [7] and associated methods, such as TPM 2.0 Keys for Device Identity and Attestation

[8], or protocols, such as the Trusted Attestation Protocol [9]. To shrink the attack surface, several

works explore the development of sensitive resources. Initial efforts such as SecureUML [10] and

Model-driven security approach [11] aim at an extensive specification of security constraints on the

application conception to deliver strong security guarantees, but these approaches are component

specific and requires a significant effort to be established. Recently, the software supply chain has

gained more visibility as a threat vector. Cappos et al. [12] highlight the criticality of package managers

in spreading compromised artefacts. The work presented in [13] exploits the unikernel architecture to

produce and operate security-constrained resources not needing in-situ package management,

contributing to reducing supply-chain risk to the design phase of the resource only. More generally,

ENISA has published a report [14] detailing the threat landscape of supply chain attacks. PALANTIR

complements these approaches by leveraging an adequate security management not only for the assets

of the MSSP's subscribers but also to the security enablers in charge of their protection.

Since 2010 [15], the term of "Zero-Trust" has emerged to refer the idea that no participant in a

network should be trusted. However, the concept that a participant in a computer network has its access

systematically mediated has been introduced by Saltzer and Shroeder [16] since 1975. Recently, the

conception of system architecture applying Zero-Trust principle by default in opposition to perimeter-

based trust management has gained momentum and has been explored by both academia and

engineering community. NIST [17] has published in 2020 a comprehensive report detailing the

founding concepts of Zero-trust architectures and their expected benefits regarding the exposure of

systems to the threat landscape. It retained seven main tenets: (i) services and data sources are equally

considered as resources, (ii) communication shall be secured disregarding specific network location,

(iii) access to resources is granted on a per-session basis and (iv) evaluated dynamically based on the

current attributes of the subject, (v) assets are continuously evaluated on their integrity and security

posture, (vi) authentication and authorisation are systematically checked before access is granted, and

(vii) the constant collection of data to evaluate the security posture of a system. Buck et al. [15]

complement this work by reviewing the current state of knowledge on ZTA from both academia (peer-

reviewed literature) and practice (grey literature), underlining an unequal adhesion of the

aforementioned principles among communities. From a more practical standpoint, several work has

been carried to elaborate Zero-Trust strategies when applied to specific technical context and verticals:

the work presented in [18] introduces a security framework for 5G healthcare extending the commonly

access control scheme relying on “subject” (humans, devices or apps) and “object” (resources) with the

dimensions of “behaviour”, based on the approach based on User and Entity Behaviour Analytics

(UEBA), and the “environment”; both incorporating historical data gathered by external intelligence

and monitoring. The work in [19] reviews the situation in the vehicular networks and identifies common

attacks, the means to enforce trust between components, relevant environment-related attributes to

exploit (such as similarity, familiarity, frequency, and duration), and where to favour the trust posture

(e.g. data-centric focusing on data accuracy, and legitimacy, whereas entity-centric relies on reputation).

More specific work has covered the application of Zero-Trust tenets to specific environment. For

instance, Vanickis et al. [20] explored the Zero-Trust-Networking (ZTN) via the proposition of access

control framework sanctioning the access to the network zones. The work elaborates a domain-specific

PALANTIR: Zero-Trust Architecture for Managed Security Service Provider

86 Proceedings of the 29th C&ESAR (2022)

language to specify access control policy complying with several Zero-Trust guidelines, and a monitor

to enforce the decisions by dynamically adapting network configurations. Due to their inherent

exposure, cloud infrastructures have become an application field of choice for Zero Trust. The

contribution from [21] details a didactic model for constructing a Zero-Trust services in cloud

environments. Our work capitalises on the experience shared from the literature to provide an

architecture and implementation suited for MSSP usage, abiding with diversified deployment

environments for security enablers such as cloud, edge, and on-premises infrastructures.

3. PALANTIR Zero-trust architecture
3.1. Threat model and prerequisites

PALANTIR envisions delivering a SecaaS platform to enable a service provider to oversee the

security of the subscribers' assets. Security is enacted by granular enablers, i.e. security capabilities

(SCs), deployed on an infrastructure under custody of a contracted provider. The SCs are conceived by

third-party developers and made available through a marketplace. We propose the following threat

model and assume the following actors and behaviours:

The PALANTIR provider and its operators can be trusted: they actively contribute to the security

of the platform by applying proactively and reactively mitigations covering the complete spectrum of

identified threats. This assertion is acceptable since the provider is the main beneficiary of the platform

exploitation whose economic position and reputation are at stake. Specifically, we consider it is

enforcing the necessary measures to protect the platform against both external and insider threats. Thus,

we assume the platform and its infrastructure are part of the trusted computing base and can confidently

support the features needed to maintain the whole deployment in a secured state while offering no

exposure to an attacker for exploitation.

The infrastructure provider is deemed semi-honest: this actor applies protective measures when

contractually obliged and audited but will not necessarily act beyond this scope. In fact, the

infrastructure servicing is covered by agreements guaranteeing the level of service. Yet, the PALANTIR

provider has no control over the contractor personal and cannot prevent an insider malicious actor.

Moreover, as public hosting solutions are typically multi-tenant, the PALANTIR provider has no option

to prevent an adversary from using this service and attacking other tenants or the infrastructure. An

attacker can therefore target SC instances by tampering the infrastructure layer as (i) an insider of the

provider company or as (ii) another subscriber given access to the same infrastructure.

The SC developer is also considered as semi-honest. Albeit producing security services to gain a

revenue, the PALANTIR provider cannot assess the compliances with secure development practices.

This implicates the software may contain flaws susceptible to be exploited. Furthermore, these

vulnerabilities may stem from introduced dependencies carrying their own flaws. Therefore, the

management of the supply chain by the involved developers represents risk factors. In this situation, an

attacker can act as a neglectful developer introducing flaws by deficient quality evaluation, or as an

actor of the supply chain inserting vulnerable code in the designed SCs, jeopardising their operation.

The subscriber, its collaborators and assets are inherently of lesser trust, as they request the

protection services and lack the necessary tooling and practices to prevent or counteract cyberattacks

on their own. When being subscribers to a MSSP solution, they may choose not to apply for a full-

fledged protection for their IT (e.g. due to budget constraints), maintaining a vulnerable surface area.

They represent common targets for threat actors, seeking to access their assets, or to rebound over SCs

instances to target the MSSP.

In this context, SCs will seek to access resources on the customer information system and their

hosting infrastructure while not being trustable due to their design and exposure. Our approach reverses

the traditional use case of ZTA and proposes to entangle ZT principles with the management of SCs

instead of the users: their instances and communication are scrutinised to evaluate their security

postures and the PALANTIR platform acts as a mediation layer for their interaction with the customer

resources.

M. Compastié, S. Sisinni, S. Gurung et al

Proceedings of the 29th C&ESAR (2022) 87

3.2. Architecture

To handle those prerequisites, the PALANTIR project focuses on the seven tenets on ZTA proposed

by NIST in the standard SP 800-207 [17], and specifically on those relating to the continued assessment

of the trust status for the asset inventory. The architecture is depicted in Figure 1.

Figure 1: PALANTIR’s Zero-Trust architecture

The Trust, Attestation and Recovery (TAR) component continuously monitors the infrastructure

and SCs to detect signs of attacks or erroneous behaviour. The TAR is also leveraged by the Security

Orchestrator to ensure no untrusted node or capability is used to enforce the PALANTIR SecaaS

solution. The TAR comprises the Attestation Engine (AE) and the Recovery Service (RS). The AE

carries out the remote attestation of the nodes and SCs. The RS supervises remediation procedures that

unify, correlate and automate event handling across the end-to-end physical and virtual infrastructure.

The Security Orchestrator (SO) subcomponent controls the lifecycle of the SC instances and

provides context information about their static and runtime data. It ensures their placement, initial

deployment setup, configuration and deallocation based on the customer requests and subscriptions. It

also serves as the enforcer for countering the activity of compromised resources, thanks to the

deployment and configuration of specific capabilities that fulfil the mitigation decisions from the RS.

The Security Capability Hosting Infrastructure (SCHI) represents the set of assets deployed in

the PALANTIR platform (physical nodes provided by the infrastructure provider and SC instances

running on them) that need to be protected through the ZT security model. The AE is responsible of

continuously monitoring the integrity status of all the components in the SCHI, thus verifying that their

security posture has not been compromised. When the AE detects an integrity failure, it notifies this

event to the RS, which will enforce a suitable remediation in order to recover the security posture of

the infrastructure.

3.3. Security orchestration for decision enforcement

Managing the lifecycle and configuration of the security capabilities across different infrastructures

is key to offer an automated manner of applying specific decisions, such as the enforcement of specific

actions or configurations. SO provides the intermediate orchestration logic that receives the decisions

to enforce on the running SCs. To do so, it is first contacted by the upper decision-taking logic provided

by RS. Then, the SO coordinates with a third-party Management and Orchestration Software (MANO)

named OSM (Open Source MANO) to instantiate the SCs as containers on the SCHI, as well as

configure them. The configuration process emits adequate action requests to the SC endpoints, which

have the logic to interpret and ultimately apply the action. Besides the instantiation and configuration

features, the SO facilitates specific decision enforcement, as well as overseeing and exposing the

behaviour of the infrastructure (SCHI) and the SC instances through its multi-layer monitoring; whose

values can be used to assess the current status and complement the decision enforcement. These values

come from the (i) container runtime and from (ii) the running SC instances themselves, both running

on the SCHI. Specifically, and in order to identify the specific nodes subject to integrity measurement

(described below), the AE uses a subset of data from (i); whilst other architectural components can

request custom measurements from (ii).

PALANTIR: Zero-Trust Architecture for Managed Security Service Provider

88 Proceedings of the 29th C&ESAR (2022)

At the initial attestation, right after receiving a request to deploy a specific SC, the SO fetches a

subset of runtime data from the infrastructure and feeds it to the AE, which in turn performs the integrity

check. If the attestation fails, the SO allows a set of actions that can alleviate the risk introduced by the

potentially compromised SC instance (i.e. deployment, termination, or specific actions to each SC) and

actions to restore the security posture (e.g. redeployment of an equivalent SC). This process also takes

place during the periodic attestation of the SC instance, throughout its lifetime; where the AE

continuously compares the reference measurements.

The ZT paradigm requires securing communications disregarding the network location. This also

applies to the interfaces used by OSM and SO to communicate with the SCs that run on the SCHI; as

these require mutual authentication, authorisation, and encrypted communication channels. The

following ETSI NFV-compliant interfaces are secured at the SC or SCHI level, respectively: (i) between

the VNF Manager (VNFM) and the NFs (Ve-Vnfm-em in ETSI terminology) to be configured through

actions; and (ii) between the NFV MANO with the SCHI (Or-Vi in ETSI terminology) to manage the

virtual resources subject to orchestration.

3.4. Integrity measurement for Security situation evaluation

 The AE uses the Trusted Computing paradigm to continuously monitor SCHI, along with new

methods to perform hardware attestation, runtime monitoring and containerised workload attestation.

The AE follows the TCG specification to comply with the ZTA foundation; applying the TPM 2.0 Keys

for Device Identity and Attestation standard when creating cryptographic keys and certificates used to

perform attestation (Initial Attestation Key – IAK) or authentication (Initial Device IDentity – IDevID).

The IDevID certificate is signed by the platform manufacturer, and it is complemented by an

infrastructure-provided Local Device IDentity (LDevID) that cryptographically identifies the

platform’s deployment.

The AE also leverages TCG Platform Certificates, issued during manufacturing to establish an

authenticated baseline for the hardware when it is first registered with the AE. A hardware measurement

capability is added through hardware fingerprinting in UEFI. In the current implementation of the AE,

UEFI fingerprints platform hardware by reading serial numbers from the devices including DIMMS,

PCIe cards and power supplies. This ensures that the hardware components have not been changed

since manufacture – unless an authorised hardware modification happened. In the near future, with the

adoption of the Security Protocols and Data Models (SPDM) [22] by the industry, hardware

authentication will be done using cryptographic identities.

While Trusted Computing mainly focuses on boot- and load-time measurement, the AE also supports

runtime verification. The Distributed Intrusion Monitoring Engine (DIME) [23] kernel module

leverages the memory inspection capability of the platform, located on its Baseboard Management

Controller (BMC), to detect any unexpected change of code or data already loaded in memory. These

measurements along with their corresponding physical memory addresses are monitored continuously

to detect any insertion of new code into the kernel, or changes to critical configuration such as the

syscall table, that tampers the existing kernel code and critical data structures. When a mismatch is

detected, DIME notifies the AE, which alerts the RS to apply the correct recovery policy through the

SO.

The Remote Attestation based on TCG's principles is a well-established process for attesting

physical nodes, yet it presents several challenges to attest virtual entities. In PALANTIR, the SCs are

deployed as containers, following the current trend of lightweight virtualisation techniques, which offer

considerable advantages in the management of microservices and guarantee near bare-metal

performance. In order to create an attestation solution covering all layers of the SCHI, it has been

necessary to tackle the remote attestation of containers, a problem still open for the scientific

community. Our solution allows attesting each SC deployed on the SCHI and its host system without

depending on specific container runtimes since it relies on properties owned by the containerised

processes, which are valid for several containerisation technologies currently in use. Moreover, the

solution complies with TCG guidelines as it is based on the TPM chip and the Integrity Measurement

Architecture (IMA) module of the Linux kernel and is highly scalable since it does not limit the number

M. Compastié, S. Sisinni, S. Gurung et al

Proceedings of the 29th C&ESAR (2022) 89

of SCs to concurrently run on a platform. We integrated this solution into the PALANTIR AE which,

together with the hardware, firmware and runtime attestation techniques presented above, provides an

attestation solution capable of monitoring the entire software stack of a node, thus ensuring the security

posture of all assets that are part of the PALANTIR infrastructure.

4. Implementation and evaluation

4.1. SC Integrity measurement

Implementation: The AE keeps monitoring agents distributed throughout the SCHI to assess the

trustworthiness of the system. Each monitored node in SCHI hosts an Attestation Agent that is

responsible for forwarding attestation information and alerts used by the AE. For example, it extracts

the measurements stored in the TPM, signed with a TPM attestation key, and sends them to the AE used

to compare against known baseline values. When new SC packages and images are made accessible to

the PALANTIR platform, these values are automatically generated by a Reference Measurement plugin

within the SO.

The AE provides continuous verification of hardware, firmware, OS, and workload from

initialisation and through operation. The verification is based on the principle to build a secure chain of

trust based on integrity measurements starting from the hardware root of trust which is a BMC in a

server. The BMC Root of Trust provides the initial assurance that the platform starts in a known-good

state. It is then followed by firmware integrity measurement leveraging the Measured Boot feature of

UEFI and the bootloaders (e.g. Shim, Grub2). Each component, including the Linux kernel, is measured

to create a chain of measurements, which are recorded in tamper proof storage, provided by the TPM.

The measurements extension in the TPM provides a way to authenticate the chain of measurements

when the AE verifies the state of the server. There are malwares that are known to disable security

services such as secure boot to maintain persistence in the compromised nodes. A malware can extend

new measurements in the TPM but cannot remove its measurement. Since each measurement is

recorded and verified, such attacks can be detected by AE during platform initialisation.

The Linux kernel provides the IMA module in order to extend the chain of trust after the boot phase,

up to the application layer. IMA implements the Measured Boot principles by making measurements

on the dynamic executable content (applications and kernel modules) and the configuration files loaded

at runtime; this allows the AE not only to verify that the platform booted in a trusted way, but also that

all the applications and kernel modules loaded at runtime are trusted. The IMA module stores the

sequence of the measurement events in a measurement list maintained in the kernel memory.

The AE Agent sends the IMA measurement log to the AE, together with the measurement aggregates

signed by the TPM, at each attestation cycle. This allows the AE to determine the integrity level of each

SCHI node at runtime; for example, if the AE detects a software component on a node that is not present

in the whitelist for that node, or if the measurement of a component does not match its expected

reference value provided by the SO, then the AE will mark the node as untrusted and will notify the

RS, which is in charge to select the appropriate remediation actions that will be enforced by the SO

(e.g. ring-fencing the compromised node, removing it from the cluster, applying security patches).

Our goal is to make the AE capable of attesting containers individually in order to identify any

compromised SC; this allows to stop only the untrusted SC and to replace it with a new instance of an

equivalent SC without the need to restart the entire platform, thus avoiding the disruption of the security

service provided by uncompromised SCs. Containers are processes running on the host system: this

means that the measurement events they generate are detected by the IMA module in the same way as

those triggered by non-containerised processes and are stored all together in the same measurement log.

This implies that, to attest containers individually, the AE should be able to determine if a given

measurement event of the IMA measurement log belongs to a container or to the host system and, in

the former, to which specific container it is associated. However, the built-in templates provided by the

IMA module do not contain fields that allow to make this kind of distinction.

To overcome this issue, we defined and integrated in the kernel of the SCHI nodes a new IMA

template that enables the attestation of individual containers; this template, in addition to the fields

provided by the default template (i.e. the digest of the file content and the file path-name), provides

PALANTIR: Zero-Trust Architecture for Managed Security Service Provider

90 Proceedings of the 29th C&ESAR (2022)

other metadata that take into account some properties of the process triggering the measurement event,

in particular its control groups and the list of its dependencies:

• the list of dependencies field allows the AE to establish with certainty whether an entry of the

measurement log was generated by a container or by the host system; and this is because, if the

measurement event is related to a container, then the shim process that manages the execution

of the container is always present in the dependencies field, otherwise the AE would attribute

the measurement event to the host system;
• if the entry belongs to a container, the control group field allows the AE to attribute the

measurement to a specific container, and therefore to a particular SC, the measure has to be

attributed; in fact, if the process that generates the measurement event runs in a container, this

field contains the full-identifier of that container, allowing the AE to associate the

measurements with the container.
In this way, the AE, by checking the IMA measurement log, can continuously monitor all the executable

code and configuration files that are loaded into a specific SC at runtime and promptly react as soon as

a measurement mismatch is detected, informing the RS on the integrity failure related to the SC.

Testbed: To test the functionality and performance of the AE, two test benches were created: one

to evaluate the attestation capability of hardware, firmware, kernel runtime, and host system (i.e. the

PALANTIR infrastructure), and a second one to test the integration of all the components of the

PALANTIR project used in this work to evaluate the SC attestation capability. The first testbed is set

up to evaluate the AE with one monitored node. Table 1 presents the testing environment used for the

evaluation of the AE and AE agent in the infrastructure attestation use case.

Table 1
Resources and environment in-use for testing AE’s infrastructure attestation capability

Attestation Engine Attestation Engine Agent

• 4 CPUs,
• 8GB of RAM,

• 60 GB of HDD

• OpenSUSE Leap 15.3

• HPE AE package for openSUSE_Leap-

15.3

• bare-metal node
• TPM 2.0 chip
• HPE’s iLO

• OpenSUSE Leap 15.3

• IMA and SELINUX configured

Table 2
Resources and environment in use for testing AE’s SCs attestation capability

Attestation Engine (VM) SCHI node (bare metal)

• 2 CPUs
• RAM: 8 GB of RAM
• 106 GB SSD
• Ubuntu Server 20.04.3 LTS

• Custom Keylime framework based on v.

6.0.0
• Docker CE v. 20.10.12

• Docker Compose v. 1.29.2

• 40 vCPUs (20 cores, 2 threads/core)
• 128 GB of RAM
• 500 GB SSD
• Ubuntu Server 20.04.3 LTS
• Custom Linux based on v. 5.13.19
• TPM 2.0 chip

• Custom Keylime framework v. 6.0.0
• Docker CE v. 20.10.12

The second testbed is configured to monitor SCs deployed on a single physical node, which is one

of the worker nodes in the SO-managed Kubernetes cluster. The characteristics of the nodes used to test

the AE's SCs attestation capability are listed in Table 2.

The AE has been configured acknowledging a real operational environment of having fixed period

of attestation cycle. The attestation cycle for this evaluation is set to 10 minutes. To evaluate the

infrastructure OS verification by the AE, a bash script has been designed to execute an attack on the

monitored node on a random time (in the 2 to 8 minutes interval) between an attestation cycle. The host

is forced to reboot each time the attack is detected to revert the attack. A minimum wait of 2 minutes is

enforced before the next attack is executed to ensure that an initial attestation has been performed after

M. Compastié, S. Sisinni, S. Gurung et al

Proceedings of the 29th C&ESAR (2022) 91

the reboot. When the attack is detected immediately in the next attestation cycle and the attestation

result is logged to measure the mean time of detection for the compromised node. For the infrastructure

node attestation, a script is executed to make changes in hardware and firmware. In order for these

changes to take effect, a reboot of the system is required. Once the machine is up, an attestation is

performed on the monitored node which detects any sign of compromise in the machine. Finally, in

order to evaluate SC attestation, a malicious insider actor compromising a SC has been simulated; as

soon as the malware injected in the SC is executed, the attack is detected at the next attestation cycle.

Evaluation: The performance evaluation of the AE focused on the time taken by the AE to detect a

compromise. The test scenarios for AE have been designed according to the attestation capabilities of

the AE, extensively covering the system stack of SCHI to detect integrity fault. An attack has been

simulated to trigger each attestation capability and the mean time to detect compromise was evaluated

on the average from about 100 to 300 attestations performed for each set of experiments, in order to get

statistically meaningful results. As for the SC attestation capability, the values have been acquired as

the number of SCs instantiated on the node increases, starting from 1 SC up to a deployment scenario

of 32 SCs instances.

• Hardware attestation: A hardware-tampering attack has been simulated by changing the

reference value of the hardware and rebooting the platform for the hardware change to take

place. When the system boots up, an initial attestation is requested from the node which

triggers a change in reference value and the attack is detected.
• Firmware attestation: An attack scenario is simulated by disabling the Secure boot

configuration in a platform and rebooting the platform for the firmware change to take place.

The AE detects the change in the UEFI configuration when the system boots up and

performs initial attestation on the node.
• OS Verification: An attack scenario is depicted where a new binary file is added to the

system by a malicious actor which will create a new IMA measurement. As the node is being

attested periodically with an attestation cycle of 10 mins, the attack is detected by the AE

immediately in the next attestation cycle.

• Runtime Attestation with DIME: An attack scenario is simulated by injecting a kernel

module in the platform. Since HPE DIME continuously monitors and verifies portions of

OS kernel using a scanning engine, the attack is detected instantly with an average detection

time of 10 sec.
• SC Attestation: Two attack scenarios have been simulated: (i) a malicious modification to

a legitimate executable present in the image of a container belonging to a SC, (ii) the

injection of an unauthorised binary inside a container of a SC. Both types of attacks are

immediately detected at the next attestation cycle and the overall time taken by the AE to

assess the integrity of each SC running on the node has been logged to estimate the average

time to detect a compromised SC. The experiment has been repeated as the load on the SCHI

node increases, in order to evaluate whether the number of deployed SCs impacts AE

performance.

Figure 2 (left) and 3 (right): Mean time of detection of compromised node (left) and attestation
latency as the number of SCs increases (right)

PALANTIR: Zero-Trust Architecture for Managed Security Service Provider

92 Proceedings of the 29th C&ESAR (2022)

Figure 2 shows experiments results for OS verification capability. A total of 123 attestation cycle

was performed to evaluate the mean time of detection for a compromised node by AE. A script was

designed to execute an attack randomly between 2-8 minutes in each attestation cycle. Figure 2 shows

that the mean time of detection is 353 seconds in an attestation cycle of 10 minutes. This time for

detection is satisfactory as a threat report [24] from CrowdStrike reports that an average of 18 minutes

is required for state sponsored attackers to infiltrate a company’s network after gaining initial foothold.

Figure 3 shows the time required for the AE to complete the attestation process; the values reported

in the histogram have been obtained on the average of 300 attestations performed for each group of SCs

analysed. The different time contributions to the attestation cycle comprise the time for sending an

attestation request over the network, the time t that the TPM takes to create a quote (i.e. the evidence

provided by the TPM on the integrity status of the platform, reliable even when the platform has been

compromised), the time needed for the Attestation Agent on the monitored node to read the IMA

measurement log and send it over the network, the time the AE takes to authenticate the attestation

report and evaluate the trustworthiness of the SCs. The results reported in the histogram show that the

time required to complete a SC attestation cycle (dark blue bar) remains almost constant, at 1.2 seconds,

up to 16 SCs deployed and reaches 1.6 seconds for 32 SCs deployed. This means that the attestation

time grows very slowly as the number of SCs deployed on a node increases, making our AE highly

scalable. Furthermore, a preponderant part of the overall attestation time is occupied by the TPM to

create the quote (light blue bar); yet, this time cannot be optimised by the AE because it depends on the

TPM's internal implementation of the asymmetric algorithm that creates the quote signature, as well as

on the implementation of the Software Stack used by the Attestation Agent to send the TPM2_quote

command to the TPM (tpm2-tss v. 3.2.0 in the second testbed). From the data analysis it follows that

the SCs attestation process is highly scalable, given that the latency of the AE remains low and not

significantly affected by the increase of the number of SCs.

4.2. Remediation decision-making process

Implementation: The RS implementation is designed with a Finite State Machine (FSM)

framework build upon the Spring state machine library. An FSM is a computing model that mimics

sequential logic through a set of inputs and the implementation of a finite number of states and

transitions that describe and regulate execution flows. RS enacts recovery policies when attestation

faults are detected to direct automated mitigations, as well as interfacing with a front-end for action

needing human intervention. RS executes its predefined FSM as a recovery policy to respond with

necessary actions. One of the RS recovery policies in PALANTIR is the re-instantiation of the failed

SC by calling the SO endpoints to stop and to re-instantiate the failed SC. The execution of the RS

recovery policy is initiated once the AE sends the information about the failed attestation of the SC. In

this recovery policy, RS is also capable to notify the user about the executed actions.

With the implementation of this evaluation, we measured the average time of the RS component

applying the recovery policy. The flow was as follows: first, RS received the JSON input where an

instance of SC was marked as a failed. This triggered the flow where RS called the REST endpoint of

the SO to stop the failed service. Once the service was stopped, a notification was sent from RS over a

Kafka topic to inform the Portal about the performed action. After that, the RS called another endpoint

from the SO to create a fresh instance of the failed SC. Once this was done, RS sent again the

notification message to the Portal over the Kafka topic, which concludes the flow. We measured the

total running time (from the beginning to end of the flow) and the average time for one request, as well

as the efficiency of the message retrieval.

Testbed: To evaluate the RS we prepared a Python script to measure the RS execution times. We

used the ORION testbed, the original environment used in the PALANTIR project. SFERA hosts an

on-premises VM that is connected to the testbed over the Kafka cluster from ORION. Table 3 describes

the environment of the VM, and frameworks/libraries used in the deployment and testing of the RS.

The VM that hosts the RS system is built with Spring Statemachine, and it has the Eclipse Papyrus

tool installed. Eclipse Papyrus can also be installed and used to deploy policies outside the test

environment, since it does not affect the RS VM if it is not running. To provide the real-time execution,

the RS VM runs new instances on each incoming request based on the detected threats. Once the

M. Compastié, S. Sisinni, S. Gurung et al

Proceedings of the 29th C&ESAR (2022) 93

execution of the RS policy has reached to the final state, the instance is stopped. The FBM contains the

Kafka and REST API endpoints to communicate with other systems and components.

Table 3
Environment and framework/libraries used in testing environment

VM Environment Framework/Libraries

• Xubuntu 20.04 LTS VM
• 4 GB RAM
• 1 CPU (4 Cores)
• 32 GB SSD
• 1 Gbps internet connection

• Spring Boot 2.3.0
• Spring Statemachine 3.0.1
• Eclipse Papyrus 2020-06 (4.16)
• Apache Camel 3.9.0

Evaluation: For the evaluation we used multiple threads in the form of Multiple-Input and Multiple-

Output (MIMO) method. With this evaluation we are testing the platform's capability to scale up and

proceed with concurrent remediation action on several nodes simultaneously. Results are presented in

Figure 4. We did not experience difficulties while using threads, and messages delivery was successful

since RS was able to handle the speed of incoming requests. In case of difficulties, a solution could be

to implement multiple RS instances and split the requests. A remediation request basically represents

the execution of one remediation policy. The time needed for the RS to finish with one remediation

request is 10,13 seconds. For the load test we used 10 threads, which would represent 10 users sending

remediation requests at the same time (simultaneously). With those 10 threads we tested with 1, 2, 3, 4

and 5 remediation requests and observed the times. To constitute the dataset, we conducted 4

measurement iterations. Those are the results for this research project; however, when PALANTIR is

used in industrial settings, we anticipate being able to handle higher loads by scaling up the component's

instances in response to demand. Results show that the total time increases linearly from 50,91 seconds

for 10 threads and 1 request to 265,35 seconds for 10 threads and 5 requests. The average time for one

request, or the average time for one remediation execution to finish is under 60 seconds for each testing

case.

Figure 4: Evaluation times of the RS component

4.3. Security orchestration for the decision enforcement

Implementation: The SO oversees operations that are especially relevant to ZTA.

First, and to provide data that contributes to the assessment of the trustworthiness of every new

registered node (typically, a running SC instance), the attestation and monitoring modules internal to

SO extract and exposes data coming from the SCHI to other components in the architecture.

Specifically, data is recovered from (i) the container runtime and (ii) the running SC instances

themselves. The internal attestation module provides runtime details, which are passed to the AE during

PALANTIR: Zero-Trust Architecture for Managed Security Service Provider

94 Proceedings of the 29th C&ESAR (2022)

any new SC onboarding and deployment – where the AE uses a subset (i.e. container ID, image ID and

IP) to access the nodes and images subject to the integrity attestation. The internal monitoring module

registers, persists and exposes generic (e.g. resource consumption) and/or custom metrics (subset of

UNIX-like commands) requested on specific running SC instances.

Secondly, the SO interfaces indirectly (via OSM) or directly with the SCs and SCHI, respectively,

using encrypted TLS channels with mutual authentication. These interfaces are named after the

reference points laid out in the ETSI NFV architecture. The first one is named “Ve-Vnfm-em" and

interconnects OSM with the VNF Manager (VNFM), and the VNFM to the Element Manager (EM),

which is ultimately in charge of passing the configuration actions that are part of the decision

enforcement. The VNFM is implemented by a third-party software (Canonical’s Juju), where the Juju

controller interacts with the Juju units (or applications being deployed) over TLS-encrypted

websockets. The last one is the Or-Vi interface, where the SO accesses the Kubernetes cluster that is

part of the SCHI in the canon, secured way, i.e., through the usage of a kubeconfig file with appropriate

credentials (based on X509 certificates).

Testbed: The ORION testbed used in the PALANTIR project was used also here. This evaluation

procedure considers the two nodes (VMs) allocated for OSM and SO as part of the control plane, where

each of them deploys their specific features across interconnected containers. On the other hand, the

Kubernetes cluster consists of one master and three worker nodes (two of them VMs and one a dedicated

server with TPM2). Details are provided in Table 4.

Table 4
Resources and environment in use for the evaluation of SO and OSM

SO (VM) Main frameworks and libraries Kubernetes details

• Ubuntu 18.04.6 LTS
• 2 cores CPU, 8 GB RAM,

20 GB SSD

• fastapi 0.73.0
• uvicorn 0.17.1
• flask 2.0.2
• kafka-python 2.0.2
• mongoengine 0.23.1

• Kubectl 1.23.4
• CRI: Docker 20.10.12
• CNI: Flannel 0.3.1
• OpenEBS 3.1.0

SO (Containers) Kubernetes cluster (VMs / server)

• Debian 11
• Python 3.8.12
• pip 22.0.4

• Ubuntu 20.04.4 LTS
• Master: 4 cores CPU, 8 GB

RAM, 40 GB SSD

• Workers (x2): 12 cores CPU, 20

GB RAM, 100 GB SSD

• Ubuntu 20.04.3 LTS
• Worker: 20 cores CPU,

128 GB RAM, 400 GB

SSD
• TPM 2.0

Connectivity

• 1 Gbps Internet connection

Typically, all Kubernetes nodes, except one (the dedicated server with TPM 2.0 to support the

integrity measurement of the virtual containers running on the Docker container runtime) are tainted so

to not perform scheduling. However, these tests target the performance evaluation for typical SO

operations within the two control plane nodes. Since the attestation procedure does not affect the

scheduling in the worker nodes, all nodes were used in the end, disregarding their role.

Evaluation: Given the intermediate position of the SO in the orchestration pipeline, this evaluation

aims at identifying the extra time incurred by this component compared to the bare usage of OSM (the

MANO leveraged by SO). The three possibilities that can be leveraged during the mitigation and

decision enforcement procedures are taken as metrics and measured, i.e. (i) instantiation, (ii) re-

instantiation and (iii) configuration times. The first and third metric cover the steps that can be (all

together or separately) incurred during each mitigation process, where a new SC instance is instantiated

in the adequate network segment to protect and/or where the configuration of a running SC is necessary.

The second metric focuses on measuring the time required for the outcome of a failed integrity

M. Compastié, S. Sisinni, S. Gurung et al

Proceedings of the 29th C&ESAR (2022) 95

assessment, where re-instantiation occurs when a compromised, running SC instance is terminated and,

instead, a new one of the same type is re-instantiated.

Three Python scripts measure each of the three metrics for the SO, and another three scripts act as

counterpart for OSM. Each script iterates the operation defined by the metric N (50) times over each

type of SC. This is done sequentially and in batches of R (5-15) requests, reverting that same operation

at the end of the measurement of that request and waiting for S (25-60) seconds before moving to the

next request. The reverting and waiting process is enforced to minimise the risk of leftovers that can

otherwise significantly increase the measured times, due to constraints on disk space and hitting

timeouts. Time is measured right between submitting the action(s) and receiving the success

confirmation that corresponds to each request. The resulting times per metric, comparing the two

instantiation “types” (SO vs OSM) are depicted in Figures 5, 6 and 7. It is worth noting that each request

to any of these components is (i) enacted sequentially (not concurrently with any other pending

operation); (ii) independent from any other (disregarding order and relations); and (iii) idempotent

(leaving the environment in the last clean state after every request). These tenets have facilitated

measuring in the optimal conditions for the chosen testbed.

Figures 5 (left) and 6 (right): Distribution of the instantiation (left) and re-instantiation (right) times
across SCs between SO and OSM

Figure 7: Distribution of the configuration times across SCs between SO and OSM

4.4. PALANTIR Zero-Trust Architecture evaluation

This subsection reports the results obtained in the evaluation of the overall reaction time of the

PALANTIR framework to force a remediation action as soon as a compromise to a SC is detected. To

estimate this time, a Bash script was created to simulate an attacker which compromises a SC by

maliciously modifying one of the image's binaries and then executing it. Time was acquired from the

PALANTIR: Zero-Trust Architecture for Managed Security Service Provider

96 Proceedings of the 29th C&ESAR (2022)

moment the attack is executed to the moment the compromised SC is terminated by the SO. Figure 8

shows the results of 30 measurements performed using snort_ns as SC and the average value

obtained, equal to about 73 seconds, while Figure 9 shows how the time is distributed among the

various components. During the experiments, the AE was configured to perform an attestation cycle

every 2 seconds and to send notifications to the RS every 10 seconds; and the RS was subjected to a

workload of 1 remediation request at a time. From the data it emerges that the ZTA architecture of the

PALANTIR framework guarantees that, in less than 2 minutes, an attack aimed at compromising the

integrity of the SC is detected by AE, processed by RS by sending a request to remove the SC

untrusted and resolved by SO forcing its removal from SCHI.

Figures 8 (left) and 9 (right): average reaction time of PALANTIR ZTA (left) and distribution of

average times (in seconds) between the involved components (right)

5. Discussion

Table 5
Comparison between ZTA tenets and PALANTIR framework implementation

 ZT security model suggests that no request for access to a resource of the infrastructure must be

considered trusted a-priori and that the integrity of each infrastructure component must be constantly

monitored and evaluated. While architecting PALANTIR, the authors thrive to comply to this paradigm,

which replaced the traditional one based on the network perimeter, no longer applicable to modern

virtualised distributed infrastructures. NIST defined a ZT security model through a set of seven basic

tenets, conceived as ideal objectives that should be realised in a ZTA, fully or even partially depending

on the strategy adopted in each context. We examined the PALANTIR architecture considering such

tenets to evaluate which of them are met into the infrastructure and to what extent. Table 1 exposes how

PALANTIR platform complies with these principles when managing security capabilities according to

their security posture.

M. Compastié, S. Sisinni, S. Gurung et al

Proceedings of the 29th C&ESAR (2022) 97

6. Conclusion

This paper proposed, prototyped, and evaluated the PALANTIR ZT architecture, justified it with an

MSSP threat model, and analysed its compliance with the ZTA paradigm, highlighting how the basic

ZTA tenets are satisfied in the PALANTIR framework. An extensive range of experiments was

conducted in order to demonstrate the effectiveness of PALANTIR's ZTA solution and the feasibility

of its adoption in real operational scenarios for the protection of SMEs and ME. Even though

PALANTIR shows remarkable progress in terms of applying ZTA principles to the SecaaS model,

further improvements can be investigated and applied. As future work, the ZTA security model should

be considered on different perspectives, not only tied to the PALANTIR infrastructure itself, and

extended by adopting some of the presented solutions directly on the customer infrastructure (e.g.

remote attestation).

Acknowledgement

The work described in this article has received funding by the European Union Horizon 2020 research

and innovation programme, supported under Grant Agreement no. 883335. Part of this work is also

supported by the Spanish Government Grant ONOFRE-3 PID2020-112675RB-C43 funded by MCIN/

AEI /10.13039/501100011033. The content of this article does not reflect the official opinion of the

European Union or any other institution. Responsibility for the information and views expressed therein

lies entirely with the authors.

References

[1] E. Mantas et al., “Practical Autonomous Cyberhealth for resilient Micro, Small and Medium-

sized Enterprises,” in 2021 IEEE International Mediterranean Conference on Communications

and Networking (MeditCom), Sep. 2021, pp. 500–505. doi:

10.1109/MeditCom49071.2021.9647609.

[2] Ravie Lakshmanan, “Government Agencies Warn of Increase in Cyberattacks Targeting

MSPs,” The Hacker News, May 11, 2022. https://thehackernews.com/2022/05/government-

agencies-warned-of-increase.html.

[3] ETSI, “ETSI GS NFV-SEC 001: Network Functions Virtualisation (NFV); NFV Security;

Problem Statement,” ETSI, ETSI GS NFV-SEC 001 V1.1.1, Oct. 2014. [Online]. Available:

https://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/001/01.01.01_60/gs_NFV-

SEC001v010101p.pdf.

[4] A. Darabseh, M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, M. Vouk, and A. Rindos,

“SDSecurity: A Software Defined Security Experimental Framework,” in 2015 IEEE

International Conference on Communication Workshop (ICCW), Jun. 2015, pp. 1871–1876.

doi: 10.1109/ICCW.2015.7247453.

[5] M. Compastié, R. Badonnel, O. Festor, and R. He, “From virtualisation security issues to cloud

protection opportunities: An in-depth analysis of system virtualisation models,” Computers &

Security, vol. 97, p. 101905, Oct. 2020, doi: 10.1016/j.cose.2020.101905.

[6] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applications from an Untrusted Cloud with

Haven,” ACM Trans. Comput. Syst., vol. 33, no. 3, p. 8:1-8:26, Aug. 2015, doi:

10.1145/2799647.

[7] “Trusted Platform Module Library Specification, Family “2.0””, Trusted Computing Group.

https://trustedcomputinggroup.org/work-groups/trusted-platform-module/.

[8] “TPM 2.0 Keys for Device Identity and Attestation”, Trusted Computing Group.

https://trustedcomputinggroup.org/resource/tpm-2-0-keys-for-device-identity-and-attestation/.

[9] “TCG Trusted Attestation Protocol Information Model”, Trusted Computing Group.

https://trustedcomputinggroup.org/resource/tcg-tap-information-model/.

https://thehackernews.com/2022/05/government-agencies-warned-of-increase.html
https://thehackernews.com/2022/05/government-agencies-warned-of-increase.html
https://trustedcomputinggroup.org/resource/tcg-tap-information-model/

PALANTIR: Zero-Trust Architecture for Managed Security Service Provider

98 Proceedings of the 29th C&ESAR (2022)

[10] T. Lodderstedt, D. Basin, and J. Doser, “SecureUML: A UML-Based Modeling Language for

Model-Driven Security,” in ≪UML≫ 2002 — The Unified Modeling Language, Berlin,

Heidelberg, 2002, pp. 426–441. doi: 10.1007/3-540-45800-X_33.

[11] D. Basin, J. Doser, and T. Lodderstedt, “Model driven security for process-oriented systems,”

in Proceedings of the eighth ACM symposium on Access control models and technologies,

New York, NY, USA, Jun. 2003, pp. 100–109. doi: 10.1145/775412.775425.

[12] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman, “A Look in the Mirror: Attacks on Package

Managers,” in Proceedings of the 15th ACM Conference on Computer and Communications

Security, New York, NY, USA, 2008, pp. 565–574. doi: 10.1145/1455770.1455841.

[13] M. Compastié, R. Badonnel, O. Festor, and R. He, “A TOSCA-Oriented Software-Defined

Security Approach for Unikernel-Based Protected Clouds,” in 2019 IEEE Conference on

Network Softwarization (NetSoft), Jun. 2019, pp. 151–159. doi:

10.1109/NETSOFT.2019.8806623.

[14] European Union Agency for Cybersecurity., ENISA threat landscape for supply chain attacks.

LU: Publications Office, 2021. Accessed: May 05, 2022. [Online]. Available:

https://data.europa.eu/doi/10.2824/168593

[15] C. Buck, C. Olenberger, A. Schweizer, F. Völter, and T. Eymann, “Never trust, always verify:

A multivocal literature review on current knowledge and research gaps of zero-trust,”

Computers & Security, vol. 110, p. 102436, Nov. 2021, doi: 10.1016/j.cose.2021.102436.

[16] J. H. Saltzer and M. D. Schroeder, “The protection of information in computer systems,”

Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–1308, Sep. 1975, doi:

10.1109/PROC.1975.9939.

[17] S. Rose, O. Borchert, S. Mitchell, and S. Connelly, “Zero Trust Architecture,” National

Institute of Standards and Technology, Aug. 2020. doi: 10.6028/NIST.SP.800-207.

[18] B. Chen et al., “A Security Awareness and Protection System for 5G Smart Healthcare Based

on Zero-Trust Architecture,” IEEE Internet of Things Journal, vol. 8, no. 13, pp. 10248–10263,

Jul. 2021, doi: 10.1109/JIOT.2020.3041042.

[19] S. A. Siddiqui, A. Mahmood, Q. Z. Sheng, H. Suzuki, and W. Ni, "A Survey of Trust

Management in the Internet of Vehicles", Electronics 10, no. 18: 2223, Sep. 2021, doi:

10.3390/electronics10182223.

[20] R. Vanickis, P. Jacob, S. Dehghanzadeh, and B. Lee, “Access Control Policy Enforcement for

Zero-Trust-Networking,” in 2018 29th Irish Signals and Systems Conference (ISSC), Jun.

2018, pp. 1–6. doi: 10.1109/ISSC.2018.8585365.

[21] S. Mehraj and M. T. Banday, “Establishing a Zero Trust Strategy in Cloud Computing

Environment,” in 2020 International Conference on Computer Communication and Informatics

(ICCCI), Jan. 2020, pp. 1–6. doi: 10.1109/ICCCI48352.2020.9104214.

[22] “Security Protocol & Data Model (SPDM) Specification”, DMTF.

https://www.dmtf.org/standards/SPDM

[23] “HPE Distributed Intrusion Monitoring Engine”. https://community.hpe.com/t5/Advancing-

Life-Work/Quis-custodiet-ipsos-custodes-HPE-next-generation-intrusion/ba-p/7042089

[24]” CrowdStrike report: Russian hackers are the fastest ", https://www.tellerreport.com/tech/--

crowdstrike-report--russian-hackers-are-the-fastest-.S1NSS8tBV.html

https://data.europa.eu/doi/10.2824/168593

