
Deep Web Navigation by Example

Yang Wang and Thomas Hornung

Institute of Computer Science, Albert-Ludwigs University Freiburg, Germany
{wangy,hornungt}@informatik.uni-freiburg.de

Abstract. Large portions of the Web are buried behind user-oriented
interfaces, which can only be accessed by filling out forms. To make
the therein contained information accessible to automatic processing,
one of the major hurdles is to navigate to the actual result page. In
this paper we present a framework for navigating these so-called Deep
Web sites based on the page-keyword-action paradigm: the system fills
out forms with provided input parameters and then submits the form.
Afterwards it checks if it has already found a result page by looking for
pre-specified keyword patterns in the current page. Based on the outcome
either further actions to reach a result page are executed or the resulting
URL is returned.

Key words: Form Analysis, Deep Web Navigation by Page-Keyword-
Actions

1 Introduction

A recent study by He et. al [5] has found an exponential growth and great sub-
ject diversity of Deep Web [2] sites. Taking into account the vast amount of
high-quality data, which is geared towards human visitors, it is not surprising
that many different research questions are actively pursued in this area at the
moment, e.g. vertical search engines [4].
In this paper we present a framework which bridges the gap between the front
page and the desired result page which actually contains the relevant data. In
a user-assisted acquisition step we first analyze the relevant form fields on the
Web page we are interested in and then build a navigation model based on the
page-keyword-action paradigm. The main idea is twofold: first, the user has to
identify and label the relevant input form fields. For these we pre-compute and
store the dependencies in a database so that we can check for illegal combina-
tions offline. Second, we use the user-provided input values at runtime to fill out
the appropriate form fields and then check after submittal if we have already
reached the result page. The check is based on a keyword sequence, which gives
us a hint if we are on an intermediate, or bridge, page. If so, a series of actions,
which are associated with this bridge page, is performed, which yields us to a
new page. Here again, we check if we have reached a result page. If this is the
case, we return the URL, otherwise we (again) perform the associated actions
or return an error message.
This framework has been developed for use in the FireSearch project [6] whose

131

aim it is to organize Deep Web sources in a mashup graph, where it is used in
conjunction with the ViPER [13] wrapper tool to convert Deep Web sources into
machine-processable query interfaces. However, as it has been implemented in
JavaScript and Java as a Firefox plugin it could be used with minor modifica-
tions in other projects, e.g. for a domain-specific Meta Search engine, where the
relevant Deep Web sources could be integrated by an interested community, as
well.
The paper is structured as follows: we start with a description of the two main
components of our framework, namely the analysis of form fields in Section 2
and the navigation model in Section 3. In Section 4 we present an evaluation
of our system and in Section 5 we discuss related work. Finally, we conclude in
Section 6 with an outlook on future work.

2 Form Analysis

Initially for each new Web page we store all occurring forms in a database for
later analysis. Afterwards the user can load the desired form field and label
the desired input elements1, e.g. in Figure 1 the maximum desired price the
visitor is willing to pay for a used car has been labeled Price-To. Overall she
has labeled six input elements, e.g. the desired brand and the make of the car.
Now we check for each labeled input element, if they are static or if there are
any dynamic dependencies, which might be due to Ajax interactions with the
server. Note, that only these input elements of the form can be used later on
for querying that have been labeled in this stage. Our running example is the
analysis of a Web search engine for used cars2, where each car model depends on
its car make. The other input elements are static, i.e. they do not change if one of
the other input elements is changing. The dynamic and static combinations are
determined automatically after the user has finished labeling the desired input
elements based on the following idea: modify the first dropdown menu3 and
check all other labeled dropdown menus, if the available options have changed. If
this is the case, then modify the dependent dropdown menu to uncover layered
dependencies and mark the dependent menu as dynamic. After all dropdown
menus have been checked, we mark all menus that are not dynamic as static. To
avoid loops, we only check possible dropdown menus that have not participated
in a dependency in the current analysis cycle before, e.g. in the example shown in
Figure 1 the car model would not be considered if we check for further dynamic
dependencies for the car make input element.
Figure 2 and Figure 3 show the resulting static and dynamic dependencies for
our running example. After the frontend analysis is finished, we continue with
1 In the context of this paper we refer to all elements in the form field that can be
provided with a value, e.g. checkboxes, as input elements.

2 http://www.autoscout24.de
3 Only dropdown menus are currently considered as candidates for dynamic elements,
all other input element types are assumed to be static by default.

132

Fig. 1. Annotation of form attributes

static

Attribute
Radius Price�From Price�To Attribute�

name

5�km 500�€ 1000�€ 500�€10�km Options........ 1000�€

Fig. 2. Relation tree for static input elements for http://www.autoscout24.de

the analysis of the possible navigation patterns for this page described in the
next section.

3 Deep Web Navigation

The navigation model is a crucial part of our system. Based on the model the
system can anytime determine, if it has already reached the result page or if it is
on an intermediate page. Additionally the model determines the actions, which
should be perfomed for a specific intermediate page, e.g. to click on a link or fill

133

dynamic

Car�Brand

Audi BMW VW Car�Brand

A1 320 325 PoloA2 Car�Model.... Golf

Fig. 3. Relation tree for dynamic input elements for http://www.autoscout24.de

out a new form field. The key idea of our Page-Keyword-Action paradigm is that
the system first determines its location (intermediate vs. result page) based on
a page keyword and then invokes a series of associated actions if appropriate.

3.1 Deep Web Navigation

The overall navigation process is illustrated in Figure 4: the user provides the
system with a value map that contains for each desired input element label/value
combinations. If the form field contains dynamic input elements for which she
has provided input label/value combinations we check if they are legal. If so, we
subsequently fill out and submit the form field with these combinations, which
yields a new Web page4. For this Web page we check, if we can find one of our
defined keywords (cf. Section 3.2). If so, we perform the associated actions which
result in a new Web page and check again if we are on a intermediate page. The
cycle continues as long as we can find keywords on the Web page. To avoid an
infinite loop, the user can specify an upper bound on the number of possible
intermediate pages, after which an error message is returned. If we cannot find
a keyword on the current Web page, we have found the goal page and return its
URL.

3.2 Intermediate Page Keyword

Deep Web pages are typically created dynamically, i.e. data from a background
database is filled into a predefined presentation template. Therefore, we can
usually identify fixed elements, which are part of the template, which are almost
identical between different manifestations. After the form analysis is finished
the user can iteratively submit the form with different options. If an input value
combination leads her to an intermediate page, she can identify the relevant
4 Additionally, we use the information obtained during form analysis for directly gen-
erating the request POST/GET URL. Thereby we can offline mimic the behavior
of the form field.

134

Found
Keyword?

Form�Field

Goal Sitelabel1 value1
HTML�page no

Execute

yes

label2

label3

value2

value3

Go! Execute
Actions Return�URL

Go!

Fig. 4. Navigation process

keyword as described in the following. If she has already reached a result page
for a value combination no further user interactions are required. Note that as
long as she is in the context of the currently active form field, she can also access
a series of intermediate pages and for each page specify a series of actions.
For the identification of a specific intermediate page we opted for a static text
field. The reason is that it can be included in many HTML elements, e.g. the div,
h2, or the span tag and given our template assumption they serve as a sufficient
discriminatory factor. Other more advanced techniques based on visual markers
on the page or more IR-related techniques, such as text classification approaches
[10], could be used in this context as well and are planned as future work. In
Figure 5 we have marked potential candidates for keywords with a rectangle.
The most likely candidates which are most characteristic are encircled with an
ellipse, e.g. the error message for the car search service shown on the left. After
the user has identified the keyword in the page, she can now specify actions that
should be performed in order to reach the result page.

Fig. 5. Intermediate pages for http://www.autoscout24.de (left) and
http://www.imdb.com (right)

135

3.3 Intermediate Page Actions

The above specified keywords can be used to identify intermediate pages. How-
ever, our ultimate goal is to find a result page given a set of input value combina-
tions for the initial form field. Therefore some actions, such as clicking on a link
or filling out and submitting a new (intermediate) form, have to be perfomed to
access the next - preferrably result - page.
In order to uniquely identify the appropriate HTML elements on which the
stored actions should be executed, we defined a path addressing language called
KApath, which is a semantic subset of XPath [16]. In order to access the ap-
propriate action element, the system first finds the common ancestor of the
keyword element and the action element and then descends downwards in the
action element branch. Afterwards, the registered actions are executed for the
found action element. Thus, KApath supports the following path expressions:

– /Node[@aname1=avalue1] . . . [@anamen=avaluen]: The element in the
DOM tree that matches the specified attribute name-value combinations of
type Node,

– /P: Immediate parent node of current node,
– /P::P: All (transitive) parent nodes of current node,
– /P::P/Node[@aname1=avalue1] . . . [@anamen=avaluen]: The first

found parent node in the DOM tree that matches the specified attribute name-
value combinations starting from the current node and is of type Node,

– /Child: Immediate child nodes of current node,
– /Child::Child: All (transitive) child nodes of the current node,
– /Child::Child/Node[@aname1=avalue1] . . . [@anamen=avaluen]: The

first found child node in the DOM tree that matches the specified attribute
name-value combinations starting from the current node and is of type Node.

TBODY
h

TR TR

KApath

/P::P/TBODY[@a1=v1][@a2=v2]/Child::Child/INPUT[@a3=v3]

TD TD TD TD TD

H2

optional

/ParentNode/ParentNode/ParentNode/Child[1]/Child[1]/Child[0]

Absolute�Path

H2

#Text INPUT

TBODY(TR TR)/TR(TD TD)/TD(INPUT)

Tree Structure

Keyword Action�Element

TBODY(TR,TR)/TR(TD,TD)/TD(INPUT)

Fig. 6. Example KApath expression that allows optional HTML elements in the in-
termediate page

Figure 6 shows an example how the associated action element in a page can be
referenced with respect to the page keyword with a KApath expression. Here,

136

the TBODY node is the first common parent node for both (keyword and action)
elements. Therefore the system automatically generates a KApath expression
which allows optional intermediate elements between the keyword and the first
common parent node. For finding the correct action element it is crucial to
consider its attributes as well. However, it can still happen that the desired action
elements have no (e.g. links) or dynamic attributes (e.g. visibility). For these
cases we additionally store the absolute path from keyword to action element and
the tree structure starting from the common parent. Another situation where we
can make use of the absolute path is when the HTML page structure has changed
and the common parent node is still on the same level in the DOM tree but in
another branch. The tree structure is helpful if there are changes on the way
downwards from the common parent node. Together, keyword, KApath, absolute
path and the tree structure form the navigation model for this intermediate page
(cf. Figure 6).
Based on the user’s browsing behavior, the system can generate the complete
navigation model. First, she identifies the keyword for an intermediate page by
clicking on the relevant text in the Web page. Then, the system determines the
closest surrounding HTML element and stores the relevant context information.
Afterwards, the system monitors the user behavior and stores each action she
performs until she reaches a new page. Based on this action log, the system can
automatically determine the paths and tree structures for each action.
The following type of actions are supported by our system:

– Clicking on links,
– Entering text in input fields,
– Selecting options from a dropdown or checkbox menu, and
– Submitting forms.

4 Evaluation

In our experiments, we evaluated the following aspects for our two major com-
ponents: accuracy and runtime. For this, we selected 100 Deep Web sites from
different domains, e.g. car search and video search. 60 of them were directly
adopted from the website table in [2], because they contain a large amount of
data. The others were selected by a focused search on Google on Deep Web
repositories. For a full list of the tested Web sites we refer the interested reader
to [14].

4.1 Experimental Results

Frontend Analysis For 99% of the tested Web sites the frontend analysis was
successful, finding the correct static and dynamic dependencies. Depending on
the number of items in the dropdown menus of the form fields, the time needed
for analysis took from 0.5 to 30 seconds, i.e. 4.28 seconds on average. Since this
analysis has only to be performed once, we feel that performance optimizations

137

Int. Pages # Web Sites Page Load 1 Model 6 Models

0 58 2.25 2.26 2.31

1 22 - 4.60 4.66

2 14 - 6.47 6.55

3 4 - 8.12 8.23

4 1 - 9.70 9.83

5 1 - 11.06 11.22

Table 1. Time (in seconds) for navigation experiments

for this analysis are of limited benefit, because our major focus is on correctly
identifying hidden dependencies between the dropdown menus.

Deep Web Navigation For 96% of the tested Web sites we were able to
successfully find a keyword and to navigate to the desired result page. The nav-
igation process took from 2.26 to 11.22 seconds, i.e. 3.79 seconds on average. As
shown in Table 1 most of the time was spend for loading pages, i.e. 2.25 seconds
on average. The columns labeled 1 Model and 6 Models indicate the number of
registered navigation models for each page. As can be seen, the overhead for
checking multiple models was marginal in contrast to the time spent for loading
pages. This is due to the fact that the execution of the actions is performed by
the browser on the client side and since no computationally intensive algorithm
is required to identify intermediate pages.

4.2 Open Issues

Our evaluation revealed the following open issues of our system.

Frontend Analysis

– Delayed AJAX interactions: For one Web site we were unable to correctly
detect the dynamic dependencies because the server took longer than our
specified threshold to change the items in the respective dropdown menu.

This could be remedied by increasing our threshold value to some extent, but
further investigation is needed to find a general solution for this problem.

Deep Web Navigation

– Dynamic request URLs: Usually, different request URLs only differ in the
searchpart5, due to different variable bindings, which are transferred to the
server. Two Web sites in our test bed used different paths as well, which our
system converts into illegal request URLs.

– Hidden form elements: Since the user can only drag labels to visible form
elements, values in hidden form elements that have to be correlated with
visible elements cannot be detected by our system.

5 The part of the URL after the ?.

138

– Session IDs: Session IDs are often used to track user interactions with Web
pages and are only valid for a certain period. Because we are not able to
produce a new (fake) session ID for each service, the offline generated URL
becomes invalid over time.

All of the abovementioned issues could be solved by filling out the frontend form
at runtime and skipping the offline generation of the URL for such resources.

– Static URLs: Our system determines, if a new Web page has been loaded
based on the current URL. If the URL does not change after a form has been
submitted, we are not able to initiate the navigation process.

This can be solved by using another metric for determining if a new Web page
has been loaded, e.g. a checksum of the Web page.

5 Related Work

A number of navigation concepts have been proposed for accessing Deep Web
sources. [3] and [9] proposed process-oriented navigation maps, which describe
a set of paths from a start page to a result page. But these maps rely on con-
secutive state transitions and fixed interactions between them. In [7] the user
actions from a specified start page over possibly multiple intermediate pages to
an end page are recorded in a navigation map. The actions that link two adja-
cent pages are strongly connected as well. A sophisticated Deep Web navigation
strategy based on the branched navigation model is proposed in [1]. The navi-
gation is represented as a sequence of pages, with envisioned future support for
standard process-flow languages such as BPEL [15]. In [12] a navigation sequence
was specified in NESQL [11]. The NESQL expression contains several informa-
tions about action elements, for instance, their specified names and types. Each
expression will be interpreted based on these element properties. By storing his-
torical information from previous accesses of a Deep Web resource and utilizing
browser pools, their system tries to reuse the current state of a browser.
Our framework is not dependent on a rigid sequence of intermediate pages, be-
cause for each new page all keyword patterns are checked and therefore the
previous state of the system is not important for our page-oriented navigation
model. Besides, we do not need a complex navigation algebra or calculus for the
navigation process because we just save the above described navigation model
for each intermediate page. For instance, the framework proposed by [3] relies
on a subset of serial-Horn Transaction F-Logic [8]. As discussed in Section 3.3,
the saved action sequences are just macro procedures, which are interpreted by
our JavaScript macro engine.

6 Conclusion and Future Work

In this paper we presented a framework for bridging the gap between the start
and goal page of Deep Web pages. We have proposed a simple, but efficient, Deep

139

Web navigation strategy, which we have found to be very effective thus far. The
main idea is to change a heavy-weight navigation calculus for an intermediate
page identification procedure and a set of actions that navigate to the next page.
Our experiments suggest that the determination of a suitable keyword is crucial
for the successful identification of an intermediate page, and that for some cases
it might be better to skip the offline generation of the start URL.
For future work we plan to investigate how to automatically suggest meaningful
and discriminatory keywords to the user and the use of more elaborate techniques
to identify intermediate pages, such as the visual appearance of the Web page.

References

1. Baumgartner, R., Ceresna, M., Ledermüller, G.: Deep Web Navigation in Web Data
Extraction. In: CIMCA/IAWTIC, pp. 698–703. (2005)

2. Bergman, M. K.: The Deep Web: Surfacing Hidden Value. White Paper,
http://www.brightplanet.com/images/stories/pdf/deepwebwhitepaper.pdf (2001)

3. Davulcu, H., Freire, J., Kifer, M., Ramakrishnan, I. V.: A Layered Architecture for
Querying Dynamic Web Content. In: SIGMOD, pp. 491–502. (1999)

4. He, H., Meng, W., Yu, C. T., Wu, Z.: WISE-Integrator: A System for Extracting
and Integrating Complex Web Search Interfaces of the Deep Web. In: VLDB, pp.
1314–1317. (2005)

5. He, B., Patel, M., Zhang, Z., Chang, K. C.-C.: Accessing the Deep Web. In: Com-
mun. ACM, 50(5), pp. 94–101. (2007)

6. Hornung, T., Simon, K., Lausen, G.: Mashing Up the Deep Web - Research in
Progress. In: WEBIST 2008. (2008)

7. Julasana, N., Khandelwal, A., Lolage, A., Singh, P., Vasudevan, P., Davulcu, H.,
Ramakrishnan, I. V.: WinAgent: A System for Creating and Executing Personal
Information Assistants Using a Web Browser. In: IUI, pp. 356–357. (2004)

8. Kifer, M.: Deductive and Object-oriented Data Languages: A Quest for Integration.
In: DOOD, pp. 187–212. (1995)

9. Lage, J. P., da Silva, A. S., Golgher, P. B., Laender, A. H. F.: Collecting Hidden
Web Pages for Data Extraction. In: WIDM, pp. 69–75. (2002)

10. Nigam, K., McCallum, A., Thrun, S., Mitchell, T. M.: Learning to Classify Text
from Labeled and Unlabeled Documents. In: AAAI/IAAI, pp. 792–799. (1998)

11. Pan, A., Raposo, J., Álvarez, M., Hidalgo, J., Viña, Á.: Semi-Automatic Wrapper
Generation for Commercial Web Sources. In: EISIC, pp. 265–283. (2002)

12. Raposo, J., Álvarez, M., Losada, J., Pan, A. : Maintaining Web Navigation Flows
for Wrappers. In: DEECS, pp. 100–114. (2006)

13. Simon, K., Lausen, G.: ViPER: Augmenting Automatic Information Extraction
with Visual Perception. In: CIKM, pp. 381–388. (2005)

14. Wang, Y.: Deep Web Navigation by Example. In: Master’s Thesis, Institute of
Computer Science, Albert-Ludwigs University Freiburg. (2008)

15. Web Services Business Process Execution Language Version 2.0, http://www-128.
ibm.com/developerworks/library/specification/ws-bpel/. (2007)

16. XML Path Language (XPath) Version 1.0, http://www.w3.org/TR/xpath. (1999)

140

