
An Empirical Evaluation of Defect Prediction Models Using
Project-Specific Measures

Umamaheswara Sharma B1,*,†, Ravichandra Sadam2,†

1Research Scholar, Department of Computer Science and Engineering, National Institute of Technology, Warangal, Telangana, India
2Associate Professor, Department of Computer Science and Engineering, National Institute of Technology, Warangal, Telangana, India

Abstract
Due to the advantages of economizing the testing resources such as cost, time, and consequently the manpower on the
developing software project, research on software defect prediction (SDP) has gained traction in academia. Though many
works in the literature discuss constraints that are limiting the final prediction performance, finding the essential benefits
in terms of the project objectives such as cost, service time, and failure is rarely explored. On the basis of these project
objectives, the gap of finding the best performing SDP model is still present in the literature. In this regard, in this work,
a detailed empirical analysis of With-in Project Defect Prediction (WPDP), Cross-Project Defect Prediction (CPDP), and
mixed-Cross-Project Defect Prediction (M-CPDP) models is provided using the project-specific performance measures such as
percent of perfect cleans (PPC), percent of non-perfect cleans (PNPC), false omission rate (FOR), and its additional derived
performance measures, which are proposed by Sharma et al. in [1]. The empirical analysis is provided on 14 publicly
available datasets collected from the PROMISE repository using the baselines such as support vector machines (SVM), decision
trees (DT), and 𝑘-nearest neighbours (𝑘-NN) classifiers. From the empirical results, we observe that the M-CPDP model is
significantly better at providing maximum savings in the allocated budget, minimum service time, and minimum failure
incidents on the majority of the target projects.

Keywords
With-in Project Defect Prediction, Mixed Cross-Project Defect Prediction, Cross-Project Defect Prediction, project-specific
Performance Measures, Prediction Quality Assessment

1. Introduction
Software defect prediction (SDP) models reduce the work
load on the tester by providing the status of defect-
proneness of the newly developed software module in
a short time [2, 3, 4, 5, 6, 7, 8, 9, 10]. Hence, it re-
duces the total cost, time, and manpower that are spent
on the target project [11, 1]. Because of these advan-
tages, there are the works in the literature that ad-
dress various constraints in building prediction models
[2, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20].

The literature on SDP classifies works on its major cat-
egories such as within-project defect prediction (WPDP)
and cross-project defect prediction (CPDP). WPDP mod-
els use available local data from the same software to train
the prediction model, whereas CPDP models use defects
data collected from multiple projects to train the predic-
tion model[21]. The CPDP models are further classified
into many types, such as mixed CPDP (M-CPDP), mixed
project defect prediction (MPDP), and pair-wise-CPDP

QuASoQ 2022: 10th International Workshop on Quantitative Ap-
proaches to Software Quality, December 06, 2022, virtual
* Corresponding author
†

These authors contributed equally in this research.
$ uma.phd@student.nitw.ac.in (U. S. B); ravic@nitw.ac.in
(R. Sadam)
� 0000-0003-1676-3347 (U. S. B)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

[21]. In mixed CPDP, old versions of the same project
along with the data of the other source projects are used
to train the prediction model. Hence, the M-CPDP models
are considered as a mixture of with-in and cross-project
defect prediction contexts. In MPDP, the prediction is
trained using the data from the target project along with
the old versions of the same project and the data of the
other source projects. Whereas in the pair-wise CPDP,
the prediction models will be built using each project’s
data. Then, the mean or median of the performances of
these pair-wise predictions is then used to calculate the
final performance of the pair-wise CPDP model. Among
all the variants of SDP, most literature discusses works
on WPDP, CPDP, and M-CPDP [1, 10, 21] models.

The common objective of developing SDP models is
to reduce the project cost that is being spent on the test-
ing team, reduce the work load on the tester, and min-
imise the risk of observing the failures [1, 22]. Owing
to these objectives, recently, a work by Sharma et al. in
[1] discusses various novel project-specific performance
measures such as percent of perfect cleans (PPC), percent
of non-perfect cleans (PNPC), false-omission rate (FOR),
percent of saved budget (PSB), and percent of remaining
edits (PRE), to capture real-benefits from the prediction
model. These performance measures are essential in un-
derstanding the main objectives of the prediction model
but are also used to evaluate the developed prediction
model.

Further extending the work of Sharma et al. [1], in

25

mailto:uma.phd@student.nitw.ac.in
mailto:ravic@nitw.ac.in
https://orcid.org/0000-0003-1676-3347
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

this work, we provide an empirical analysis of the perfor-
mances of the widely used SDP variants such as WPDP,
CPDP, and M-CPDP models using the project-specific
performance measures. For the empirical analysis, we
have used benchmark classification approaches such as
support vector machines (SVM), decision trees (DT), and
𝑘-nearest neighbours (𝑘-NN), for each problem context.
From the empirical analysis, we observe that the M-CPDP
model is performing significantly better over the others
in terms of the project-specific attributes.

1.1. Contributions
Capturing the project benefits from the SDP model and
obtaining the best performing model is essential for any
research practitioner. Hence, this work is mainly targeted
at providing an empirical analysis of the SDP models such
as WPDP, CPDP, and M-CPDP with regard to the project-
specific performance measures such as percent of perfect
cleans (PPC), percent of non-perfect cleans (PNPC), false-
omission rate (FOR), percent of saved budget (PSB), and
percent of remaining edits (PRE), to capture real-benefits
from the best prediction model. Since interpreting the
obtained results of the SDP model in terms of the project
objectives is a necessary task, any research practitioner
should have to evaluate their models using the project-
specific measures as in [1]. To the best of our knowledge,
conducting an empirical analysis between the prediction
models such as WPDP, CPDP, and M-CPDP in order to
know the best performing model in terms of the SDP
objectives is new to this field of research.

Paper Organisation: The rest of the paper is organised
as follows: Section 2 discusses the related work on the
usage of the performance measures in SDP studies. In
Section 3, we provide a complete list of project-specific
performance measures, proposed by Sharma et al. in
[1]. Section 4 presents the essential requirements for
conducting empirical analysis such as utilised datasets,
significance test and base-line machine learning (ML)
models. In Section 5, we provide detailed empirical re-
sults in terms of the proposed measures and discuss the
important observations. Section 6 discusses potential
threats to the obtained prediction performance. Section
7 concludes the work and provides possible future work.

2. Related Work
In this section, we provide the papers that discuss the key
findings from the SDP models in terms of the traditional
measures. In this regard, we present the abstract details of
two relevant studies that discuss the suitable performance
measures for the SDP models. In addition, we also discuss
the project-specific performance measures in evaluating
the prediction models as suggested in [1].

Since model performance comparison received more
attention, in [23], Jiang et al. discussed various tradi-
tional performance measures were investigated to find
the most suitable candidate for the defect prediction tasks.
The study analyses the strengths and weaknesses of the
wide variety of numeric evaluation measures such as
overall accuracy, error rate, sensitivity, specificity, pre-
cision, G-mean, F-measure, J-coefficient, in addition to
the graphical summarisation measures such as receiver
operating characteristic (ROC) curve, precision and re-
call (PR) curve, cost curve, and lift chart. The empirical
study was conducted using five base-lines on the NASA
projects. Since optimising the cost that is being spent
on the project and maximising the efficiency of the soft-
ware verification are the main objectives in developing
SDP models, the task for the research practitioners is to
minimise the misclassification rate. In this regard, the
study [23] does not qualify any best traditional perfor-
mance measures (this is due to the fact that, in terms
of selective performance measures, rarely will one or
few models prove to be the best for all possible uses in
software quality assessment). However, they concluded
that the F-measure offers a balanced consideration of the
observed results.

Morasca and Lavazza in [24] conducted a study on
choosing the best and relevant portion of the ROC curves,
obtained from the predictions of the SDP model. The
study proposed a new measure called the ratio of rele-
vant areas (RRA) for evaluating the SDP models by taking
only the parts of the ROC curves corresponding to the
various values of the threshold. Their work also addresses
the shortcomings of the widely used performance mea-
sures such as Area Under the Curve (AUC) and the Gini
coefficient. However, in summary, their approach pro-
vides a theoretical illustration for the use of traditional
measures in reducing the misclassification costs of the
defect proneness models.

Recently, Sharma et al. in [1] discussed the short-
comings of widely used traditional measures such as
F-measure and AUC, and proposed five project-specific
performance measures to capture the important observa-
tions from the prediction model in terms of the project ob-
jectives. The study suggests using an interpretable mea-
sure that provides the predictions from the SDP model in
terms of cost, service time, and failure, as these are the es-
sential objectives to be accomplished from the prediction
model.

Providing an empirical analysis of the prediction mod-
els by illustrating their performances in terms of the
project-specific attributes is the primary research gap in
SDP research. Hence, by extending the study of Sharma
et al. in [1], in this work, we provide an empirical evalua-
tion of the widely used defect prediction variants such as
WPDP, CPDP, and M-CPDP models in order to validate
the use of the project-specific performance measures.

26

Table 1
The PROMISE projects

Project Modules LoC Defects %Defects Project Modules LoC Defects %Defects
Ant-1.3 125 37,699 20 16.00 Camel-1.4 872 98,080 145 16.63
Ant-1.4 178 54,195 40 22.47 Camel-1.6 965 113,055 188 19.48
Ant-1.5 293 87,047 32 10.92 Jedit-3.2 272 128,883 90 33.09
Ant-1.6 351 113,246 92 26.21 Jedit-4.0 306 144,803 75 24.51
Ant-1.7 745 208,653 166 22.28 Jedit-4.1 312 153,087 79 25.32
Camel-1.0 339 33,721 13 03.83 Jedit-4.2 367 170,683 48 13.08
Camel-1.2 608 66,302 216 35.53 Jedit-4.3 492 202,363 11 02.24

Table 2
The confusion matrix

Actual values
Defective Clean

Predicted values
Defective TP FP

Clean FN TN

3. Project-Specific Measures
In this section, we present the details of the project-
specific performance measures, such as percent of perfect
cleans, percent of non-perfect cleans, false-omission rate,
percent of saved budget, and percent of remaining edits.

The measures PPC and PSB interpret the predictions
of the SDP model in terms of cost units, while the PNPC
and PRE interpret the predictions in terms of service
time units. The measure FOR is used to measure the fail-
ure chances from the misclassification of the defective
modules. All the measures use the information from the
confusion matrix (given in Table 2) among which the
measures PPC, PNPC, PSB, and PRE measures utilise an
extra attribute called lines of code (LoC) to compute the
prediction performances. A detailed explanation of these
measures is presented below.

1. Percent of Perfect Cleans (PPC): Since the true
negatives (TN) represent the reduced work load, the mea-
sure PPC helps in deriving the percentage of reduced
work load on the tester. The PPC is derived as the ratio
of total TNs to total test instances.

PPC =
|𝑇𝑁 |
|𝑛𝑡|

(1)

Where |𝑛𝑡| is the number of test instances.
2. Percent of Saved Budget (PSB): Using the measure
PPC and an additional attribute called LoC, we esti-
mate the total amount of saved budget in the developing
project. The PSB is calculated as:

PSB =

∑︁
𝑖∈𝑇𝑁

𝑆𝐵(𝐿𝑜𝐶𝑖)∑︁
𝑖∈𝑛𝑡

𝑆𝐵(𝐿𝑜𝐶𝑖)
(2)

Here, we assign a unit cost for servicing each line of code.
3. Percent of Non-Perfect Cleans (PNPC): In con-
trast to the measure PPC, PNPC is used to represent the
percent of work load on the tester from the prediction
model. This is because, except for the modules in TN, the
tester has to conduct a code walk for all the remaining
modules. The measure PNPC is expressed as:

𝑃𝑁𝑃𝐶 =
|𝑛𝑡| − |𝑇𝑁 |

|𝑛𝑡|
(3)

4. Percent of Remaining Edits (PRE): Using the mea-
sure PNPC and an additional attribute called LoC, we
estimate the total service time which is remaining for the
tester after utilising the prediction model. Here, for each
line of code, we assign a unit time to calculate the service
time. This measure is defined below:

PRE =

∑︁
𝑖∈𝑛𝑡−𝑇𝑁

𝑅𝐸(𝐿𝑜𝐶𝑖)∑︁
𝑖∈𝑛𝑡

𝑅𝐸(𝐿𝑜𝐶𝑖)
(4)

5. False-Omission Rate (FOR): Unlike other measures,
using the measure FOR, we calculate the total failures in
the project with the use of SDP models. The major cause
of the failures is when the defective module is predicted
as clean. Since the total clean modules represents the
combination of the false negatives and true negatives,
the software may experience failure when the end user
triggers a false negative module. Assuming each false
negative instance can cause a single failure in the system,
the percent of failure instances is measured as:

FOR =
|𝐹𝑁 |

|𝑇𝑁 |+ |𝐹𝑁 | (5)

Note that, the definitions of all these measure are directly
taken from the work [1].

4. Study Design
In this section, we provide the details of the utilised
datasets (in Section 4.1) and the base-line classifiers (in

27

Section 4.2). The details of the non-parametric test called
Cliff’s delta effect size test is provided in Section 4.3. An
abstract procedure for the empirical approach is given in
Section 4.4.

4.1. Utilised Defects Data
For the empirical analysis, we use publicly available 14
datasets from the PROMISE repository [25]. Each project
consist of 24 metrics to describe the software module.
Here, the software module can be either a class, method,
or a program. We use each software metric as a feature to
build the prediction model. A description of the utilised
datasets is presented in Table 1.

4.2. Baseline Machine Learners
We perform empirical analysis for three SDP variants us-
ing three widely used base-line ML models: SVM, 𝑘-NN,
and DT. A short description of the utilised baseline ML
classifiers is given below.

SVM Classifier: We used a linear kernel function in the
training process to compute some extreme data transfor-
mations for obtaining the separable data.

𝑘-NN Classifier: The value of 𝑘 is selected for the 𝑘-
nearest neighbour (𝑘-NN) model based on 10-fold cross
validation. Appropriately, we have chosen 𝑘 to be 11
after testing the model with various values of 𝑘.

Decision Tree Classifier: We have used a general clas-
sification and regression trees approach to build the DT
classifier.

4.3. Statistical Significance Test
To observe the deviation between the the SDP models, we
conduct a non-parametric test called Cliff’s delta. This
measure provides four levels of effectiveness of the one
model over the other models. These levels are given in
table 3. The larger value of Cliff’s delta indicates the
greater effect between the models.

Table 3
Cliff’s delta effect size levels [26]

S.No |𝛿| Effectiveness Category

1 0.000 ≤ |𝛿| < 0.147 Negligible
2 0.147 ≤ |𝛿| < 0.330 Small
3 0.330 ≤ |𝛿| < 0.474 Medium
4 0.474 ≤ |𝛿| ≤ 1.000 Strong

4.4. Empirical Approach
An empirical evaluation is carried out on each variant of
the SDP model. This is because each variant of SDP has

different implementation criteria. However, we provide
an empirical comparison of the developed models since
each variant provides predictions on the same target
project dataset. A general training procedure for the
three tasks such as WPDP, CPDP, and M-CPDP is given
below.

4.4.1. Training and Testing

The WPDP Model: Assume each software project has
the availability of local data. Now, we train each base-
line ML model on the released versions of the software
project [10]. The modules in the latest version (target
version or the target project) of the same project are then
given as input to the trained WPDP model, in order to
observe the predictions.

The CPDP Model: Assume each software project does
not have the availability of local data. Now, we train each
base-line ML model on the released software projects’
defects data [1]. The modules in the newly developed
software project (or the target project) are then given as
input to the trained CPDP model, in order to observe the
predictions.

The M-CPDP Model: Assume each software project
has the availability of local data. Also, we assume that
defect data for the source projects is available. Now, we
train each base-line ML model on the defects data cre-
ated by augmenting the data from the software project’s
released versions and the data from the source projects
[21]. The modules in the latest version (target version
or target project) of the target project are then given as
input to the trained M-CPDP model, in order to observe
the predictions.

4.4.2. Comparative Approach

To understand the role of project-specific measures in
interpreting the performance of the best defect prediction
model, we followed the below approach:

Empirical Procedure:
1. First, we use base-line classifiers such as SVM,

𝑘-NN, and DT to train the variants of the SDP
models such as WPDP, CPDP, and M-CPDP on
the PROMISE projects. Each model is evaluated
on 10-fold cross validation to observe the mean
predictions.

2. Second, we observe the average performances of
the trained WPDP, CPDP, and M-CPDP using the
project-specific performance measures on each
target project.

3. Third, in terms of each base-line classifier, us-
ing Cliff’s delta effect-size test, we compared the
performances of the WPDP, CPDP, and M-CPDP
using the project-specific performance measures.

28

Table 4
Performances of the variants of the SDP models that uses SVM as base classifier

Target Project PPC PSC PNPC PRE
WPDP CPDP M-CPDP WPDP CPDP M-CPDP WPDP CPDP M-CPDP WPDP CPDP M-CPDP

Ant-1.3 0.6912 0.8309 0.8223 0.5632 0.6645 0.6423 0.3088 0.1691 0.1777 0.4368 0.3355 0.3577
Ant-1.4 0.6031 0.7428 0.8310 0.6174 0.7187 0.7322 0.3969 0.2572 0.1690 0.3826 0.2813 0.2678
Ant-1.5 0.6931 0.8328 0.8881 0.5652 0.6665 0.6724 0.3069 0.1672 0.1119 0.4348 0.3335 0.3276
Ant-1.6 0.5481 0.6878 0.6592 0.3719 0.4732 0.4613 0.4519 0.3122 0.3408 0.6281 0.5268 0.5387
Ant-1.7 0.5799 0.7196 0.7081 0.3567 0.4580 0.4325 0.4201 0.2804 0.2919 0.6433 0.5420 0.5676

Camel-1.0 0.8082 0.9479 0.9581 0.8163 0.9176 0.9213 0.1918 0.0521 0.0419 0.1837 0.0824 0.0787
Camel-1.2 0.5021 0.6418 0.6614 0.4610 0.5623 0.5747 0.4979 0.3582 0.3386 0.5390 0.4377 0.4253
Camel-1.4 0.7009 0.8406 0.8526 0.6170 0.7183 0.7313 0.2991 0.1594 0.1474 0.3830 0.2817 0.2687
Camel-1.6 0.6589 0.7986 0.8114 0.5921 0.6934 0.7269 0.3411 0.2014 0.1886 0.4079 0.3066 0.2731
Jedit-3.2 0.3819 0.5216 0.4614 0.1756 0.2769 0.2614 0.6181 0.4784 0.5386 0.8244 0.7231 0.7386
Jedit-4.0 0.5339 0.6736 0.5582 0.4492 0.5505 0.5132 0.4661 0.3264 0.4418 0.5508 0.4495 0.4868
Jedit-4.1 0.4826 0.6223 0.4593 0.1877 0.2890 0.2233 0.5174 0.3777 0.5407 0.8123 0.7110 0.7767
Jedit-4.2 0.5620 0.7017 0.6064 0.4619 0.5632 0.4633 0.4380 0.2983 0.3936 0.5381 0.4368 0.5367
Jedit-4.3 0.6660 0.8057 0.9047 0.6877 0.7890 0.8027 0.3340 0.1943 0.0953 0.3123 0.2110 0.1973
Average 0.6008 0.7405 0.7273 0.4945 0.5958 0.5828 0.3992 0.2595 0.2727 0.5055 0.4042 0.4172

Cliff’s Delta 0.4692 0 - 0.2959 0 - 0.4692 0 - 0.2959 0 -

Table 5
Performances of the variants of the SDP models that uses 𝑘-NN as base classifier

Target Project PPC PSC PNPC PRE
WPDP CPDP M-CPDP WPDP CPDP M-CPDP WPDP CPDP M-CPDP WPDP CPDP M-CPDP

Ant-1.3 0.5826 0.7223 0.7615 0.5632 0.6645 0.6766 0.4174 0.2777 0.2385 0.4368 0.3355 0.3234
Ant-1.4 0.5559 0.6956 0.6526 0.5611 0.6624 0.6525 0.4441 0.3044 0.3474 0.4389 0.3376 0.3475
Ant-1.5 0.6817 0.8214 0.8724 0.6911 0.7924 0.8056 0.3183 0.1786 0.1276 0.3089 0.2076 0.1944
Ant-1.6 0.5195 0.6592 0.6767 0.4633 0.5646 0.5852 0.4805 0.3408 0.3233 0.5367 0.4354 0.4148
Ant-1.7 0.5567 0.6964 0.7209 0.5226 0.6239 0.6525 0.4433 0.3036 0.2791 0.4774 0.3761 0.3475

Camel-1.0 0.7703 0.9100 0.9534 0.7205 0.8218 0.8413 0.2297 0.0900 0.0466 0.2795 0.1782 0.1587
Camel-1.2 0.4826 0.6223 0.6102 0.4763 0.5776 0.5614 0.5174 0.3777 0.3898 0.5237 0.4224 0.4386
Camel-1.4 0.7028 0.8425 0.8728 0.6300 0.7313 0.7433 0.2972 0.1575 0.1272 0.3700 0.2687 0.2567
Camel-1.6 0.6127 0.7524 0.7728 0.6021 0.7034 0.7313 0.3873 0.2476 0.2272 0.3979 0.2966 0.2687
Jedit-3.2 0.4318 0.5715 0.5544 0.4230 0.5243 0.5162 0.5682 0.4285 0.4456 0.5770 0.4757 0.4838
Jedit-4.0 0.4686 0.6083 0.6223 0.4714 0.5727 0.5785 0.5314 0.3917 0.3777 0.5286 0.4273 0.4215
Jedit-4.1 0.4661 0.6058 0.5248 0.4719 0.5732 0.5304 0.5339 0.3942 0.4752 0.5281 0.4268 0.4696
Jedit-4.2 0.5220 0.6617 0.6728 0.5219 0.6232 0.6269 0.4780 0.3383 0.3272 0.4781 0.3768 0.3731
Jedit-4.3 0.6137 0.7534 0.8052 0.6052 0.7065 0.7491 0.3863 0.2466 0.1948 0.3948 0.2935 0.2509
Average 0.5691 0.7088 0.7195 0.5517 0.6530 0.6608 0.4309 0.2912 0.2805 0.4483 0.3470 0.3392

Cliff’s Delta 0.6429 0.0561 - 0.5816 0.0664 - 0.6429 0.0561 - 0.5816 0.0664 -

5. Study Results
In this section, we report the observed results of the
WPDP, CPDP, and M-CPDP models in terms of the
project-specific performance measures.

Tables 4, 5, and 6 provide the performances of the
defect prediction models such as WPDP, CPDP, and M-
CPDP on the 14 target projects in terms of the measures
such as PPC, PSB, PNPC, and PRE, respectively. These
tables also provide the results of the Cliff’s delta effect-
size test. The models such as WPDP, CPDP, and M-CPDP
in Table 4 utilised the SVM as a base classifier to observe
the predictions on the target datasets, whereas the models
in Table 5 utilised the 𝑘-NN as a base classifier to observe
the predictions on the target datasets. And, the models
in Table 6 utilised the DT as a base classifier to observe
the predictions on the target datasets.

From Table 4, it is observed that, in the majority of
cases, the SVM-based CPDP outperformed the other mod-
els in terms of all the performance measures. In particular,
the average PPC of the CPDP model has achieved a better

value when compared with the other models. Therefore,
the testers do not need to visit 74.05% modules to find
their defect-proneness. As a consequence, on an average,
the savings in the total allocated budget is more using
the CPDP model when compared with the other models.
Assume a total of 100% allocated budget on the project.
Using the CPDP model, the project manager can save up
to 59.58% of the budget, whereas with the use of the other
models such as WPDP and M-CPDP, the project manager
can save only 49.45% and 58.28% of the budget, respec-
tively. On the contrary, since the PNPC is the converse of
the measure PPC, the resultant measure PRE also shows
its benefits using the CPDP model. Using SVM-based
CPDP model, on an average, the testers will have to con-
duct a code walk on the 40.42% of the total written code.
If the testers utilise either WPDP or M-CPDP models,
respectively, they have to spend 50.55% and 41.72% of
the total written code to observe the defective content.
However, the Cliff’s delta effect-size test indicating that
there is no greater effect between the models such as
CPDP and M-CPDP.

5

29

Table 6
Performances of the variants of the SDP models that uses DT as base classifier

Target Project PPC PSC PNPC PRE
WPDP CPDP M-CPDP WPDP CPDP M-CPDP WPDP CPDP M-CPDP WPDP CPDP M-CPDP

Ant-1.3 0.7037 0.8434 0.8545 0.6849 0.7862 0.7966 0.2963 0.1566 0.1455 0.3151 0.2138 0.2034
Ant-1.4 0.6218 0.7615 0.8314 0.6210 0.7223 0.7313 0.3782 0.2385 0.1686 0.3790 0.2777 0.2687
Ant-1.5 0.6998 0.8395 0.8615 0.7219 0.8232 0.7913 0.3002 0.1605 0.1385 0.2781 0.1768 0.2087
Ant-1.6 0.5817 0.7214 0.7323 0.6077 0.7090 0.6594 0.4183 0.2786 0.2677 0.3923 0.2910 0.3406
Ant-1.7 0.5774 0.7171 0.7089 0.6010 0.7023 0.6947 0.4226 0.2829 0.2911 0.3990 0.2977 0.3053

Camel-1.0 0.8129 0.9526 0.9723 0.7521 0.8534 0.8615 0.1871 0.0474 0.0277 0.2479 0.1466 0.1385
Camel-1.2 0.5130 0.6527 0.6617 0.5311 0.6324 0.6080 0.4870 0.3473 0.3383 0.4689 0.3676 0.3920
Camel-1.4 0.7129 0.8526 0.8633 0.7210 0.8223 0.7966 0.2871 0.1474 0.1367 0.2790 0.1777 0.2034
Camel-1.6 0.6684 0.8081 0.8216 0.6613 0.7626 0.7717 0.3316 0.1919 0.1784 0.3387 0.2374 0.2283
Jedit-3.2 0.3936 0.5333 0.5434 0.4113 0.5126 0.5056 0.6064 0.4667 0.4566 0.5887 0.4874 0.4944
Jedit-4.0 0.5659 0.7056 0.6767 0.5657 0.6670 0.6055 0.4341 0.2944 0.3233 0.4343 0.3330 0.3945
Jedit-4.1 0.4917 0.6314 0.6467 0.5014 0.6027 0.6115 0.5083 0.3686 0.3533 0.4986 0.3973 0.3885
Jedit-4.2 0.5826 0.7223 0.7314 0.6008 0.7021 0.6966 0.4174 0.2777 0.2686 0.3992 0.2979 0.3034
Jedit-4.3 0.6826 0.8223 0.8618 0.6910 0.7923 0.7622 0.3174 0.1777 0.1382 0.3090 0.2077 0.2378
Average 0.6149 0.7546 0.7691 0.6194 0.7207 0.7066 0.3851 0.2454 0.2309 0.3806 0.2793 0.2934

Cliff’s Delta 0.6735 0.1429 - 0.5205 -0.1021 - 0.6735 0.1429 - 0.5205 -0.1021 -

Figure 1: The box-plots representing the observed FOR values
on the three models that uses SVM as base classifier

From Table 5, it is observed that, in the majority of
cases, the 𝑘-NN-based M-CPDP outperformed the other
models in terms of all the performance measures. In
particular, the average PPC of the M-CPDP model has
achieved a better value when compared with the other
models. Hence, the testers do not need to conduct a code
review on 71.95% modules to find their defect-proneness.
As a consequence, on an average, the savings in the to-
tal allocated budget is more using the M-CPDP model
when compared with the other models. For a total of
100% allocated budget on the project, using the M-CPDP
model, the project manager can save up to 66.08% of
the budget, whereas with the use of the other models
such as WPDP and CPDP, the project manager can save

Figure 2: The box-plots representing the observed FOR values
on the three models that uses 𝑘-NN as base classifier.

55.17% and 65.30% of the budget, respectively. On the
other hand, using 𝑘-NN-based M-CPDP model, on an
average, the testers will have to conduct a code walk
only on the 33.92% of the total written code. If the testers
utilise either WPDP or CPDP models, respectively, they
have to spend 44.83% and 34.70% of the total written code
to observe the defective content. The Cliff’s delta effect-
size test indicating that there is a negligible but positive
effect from the M-CPDP model over the CPDP model.

From Table 6, it is observed that, in the majority of
cases, the DT-based M-CPDP outperformed the other
models in terms of the performance measures such as
PPC and PNPC. While the model CPDP performed bet-
ter than the other models in terms of measures such as

30

Figure 3: The box-plots representing the observed FOR values
on the three models that uses DT as base classifier.

PSB and PRE. In particular, the average PPC of the M-
CPDP model has achieved a better value when compared
with the other models. Hence, the testers do not need to
conduct a code review on 76.91% modules to find their
defect-proneness. In contrast, on an average, the sav-
ings in the total allocated budget is more using CPDP
model, when compared with the other models. On a to-
tal of 100% allocated budget on the project, using CPDP
model, the project manager can save up to 72.07% of the
budget, whereas with the use of the other models such
as WPDP and M-CPDP, the project manager can save
61.94% and 70.66% of the budget, respectively. On the
other hand, using the DT-based CPDP model, on an aver-
age, the testers will have to conduct a code walk only on
the 27.93% of the total written code. If the testers utilise
either WPDP or M-CPDP models, respectively, they have
to spend 38.06% and 29.34% of the total written code to
observe the defective content. The Cliff’s delta effect-size
test indicating that there is a negligible but positive effect
from the M-CPDP model over the CPDP model in terms
of PPC and PNPC measures. In terms of PSC and PRE,
the Cliff’s delta effect-size test indicating that there is a
negligible but negative effect from the M-CPDP model
over the CPDP model.

The box-plots in Figures 1, 2, and 3 represent the
chances of failure incidents as a result of SVM, 𝑘-NN,
and DT-based SDP models in the target projects. From
Figures 1, 2, and 3, it is observed that, the median failure
incidents are fewer using the M-CPDP model (which is
trained using three classifiers) when compared with the
other models. Since any software project should least

expect a misclassifications from the prediction model,
the M-CPDP model may suit well in real-time testing
environments.

5.1. Discussion
Any project seeks benefits from the prediction model,
hence, achieving its goal is of primary importance to the
researcher. The major obstacle in selecting the model is
obtaining a trade-off between the obtained performances
from the various prediction models. In Section 5, we ob-
serve that, on the majority of target projects, the CPDP
model has achieved its better performance in terms of
PPC and PNPC. This shows that the CPDP model is good
at predicting clean modules more accurately. However,
surprisingly, the M-CPDP model has shown its strength
in terms of budget savings, minimal service time, and
more importantly, minimal failure incidents on the major-
ity of the target projects. Hence, even though the CPDP
model is better in terms of PPC and PNPC, the M-CPDP
is better in terms of all the performance measures.

From Tables 4, 5, and 6, and Figures 1, 2, and 3, it
is observed that, among all the baselines, after 10-fold
cross validation, the decision tree-based M-CPDP model
has achieved maximum budget savings, minimal service
time, and minimal failure incidents on the majority of
the target projects.

6. Threats to Validity
Variation in the observed performances at various work-
ing environments is common in the empirical research.
In this section, we present the factors that may affect the
observed performances.

Internal Validity:

The observed performances are based on the usage of a
few base-line ML models, and the M-CPDP model has
shown its strength using majority of the baselines. How-
ever, implementing the other baselines such as logistic
regression, neural networks, ensemble models, etc. on
the other widely used repositories such as NASA, AEEEM,
ReLink, etc. is the major threat that may hinder the final
performance of the M-CPDP model.

External Validity:

For the purpose of knowing the best model that is suitable
for the real-time testing environments, we performed an
empirical analysis on only three variants of SDP using the
project-specific performance measures. The generalised
conclusions can be made when conducting the empirical
analysis on the other variants of the SDP such as MPDP,
pair-wise CPDP, just-in time software defect prediction
(JIT-SDP), and heterogeneous defect prediction (HDP).

31

7. Conclusion and Future Work
The research on proposing the software defect predic-
tion (SDP) models is intended to diminish the workload
on the tester by providing intelligent decisions on the
defect-proneness of the newly developed software mod-
ule. Hence, the objective of the SDP models is to decrease
the time, cost, and manpower that are being spent on the
software project. Inherently, the task of the SDP models
is also to reduce the risk of misclassification (in particu-
lar, false negatives). In this regard, Sharma et al. in [1]
proposed project-specific performance measures such as
percent of perfect-cleans, percent of saved budget, per-
cent of non-perfect cleans, percent of remaining edits,
and false omission rate to interpret the obtained results
in terms of the project objectives. Since it is important for
the software engineering researcher to provide a better
prediction model, it is necessary to interpret the results
in terms of the project-specific objectives.

Extending the work of Sharma et al.[1], in this paper,
we conducted an empirical analysis of the interpreta-
tion of the project-specific performance measures on the
variants of SDP such as WPDP, CPDP, and mixed-CPDP.
With the empirical analysis of the PROMISE projects, we
conclude that the models such as CPDP and M-CPDP
have achieved significantly better performances in terms
of all the measures than the WPDP model. Among CPDP
and M-CPDP, we observe that the number of failure inci-
dents is lower with the use of the M-CPDP models. Also,
on the majority of the target projects, the software man-
agers may benefit from the use of M-CPDP models in
terms of maximum savings in the allocated budget and
minimal time required to service the code. Hence, we
recommend using M-CPDP models in real-time testing
environments.

Possible future research directions from this work in-
clude: (1) conducting a large-scale empirical analysis of
all the variants of SDP on widely-used defect reposito-
ries such as PROMISE, NASA, AEEEM, ReLink, GitHub,
etc. using the project-specific performance measures. (2)
estimating the real-time feasibility of the M-CPDP model.

References
[1] U. S. B., R. Sadam, How far does the pre-

dictive decision impact the software project?
the cost, service time, and failure analysis
from a cross-project defect prediction model,
Journal of Systems and Software 195 (2023)
111522. URL: https://www.sciencedirect.com/
science/article/pii/S0164121222001984. doi:https:
//doi.org/10.1016/j.jss.2022.111522.

[2] V. R. Basili, L. C. Briand, W. L. Melo, A Validation
of Object-Oriented Design Metrics as Quality In-

dicators, IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING 22 (1996).

[3] V. U. B. Challagulla, F. B. Bastani, R. Paul, Empirical
Assessment of Machine Learning based Software
Defect Prediction Techniques, 10th IEEE Interna-
tional Workshop on Object-Oriented Real-Time De-
pendable Systems (2005) 263–270.

[4] S. Lessmann, B. Baesens, C. Mues, S. Pietsch, Bench-
marking classification models for software defect
prediction: A proposed framework and novel find-
ings, IEEE Transactions on Software Engineering
34 (2008) 485–496.

[5] C. Catal, B. Diri, A systematic review of software
fault prediction studies, Expert Systems with Ap-
plications 36 (2009) 7346–7354.

[6] M. D’Ambros, M. Lanza, R. Robbes, Evaluating de-
fect prediction approaches: a benchmark and an
extensive comparison, Empirical Software Engi-
neering 17 (2012) 531–577.

[7] B. Ghotra, S. McIntosh, A. E. Hassan, A large-scale
study of the impact of feature selection techniques
on defect classification models, in: 2017 IEEE/ACM
14th International Conference on Mining Software
Repositories (MSR), IEEE, 2017, pp. 146–157.

[8] D. Di Nucci, F. Palomba, G. De Rosa, G. Bavota,
R. Oliveto, A. De Lucia, A Developer Centered Bug
Prediction Model, IEEE Transactions on Software
Engineering (2018).

[9] L. Kumar, S. K. Sripada, A. Sureka, S. K. Rath, Effec-
tive fault prediction model developed using least
square support vector machine (lssvm), Journal of
Systems and Software 137 (2018) 686–712.

[10] U. S. Bhutamapuram, R. Sadam, With-in-project de-
fect prediction using bootstrap aggregation based
diverse ensemble learning technique, Journal
of King Saud University-Computer and Informa-
tion Sciences (2021). URL: https://doi.org/10.1016/j.
jksuci.2021.09.010.

[11] J. Xu, F. Wang, J. Ai, Defect prediction with seman-
tics and context features of codes based on graph
representation learning, IEEE Transactions on Reli-
ability (2020).

[12] L. C. Briand, W. L. Melo, J. Wust, Assessing the ap-
plicability of fault-proneness models across object-
oriented software projects, IEEE transactions on
Software Engineering 28 (2002) 706–720.

[13] T. M. Khoshgoftaar, E. B. Allen, J. Deng, Using re-
gression trees to classify fault-prone software mod-
ules, IEEE Transactions on Reliability (2002).

[14] T. Menzies, J. DiStefano, A. Orrego, R. Chapman,
Assessing predictors of software defects, in: Proc.
Workshop Predictive Software Models, 2004.

[15] K. O. Elish, M. O. Elish, Predicting defect-prone
software modules using support vector machines,
Journal of Systems and Software 81 (2008) 649–660.

32

https://www.sciencedirect.com/science/article/pii/S0164121222001984
https://www.sciencedirect.com/science/article/pii/S0164121222001984
http://dx.doi.org/https://doi.org/10.1016/j.jss.2022.111522
http://dx.doi.org/https://doi.org/10.1016/j.jss.2022.111522
https://doi.org/10.1016/j.jksuci.2021.09.010
https://doi.org/10.1016/j.jksuci.2021.09.010

[16] T. Zimmermann, N. Nagappan, H. Gall, E. Giger,
B. Murphy, Cross-project defect prediction: a large
scale experiment on data vs. domain vs. process,
in: Proceedings of the 7th joint meeting of the Eu-
ropean software engineering conference and the
ACM SIGSOFT symposium on The foundations of
software engineering, 2009, pp. 91–100.

[17] I. H. Laradji, M. Alshayeb, L. Ghouti, Software de-
fect prediction using ensemble learning on selected
features, Information and Software Technology 58
(2015) 388–402.

[18] L. Kumar, S. Misra, S. K. Rath, An empirical anal-
ysis of the effectiveness of software metrics and
fault prediction model for identifying faulty classes,
Computer standards & interfaces 53 (2017) 1–32.

[19] S. Hosseini, B. Turhan, M. Mäntylä, A benchmark
study on the effectiveness of search-based data se-
lection and feature selection for cross project defect
prediction, Information and Software Technology
95 (2018) 296–312.

[20] H. Chen, X.-Y. Jing, Z. Li, D. Wu, Y. Peng, Z. Huang,
An empirical study on heterogeneous defect predic-
tion approaches, IEEE Transactions on Software
Engineering (2020).

[21] S. Herbold, A. Trautsch, J. Grabowski, A compar-
ative study to benchmark cross-project defect pre-
diction approaches, IEEE Transactions on Software
Engineering 44 (2017) 811–833.

[22] C. Ni, X. Chen, F. Wu, Y. Shen, Q. Gu, An empiri-
cal study on pareto based multi-objective feature
selection for software defect prediction, Journal of
Systems and Software 152 (2019) 215–238.

[23] Y. Jiang, B. Cukic, Y. Ma, Techniques for evaluat-
ing fault prediction models, Empirical Software
Engineering 13 (2008) 561–595.

[24] S. Morasca, L. Lavazza, On the assessment of soft-
ware defect prediction models via roc curves, Em-
pirical Software Engineering 25 (2020) 3977–4019.

[25] J. Sayyad Shirabad, T. Menzies, The PROMISE
Repository of Software Engineering Databases,
School of Information Technology and Engineer-
ing, University of Ottawa, Canada, 2005. URL: http:
//promise.site.uottawa.ca/SERepository.

[26] N. Cliff, Dominance statistics: Ordinal analyses to
answer ordinal questions., Psychological bulletin
114 (1993) 494.

33

http://promise.site.uottawa.ca/SERepository
http://promise.site.uottawa.ca/SERepository

