CEUR-WS.org/Vol-3330/Paper—07—-SEED.pdf

Adaptation of an Online Platform to Teach Testing

Lydie du Bousquet™*, Christophe Saint-Marcel’

"Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble

Abstract

Software quality is seen as an integral part of Software Engineering education. A key concept is software testing, the primary
method used in the industry to evaluate the software quality. In this article, we focus on software testing assessment. We
present 3 contributions: (1) the adaptation of our online learning open platform (Caseine) for software testing assessment, (2)
an approach to create testing exercises, and (3) a (still) modest set of exercises (but currently under extension).

Keywords

Software testing, Mutation analysis, Assessment method, Educational tool

1. Introduction

At Université Grenoble Alpes, France, we have been
proposing a course on software testing at the master
level for more than 20 years. The main objective of this
course is to improve the skills of students to generate
test cases. The course is composed of 4 sessions of 3
hours. It includes a classical teaching approach based on
lessons, exercises relying on printed code and exercise
corrections on a blackboard.

For a long time, we have been seeking a solution to
introduce more practical work (1), compliant with remote
learning (2), that includes automatic grading (3) to check
that the different testing strategies are correctly applied
by the students (4). The Covid pandemic decided us to to
search for a solution that allows to automatically evaluate
if our students properly applied a given test strategy to
produce an executable test suite (research question).

This article presents three contributions. The first one
is the adaptation of Caseine, an online learning platform
developed by the Université Grenoble-Alpes (UGA), orig-
inally dedicated to programming learning. The second
one is an approach to create testing exercises. The final
one is a (still) modest set of exercises (but currently un-
der extension), that are shared with the community on
Caseine in an open course’.

In the following, section 2 gives some elements about
classical methods to evaluate test quality. Section 3 ex-
plores different tools proposed by other universities for
teaching how to test. Sections 4 and 5 present Caseine
and its adaptation for our pedagogical purpose. Section 6
details our approach for creating our testing exercises.
Sections 7 and 8 provide feedback, conclusion and per-
spectives.

6th Software Engineering Education Workshop (SEED-2022)
*Corresponding author.
Q lydie.du-bousquet@univ-grenoble-alpes.fr (L. du Bousquet);
christophe.saintmarcel@velossity.fr (C. Saint-Marcel)

@] © 2022 Copyright for this paper by its authors, Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).
[=== CEUR Workshop Proceedings (CEUR-WS.org)
Thttps://moodle.caseine.org/course/view.php?id=825

2. Software testing and quality

Software Testing is the process of executing a program
or a system with the intent of finding errors [1]. It is
usually considered to be the primary method used in
the industry to evaluate software quality [2]. Basically,
software testers must select a relevant set of test cases,
execute it, check if the system under test behaves as
expected, and decide when the process is over.

To select test cases, a software tester can use several
strategies as proposed in the literature. A testing strategy
typically relies on an abstract model to be covered, which
can be a graph, a logical expression, an input domain
partition, or a syntactic description [2, 3, 4]. Several tools
allow checking that test suites reach dedicated coverage
criteria, such as statement or branch coverage, but they
do not assess that the tests can find errors. Until now, to
evaluate the ability of a test set to find errors, two main
strategies were proposed: mutational analysis and fault
injection.

Mutational analysis relies on a set of elementary muta-
tion operators, which are applied systematically on the
program under test to produce a set of faulty versions,
called mutants [5]. For example, a ‘+” is replaced by a ‘-,
a ‘<’ isreplaced by a >’ ora ‘>’ (etc.). Tests are executed
against all the mutants. Each time a fault is detected, the
related mutant is marked as killed. The proportion of
killed mutants denotes the mutation score. The higher
the score, the better the test suite is.

Fault injection is a strategy close to the previous one,
also based on the production of erroneous programs.
In this approach, the chosen faults are usually those
already identified during the development. The major
difference with the mutation analysis relies upon a non-
systematized production of erroneous programs.

Both approaches have some weaknesses, but one usu-
ally considers that they assess reasonably the quality of
test suites. For this reason, they are both commonly used
for assessing software testing teaching, as detailed in the
next section [6, 7, 8, 9].

48

mailto:lydie.du-bousquet@univ-grenoble-alpes.fr
mailto:christophe.saintmarcel@velossity.fr
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

3. Teaching testing

In [10], authors report that testing teachers face different
problems amongst which the lack of tools for teaching
support, the lack of practical examples available. How-
ever, several initiatives exist.

PABS (for Programming Assignment Feedback System)
is a tool that automatically generates feedback for pro-
gramming assignments and provide an overview over
related work (e.g. functional tests and style checks) [9].
The whole system is based on SVN. The evaluation of
tests is based on different criteria, among which a cover-
age evaluation.

In [6], authors present their approach (based on case
studies) and their teaching material. The students’ tests
are evaluated through code coverage and mutation anal-
ysis. They do not detail their platform.

VU-BugZoo is a platform to teach software testing,
based on a repository of faulty (standalone and embed-
ded) code. Students are engaged in an “bug-hunting”
experience [7].

Code Defenders is a game proposed to teach software
testing concepts [8]. The player can be either an attacker
or an defender. The attacker introduces fault in Java
programs in such a way that it is not detected by the
tests. The defender produces JUnit tests to detect these
attacks. The game is founded on principles of mutation
testing. Code Defenders is open-source and available on
GitHub [11].

ProgTest is a web-based tool for the submission and
automatic evaluation of programming assignments
based on testing activities [12]. Teachers need to
provide a correct program and an adequate test set. The
environment integrates testing tools such as JUnit, for
Java. Tests of students are evaluated with a coverage
tool and a mutation testing tool (JABUTI and JUMBLE
for Java).

We wanted a solution to automatically assess the test
cases (like all the previous tools), in which teachers can
choose the mutants they want to evaluate (different from
ProgTest), in order to check the good application of dif-
ferent testing strategies (with the same idea than Code
Defenders but not necessarily linked to classical muta-
tion operators). Moreover, we wanted our solution to be
integrated with tools that are used in our university, in
order to limit the number of pedagogical environments
the students are faced with. For this reason, we chose to
work within the Caseine environment, detailed hereafter.

4. Caseine environment

Caseine? is an online learning platform developed by the
Université Grenoble-Alpes (UGA). It is based on Moo-
dle Virtual Programming Labs (VPL), activity modules
that manage programming assignments based on input
and output cases® [13]. Many plugins are available in
Moodle. In particular, there exist VPL for more than 30
programming languages.

Compared to a classic Moodle instance, Caseine is
original in that the environment is open to all universities
in the world (or almost) via the federation of Identities
Education Research Edugain which contains, for example,
Renater. Moreover it allows the sharing of resources
and many plugins are available (a large community of
teachers which goes far beyond Grenoble contributes
to the expansion of content and of the platform itself).
Moreover, Caseine proposes additional facilities to the
classic Moodle, amongst which:

« different types of test formats: classical Moodle
VPL one (based on input/output couple) and usual
test framework (such as JUnit for Java, or unittest
(formerly PyUnit) for Python); and

« links to classical IDEs, which allow students to
work offline, on their personal computer with
their favorite development environment.

In Grenoble, Caseine is mainly used for programming
teaching. The students work in a classroom or remotely.
They complete and execute the given programs using the
Caseine web interface (Fig.1(a)) or their local IDE (e.g.
Eclipse). At the end of the exercise, the students have
to ask for an evaluation of their production (Fig.1(b)).
Programs are uploaded on Caseine if needed, and tests
provided by the teachers are executed. A score is imme-
diately returned ((Fig.1(c)). It scores maximum if all tests
pass. It decreases with the number of fail tests.

5. Caseine adaptation for tests
assessment

The evaluation process in Caseine follows a natural pro-
gramming viewpoint: the expected result of a program-
ming activity is to produce a correct program, i.e. a
program for which all tests pass.

To evaluate the quality of tests, we needed to change
the viewpoint. Indeed, since tests should be designed to
find the errors [1], a software tester is “satisfied” when
his tests provoke failures: it means that “his/her tests are
doing their job”.

We wanted to be able to evaluate the ability of the
tests designed by students to provoke failure. The first

*https://moodle.caseine.org/
*https://moodle.org/plugins/mod_vpl

49

@ (b
f ik Fo@®> S ?

IntegerTriplet.java Executable.java U

1w e
2 ® A class representing a triplet of three integers
3 %

4~ public class IntegerTriplet {

private int a;
private int b;
private int c;

per
+ Constructor using three values representing a triplet of integers
¥
public IntegerTriplet(int a, int b, int c) {

this.a = a;

this.b = b;

this.c = c;
T

e
* @return the first integer of the triplet

B R
HE-RrER RN TR g SR RN T
1 1 1

Figure 1: Student’s view of a programming exercise in Caseine

step consisted in the creation of a specific kind of VPL
able to evaluate the tests of the students, with a classical
mutation analysis/fault injection approach.

Using this new type of VPL, teachers define the test
file(s) to be completed by students and a set of faulty
programs (e.g. mutants) to evaluate the quality of the
students’ production. Note that the teacher can build the
mutants the way he/she wants: with fault injection or
mutation analysis, manually or with a tool.

Achieving a programming exercise or a testing exer-
cise is transparent for the students: the process and the
interfaces are the same. During the evaluation phase for
a testing exercise, the student’s tests are executed against
the mutants. The student’s assessment is proportional to
the mutation score: it is maximum if the students’ tests
kill all the mutants.

The creation of a VPL type dedicated to testing in
Caseine provides a mean to automate the evaluation of
the students tests. This is our first contribution. In the
next section, we detail how we used it to check that the
students apply properly the different testing approaches.

6. Testing process evaluation

To check that students properly apply test generation
strategies, we adapt the mutation analysis approach.
This is our second contribution.

In software testing theory, a test generation strategy
relies on a coverage criterion built upon an artefact such
as the specification, the code, the input domain, or a fault
model [14]. Given an artefact A, a test criterion Cg will
be expressed as a set of n elements E = {e;, 1 < k < n} to
cover.

Let cov(e, p, i) be a Boolean function that returns true
when the execution of program p with an inputi € I
covers an element e € E. In the following and without
losing generality, we suppose that I denotes only the
set of possible inputs of p, as well as E contains only

» Proposed grade: 90 / 100 ()

* | |- comments

IntegerTriplet.sum (1/8)
IntegerTriplet.sum (2/8)
IntegerTriplet.average (3/8)
IntegerTriplet.average (4/8)

IntegerTriplet.concatenate (6/8)
IntegerTriplet.concatenate (7/8)
VPLTesk.testComplexe (8/8)
Incorrect program result

Input : VPLTest().testComplexe()
Message : "Check your method addFirst”
Program Output: false

Expected Output: true

Method : testComplexe

reachable elements, i.e. Yk, 1 < k < n,3i € I|cov(e, p,i) .

To evaluate the correct application of a test criterion
Cg, we build n mutants, each of them corresponding to
one element to cover. To do that, we proposed a trans-
formation strategy for each test criterion Cr we study
during our course.

Let TRc, be such a transformation strategy. Con-
sidering a program p and an element ¢ to be covered,
TRc,(p,ex) = M defines a family of mutants, such that
each mutant my € M will produce a different output
than the original program p whenever an input i covers
the element e;:

Vmy € My, Vi € I, cov(e, p,i) <= p(@i) # m(i)

A transformation strategy is similar to the original mu-
tation operators since it is applied in a systematic way. It
is different in that the modifications in the program under
test are “larger” than the syntactic variation classically
defined by the mutation operators.

Informally, each mutant is built on 3 kinds of modifi-
cations:

1. New variables are introduced, among which a
Boolean one called mut, initialized to false.

2. Statements are introduced in the code to compute
whether element ;. is covered. When it is the case,
mut variable is set to true.

3. A conditional statement is introduced to alter of
the result depending on the value of mut variable.
Since the result can be altered in many ways, a
set of mutants can be produced. Only one is nec-
essary for each element ey.

In the following, we illustrate the strategies on
different criteria.

50

public double foo(double a, double b, double c) {
return{a+b+c);

H

public double foo(double a, double b, double c) {
Boolean mut = false;
if {(a<@ 2& b<® && c«®) {mut = true;}
if (mut) return (a+b+c+1); else return(a+b+c);

Figure 2: An example of fault to detect the partition
(a<0) && (b<0) && (c<0)

public static Boolean sup(double a, double b) {
Boolean res = false)
if (a=b) {

res = true;

(@)
returnires);

¥

public static Boolean sup(double a, double b} {
Boolean mut = false;
Boolean res = false)
if (a*b) {
res =
mut =

(b)

true;
true;
if {(mut) return (!res); else returnires);

¥

public static Boolean sup(double a, double b} {
//Boolean mut = false;
Boolean res = false)
if (a=b) {
res =
T else {
fimut =
res =

true;

()
true;
'res;

returnires);

Figure 3: An example of faults for block coverage
(a) Original program

(b) Mutant required to assess statement coverage
(c) Additional mutant to assess branch coverage

6.1. Category Partition testing

This testing method guides the tester to define a parti-
tion of the input space I = {ry, 7y, ..., T,,}. The implicit
hypothesis is that the inputs belonging to a partition are
equivalent to detect the faults, so the tester has to choose
only one input in each partition [15].

To check if the strategy is well applied, we propose
exercises in which the categories and the constraints are
explicitly given. The students have to produce a test suite
that covers the partitions (E = {m, 7y, ..., 7, })-

Thus we build one mutant for each partition on the
model given Fig.2: the variable mutis set at the beginning
of the program to true if the input variables combination
corresponds to a partition.

The same idea is used to evaluate pairwise coverage
[14]. This strategy is usually applied to select a subset of

51

@Test

vold testl() {
Mathl.sup(5,3);
Mathl.sup(3,5);

¥

@Test

vold test2() {
assertTrue(Mathl.sup(5,3))

)

H
assertFalse(Mathl.sup(3,5));

Figure 4: Example of tests for Sup function

parameter combinations, so that each pair of parameters
(resp. categories) has to be covered. The resulting set
of combinations is much smaller than the exhaustive
one, because each instantiation of the parameters covers
several expected pairs. In this case, the mut variable is
set to true at the beginning of the program if the inputs
correspond to the pair to be covered.

6.2. Statement and Branch coverage

Both methods are code-based testing methods. They
require to cover a set of blocks (corresponding to the
code branches). A mutant is thus produced for each
block by setting mut to true in the block to be covered
(Fig. 3(b)). Note that it is necessary to create an else bock
in a mutant when it does not exist in the original code for
branch coverage (Fig. 3(c)). Moreover, the modifications
in the code can sometimes be simplified. In Fig. 3(c), we
get rid of the mut variable and directly modify the result
in the else branch.

Using a mutation approach to evaluate coverage might
sounds strange since there are plenty of test coverage
tools. However, those tools do not assert the quality of
the test oracles (the mechanism to determine whether
a test has passed or failed). Fig 4, the first test achieves
branch coverage but does not check the expected results.
It cannot detect faults in contrary to the second one.

6.3. Transition coverage

When the specification is expressed as an automaton, it is
suggested to produce tests in order to cover states, tran-
sitions, or pairs of transitions. Modification of the code
increases with the complexity of the coverage criterion.

In Fig. 5(a), we provide a specification example of a
turnstile. We have thus E; = {t; | 0 < i < 4} for transition
coverage. Fig 5(b) gives an example of mutant to achieve
transition coverage: transitions are detected in the code
and result is altered in consequence.

For the same example, for pairs of transitions cover-
age, we have E = {(to, 1), (t, ta), (t1, 12), (t1, 13), (t2, 1),
(t,13), (13, 11), (83, t4), (4, 1), (t4, £1)}. To produce a mutant
to evaluate pair of transitions coverage, we need to add

a global variable to memorize the previous transition.
The variable is updated each time a transition is followed,
which induces an important code instrumentation to com-
pute the “previous transition” (variable prevIrans Fig 6).
However, this instrumentation is the same from all the
mutants related to the criterion.

7. Feedback

We have used Caseine for testing for two years now. Four
groups of students in Master 2 Computer sciences and
one group of students in Master 1 computer sciences ex-
perience different exercises. We did not conduct formal
evaluation, but we collected their informal feedback. It
shows that they were happy to have an opportunity to
apply concretely the testing approaches. A formal evalu-
ation is planned in November 2022, with a new group of
Master 2.

From the teacher point of view, the possibility to share
exercise was appreciated: two other teachers decided to
use Caseine for their testing course.

8. Conclusion and perspectives

In this article, we explain how we adapt Caseine, an
online environment to teach programming, in order to
teach testing. We also show how the mutation-based ap-
proach can be adapted to evaluate if the different testing
approaches are correctly applied by the students. This
method was suggested in [14].

Currently we have prepared 10 exercises (Fig. 7). Six
of them were previously tested by 3 classes of students
and 4 will be used in November 2022. They cover the dif-
ferent strategies as well as a classical mutation approach.
We proposed an open course on Caseine®, in which the
validated exercises are available.

The whole approach has some advantages and weak-
nesses. The advantages are largely tied to the Caseine
platform:

- everyone can ask for a connection to Caseine,

« the exercises can be shared,

« the students can work online or with their usual
development environment,

« they have an immediate feedback related to their
tests in the same way as they have feedback about
their programs,

« the teachers can follow the students progress in
a easy way and prevent dropout,

« they can use classical tools to produce their mu-
tants,

*https://moodle.caseine.org/course/view.php?id=825

\{0

push()

£ coin() /
/ false y

false

q

Figure 5: Turnstile specification

coin() / true

push(} /true

The strategy to produce the mutants is not yet auto-
mated. It might be difficult to automate for a specification-
based approach, unless the code is generated automati-
cally from the specification. For code-base testing strate-
gies, the work of CEA LIST on the production of labels
to capture different notions of test coverage shows that
part of the process could be automated [16].

The set of available exercises is still modest, but we
are currently in the process of developing it, in order to
propose exercises from classical text books.

Acknowledgments

Thanks to Sumaiya Sultana, Al-Bashir Muhammad et
Mpoki Mwaisela who contributed to extend the exer-
cises within the project “région Auvergne Rhone-Alpes
RAVEN” (PAI 21 007381 01). The Caseine environ-
ment was partially funded by the “Université Grenoble-
Alpes Idex” (ANR-15-IDEX-0002), the “PERSYVAL-Lab
LabEx” (ANR-11-LABX-0025-01), and “Flexi-TLV”, three
“Investissement d’Avenir” programs.

References

[1] G.]J. Myers, The Art of Software Testing, Wiley,
1979.

P. Ammann, J. Offutt, Introduction to Software Test-
ing, Cambridge University Press, USA, 2008.

B. Beizer, Software Testing Techniques, Van Nos-
trand Reinhold, 1983.

R. V. Binder, Testing Object-Oriented Systems: Mod-
els, Patterns, and Tools, Addison-Wesley, 1999.

R. DeMillo, R. Lipton, F. Sayward, Hints on test
data selection: Help for the practicing programmer,
Computer 11 (1978) 34-41.

F. Dadeau, J.-P. Gros, F. Peureux, A case-based ap-
proach for introducing testing tools and principles,
in: IEEE Int. Conf. on Software Testing, Verif. and
Validation Workshops (ICSTW), 2020, pp. 429-436.
N. Silvis-Cividjian, R. Limburg, N. Althuisius,
E. Apostolov, V. Bonev, R. Jansma, G. Visser,
M. Went, Vu-bugzoo: A persuasive platform for
teaching software testing, in: ACM Conf. on Inno-

52

https://moodle.caseine.org/course/view.php?id=825

9

public boolean push(){ fj CAseine engish (en) ~

//Boolean mut = false;
' (ff?:c.;t—jgzackm Ve Mutation analysis
state = "Locked";
return (ltruel;
} else . -
return (false); {a)) o
H nteger Division

public class turnstile {
protected String state;
private int prevTrans; /.

public turnstile() { b
state = "Locked"; {)
previrans = 8; 'y

H

public boolean coin() {

Eooclean mut = false;

if (state=="Locked") {
state = "UnLocked";
previrans=1; J//*
return (true);

} else
mut = (prevTrans==1);
previrans=2;
if {(mut) return (true); else

return (false);

H

public boolean push({){
if (state=="UnLocked"
state = "Locked
previrans = 3; //

return (true);
} else Figure 7: Shared exercises on Caseine
previrans = 4; //

return (false);

H
Figure 6: Two mutants generated for Turnstile [12] D. M. de Souza, B. H. Oliveira, J. C. Maldonado,
(a) Mutant to detect t, S. R. S. Souza, E. F. Barbosa, Towards the use of
(b) Mutant to detect (t,,,) an automatic assessment system in the teaching of

software testing, in: IEEE Frontiers in Education
Conference (FIE) Proceedings, 2014, pp. 1-8.

[13] J. C. Rodriguez-del Pino, E. Rubio Royo, Z. Hernan-
dez Figueroa, A virtual programming lab for moo-
dle with automatic assessment and anti-plagiarism
features, in: Int. Conf. on e-Learning eBusiness
Enterprise Information Systems & e-Government,
2012.

[14] P. Ammann, J. Offutt, Introduction to Software Test-

ing, Cambridge University Press, 2016.

S. K. Khalsa, Y. Labiche, Extending category parti-

tion’s base choice criterion to better support con-

straints, Journal of Software: Evolution and Process

30 (2018).

[16] N.Kosmatov, Combinations of Analysis Techniques
for Sound and Efficient Software Verification, Hdr,
U. de Paris-Sud 11, France, 2018.

vation and Technology in Computer Science Edu-
cation (ITiCSE), 2020, p. 553.

[8] J. M. Rojas, G. Fraser, Code defenders: A mu-
tation testing game, in: IEEE 9th Int. Conf. on
Software Testing, Verification and Validation Work-
shops (ICSTW), 2016, pp. 162-167.

[9] L. Beierlieb, L. Ifflinder, T. Schneider, T. Prantl,
S. Kounev, Teaching software testing using au- [15]
tomated grading, in: 5th Workshop Automatische
Bewertung von Programmieraufgaben (ABP), 2021.

[10] S. M. Melo, V. X. S. Moreira, L. N. Paschoal, S. R. S.
Souza, Testing education: A survey on a global
scale, in: XXXIV Brazilian Symp. on Software En-
gineering (SBES), 2020, p. 554-563.

[11] G. Fraser, A. Gambi, J. M. Rojas, Teaching software
testing with the code defenders testing game: Ex-
periences and improvements, in: IEEE Int. Conf.
on Software Testing, Verification and Validation
Workshops (ICSTW), 2020, pp. 461-464.

53

