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Abstract 
Aiming at the problem that code fragments can’t be captured accurately and quickly due to 
ignoring semantic information and structural information of source code in code search task, 
A semantic code search method based on program conversion is proposed (Semantic Code 
Search based on Program Conversion, SCSPC). The SCSPC diversified the data of the acquired 
code fragments through data enhancement, changed the program through variable renaming, 
exchanging two independent statements, circular exchange, inserting exception capture and if 
equivalent replacing switch statement, and trained the CodeBERT model with mixed objective 
functions (masking language modeling and replacing token detection) to generate sentence 
vectors with rich semantics for the code fragments and natural languages, and compared the 
similarity of the vectors to complete the code search. Experimental results show that compared 
with SWIM, QECK and CODEnn models, the average reciprocal ranking and hit rate (S@10) 
of SCSPC method are increased by 2% and 0.041 respectively. 
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1. Introduction 

In modern software development process, software reuse has been applied to various fields. The 
same function may exist in different domains or different software systems, and the code to implement 
the function is also similar. Developers usually search for code in a large number of procedural code 
libraries, so as to save development time and efficiency. 

At present, code search is mainly based on information retrieval methods and deep learning methods. 
Methods based on information retrieval focus on how to generate correct keywords and calculate the 
matching degree between them. For example, CodeHow proposed by Lv et al. [1], this model is based 
on the natural language similarity and the influence of API on code search, and understands the query 
by identifying the API that the query may refer to. After determining the potential API of the query, the 
information of the API is merged into the process of code search. Lu et al. [2] proposed a synonym 
expansion query model generated by WordNet [3]. Iman et al. [4] proposed a pattern-based search 
technology, which uses the clone detection method based on vector space model to support the 
discovery of working code instances and search out all types of statements (such as control flow, data 
flow and API). 

Current code search methods still have problems. First, they ignore that codes may come from 
different dimensions, which makes it difficult to cover all perspectives with a single code representation. 
Second, it is difficult for a single natural language query to express the intentions of different users, 
which makes the search results inaccurate. Aiming at the above problems, this paper proposes a code 
search method based on program transformation. The method uses program transformation to enhance 
data and diversify code fragments. The CodeBERT model is used to map natural language and code 
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snippets into the same vector space, and the similarity between the vectors is calculated and sorted to 
search for the corresponding code snippet for the user. 

2. The model of CodeBERT 

Pretrained models are essentially a method of transfer learning. The most typical pre-trained model 
is BERT [5] (Bidirectional Encoder Representation from Transformers). BERT uses a bidirectional 
encoder from Transformer [6], which is geared towards textual languages but is not suitable for 
representing semantic relationships between bimodal languages. 

The CodeBERT [7] model captures the semantic association between natural language and code 
snippet, and can quickly complete tasks such as semantic similarity search. The CodeBERT model is 
based on a Transformer network with 12 layers. Its pre-training completes two tasks: Masked Language 
Model (MLM) and Substitution Token Detection (RTD) task. The masked language model is to 
randomly delete a word in a sentence and then judge what the deleted word is, a task pretrained using 
NL-PL pairs. As shown in Figure 1, in the pre-training phase, [CLS] is placed at the beginning of the 
natural language sentence to do binary classification. Separate natural language and code snippets with 
flags. The input is of the form {[CLS], NL, [SEP], PL, [EOS]}. Consider natural language as a sequence 
of words and code snippets as a whole set of tokens. The output is the Embedding value and the [CLS] 
value for each Token. The Token detection task uses two generators combined with the context to 
generate the token at [MASK], and trains the discriminator to predict whether the token in the sentence 
is replaced or not. This task is pretrained using single-modal data, and the training process is shown in 
Figure 2. 
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Figure 1. The model of masked language. Figure 2. The tasks of token detection. 

3. Code search method based on program transformation 
3.1. The framework of the method 

The ultimate goal of method framework code search is to find code snippets that match the user's 
expectations. Program transformation based Semantic code search (SCSPC) captures the semantic 
relationships between natural languages and programming languages and generates a common 
representation. The work of this paper mainly includes semantic-preserving code program 
transformation, model training, and code search result matching. Its overview diagram is shown in 
Figure 3. Firstly, the SCSPC method uses data augmentation to transform the source code. The specific 
steps are to rename the source code variables, swap the position of independent statements, loop 
exchange, add capture statements, and equivalently replace switch statements with if. Each 
transformation has different effects on the structure of the method, so as to improve the diversity of the 
training data. Then, natural language and code snippets are input into the CodeBERT model, which are 
mapped into sentence vectors and code block vectors respectively. Finally, the cosine distance between 
the code block vector and the sentence vector is calculated by the cosine similarity, and the code search 
is completed by sorting the similarity. 
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Figure 3. Overview diagram of semantic code search methods based on program transformations. 

3.2. The model training of the method 

Model training focuses on capturing the semantic connections between queries and code snippets 
and generating a common representation, as shown in Figure 4.  
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The model mainly consists of embedding layer and encoding layer. Within the embedding layer, 
input queries and code snippets are mapped into a high-dimensional vector space. Set the maximum 
length of the input query to 1024. Think of it as a sequence of words, where each query uses <CLS> 
and <EOS> to represent the beginning and end of the query. Use <SEP> to split words. For a code 
fragment, think of it as a sequence of tokens. The encoding layer learns code snippets c and natural 
language d using a bidirectional encoder. The main calculation formula is shown in (1). PE is the 
position embedding and i denotes the dimension of the embedding. Linear stands for linear layer, Q, K, 
V are three vectors in the attention mechanism, which are query vector, key vector, and value vector. 
LayerNorm represents the normalization layer, RELU is the activation function, and using RELU can 
speed up the convergence of the network. 
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4. Experiment 
4.1. Data of the experiment 

In order to ensure that the collected source code has real reliability. The source code of this paper is 
from the most popular hosting open source website platform Github and the Deep Program group of 
Microsoft Research-Cambridge jointly launched the dataset CodeSearchNet for code representation 
learning [8]. The CodeSearchNet dataset is composed of 2 million annotation-code pairs from open 
source libraries. Specifically, comments are top-level function or method comments, and code is the 
entire function or method. In this experiment, the Java language from the CodeSearchNet Challenge 
was selected as the dataset. It contains 500,754 pairs of functional Java code snippets and their 
descriptions. 450, 439 pairs were used as training, 33, 658 pairs were used as validation set, and 28, 910 
pairs were used as test set. 

4.2. Evaluation criteria of the experiment 

In this paper, SuccessRate@k and MRR (Mean Reciprocal Rank) are used to verify the effectiveness 
of the SCSPC method. The formula for calculating the average reciprocal rank is given in (2). Q denotes 
the set of automatically evaluated queries, and ranki is the rank corresponding to the ith query. The 
higher the value of MRR, the better the performance of the code search. 

 
1

1 1MRR = 
Q

i iQ rank=
   (2) 

SuccessRate@k denotes the percentage of queries for which more than one correct fragment 
successfully exists among the top k code fragments returned by the search model, and is calculated as 
shown in (3). Where Q is the query set in the automatic evaluation, Rankq is the highest Rank of the hit 
code snippet in the search results, and 𝜎 is a function that returns 1 if the rank value of the q query is 
less than k, and 0 otherwise. This evaluation metric is very important. Because a good search engine 
should be able to find the code snippets that developers need by searching fewer search results. In this 
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experiment, the results were evaluated for k of 1, 5, and 10. If the value is higher, the model performance 
of code search is better. 

 ( )
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4.3. Results of the experiment 

In order to verify the effectiveness of the SCSPC method, SWIM [9], QECK [10] and CODEnn are 
selected as the three benchmark methods to compare this experiment, and the code repository in Section 
4.1 is used to construct the training set, validation set and test set. 

In this experiment, the value of search result K is set as 1, 5, and 10. A value of 1 represents the 
probability that the correct search result appears in the first position. The K values of 3 and 5 represent 
the search performance when the correct search result does not appear in the first position and when 
there are multiple correct search results. 1, 5, and 10 are also three parameters commonly used in the 
search system. 

Figure 5 illustrates the comparison between the SCSPC method and the other three benchmark 
methods on the evaluation metric MRR. It can be seen that SCSPC has better performance on MRR 
than SWIM, QECK and CODEnn. SWIM and other methods ignore the semantics between code 
fragments, and SCSPC method performs diversified processing on data, which can search code more 
accurately. 

 
Figure 5. The comparison of the performance of the three methods. 
 

Table 1 lists the comparison between the SCSPC method and the other three benchmark methods on 
the evaluation metric SuccessRate@K. It can be seen that the SCSPC method is better than the other 
three benchmark methods when k is 1, 5 and 10. The SCSPC method fully captures the semantic 
relationship between code snippets and natural language, and has a greater probability of correct 
answers in the search results. 

 
Table 1. Performance comparison of three methods based on SuccessRate@k 

Method S@1 S@5 S@10 
SWIM 0.546 0.558 0.594 
QECK 0.553 0.634 0.664 

CODEnn 0.549 0.647 0.693 
SCSPC 0.641 0/693 0.734 
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5. Conclusion 

In this paper, we propose SCSPC, a semantic code search method based on program transformation. 
This method performs data augmentation on Java code snippets in CodeSearchNet, and performs 
program transformation on five different aspects of the code while maintaining the semantic unchanged 
to obtain a large code corpus of high quality. Then, the CodeBERT model is fine-tuned to generate 
sentence vectors for natural language and code snippets to complete code search. This method deals 
with data diversification and effectively improves the accuracy of search results. In the following 
research on code search, we can improve the accuracy of the results from all aspects of the code snippet. 

The method in this paper is to search in the case of specified programming languages, and future 
work can expand the scope of programming languages to further mine other semantic information of 
the code and improve the search accuracy. 
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