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Abstract 
Deep-learning-based malware detection methods have been widely used. Although these 
models have strong learning ability and can automatically learn malware features, most of 
these models are vulnerable to adversarial samples. In this paper, we propose a malware 
adversarial samples detection model to solve this issue. The model uses the anomaly detection 
techniques to detect malware adversarial samples. To better represent the features of PE files, 
we represent an PE file as an RGB image and a one-dimensional byte sequence respectively. 
We design a generation model to extract data features and reconstruct the original sample. The 
generation model includes two different encoders, one encoder extracts the one-dimensional 
feature of the PE file, and the other encoder extracts the two-dimensional features of the PE 
file. The extracted one-dimensional and two-dimensional features are fused as the input of the 
decoder. The decoder is responsible for reconstructing the input. In the training phase, we only 
provide benign PE files as the training data, which makes the encoder only well fit benign 
samples. Therefore, malware adversarial samples have larger reconstruction loss than benign 
PE files. In this way, adversarial samples can be detected. We conduct adversarial attacks 
against the existing malware classifier MalConv, and construct four types of adversarial sample 
datasets. The proposed model gets high accuracy for detecting adversarial samples. 
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1. Introduction 

While the Internet brings great convenience to information transmission and sharing, it also 
intensifies the widespread spread of malware. Currently malware has seriously threat- ened the security 
of Internet. Malware has many variants, and updates quickly, which makes malware detection tech- 
nology face serious challenges. With the rapid development of deep learning technologies, deep 
learning-based malware detection models have been proposed and achieved high de- tection accuracy. 
However adversarial samples can evade the detection of deep learning models, which poses a potential 
threat to the security of deep learning models. 

To recognize adversarial samples, two categories of ad- versarial sample defense methods are 
proposed. The first category is the robust defense method, which improves the robustness of the 
classifier to defend against adversarial samples. The second category is the detection method, which uses 
the detection algorithm to detect adversarial examples mixed with normal samples. 

Most of the adversarial sample defense methods in the malware detection field are robust defense 
methods, such as adversarial training, model distillation, random feature failure, and integrated 
classifier. Adversarial training is to add adversarial samples generated by the adversarial sample 
generation algorithm into the training dataset and retrain the classifier and thus improve the robustness 
of the classifier. Model distillation defends against adversarial samples by improving the generalization 
performance of small networks. Random feature failure randomly masks some features of the input to 
defend against some adversarial sample attack algorithms. Integrated classifier uses multiple classifiers 
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to learn malware features and then integrates the decisions of multiple classifiers to identify malware. 
The difficulty for detecting malware adversarial samples is that attackers can design different 

attacking methods to generate adversarial samples, it is impossible to know all of them, therefore it is 
very hard to train a machine learning model that can detect all kinds of adversarial samples. The similar 
problem also exists in the robust defense methods, only the known adversarial samples can be added 
into the training set to retrain a classifier. The retrained classifier still cannot detect the unknown 
adversarial samples. 

To solve this issue, an abnormal detection model is pro- posed to detect adversarial samples. the 
anomaly detection model consists of two parts, one is an asymmetric generation mode, which includes 
two encoders and one decoder. The data set for training the generation model only includes benign 
samples. The second part is the detection model. This model evaluates the similarity between the 
generated sample and the original sample. If the generated sample has a big difference from the original 
sample. The original sample is recognized as an adversarial sample. We conduct adversarial attacks 
against the deep learning detection model MalConv [1], and construct four types of adversarial samples. 
Ex- periments show that the proposed model can achieve high detection accuracy for detecting 
adversarial samples. The contributions we have made are as follows. 

• To the best of our knowledge, we are the first to apply anomaly detection to recognize malware 
adversarial examples. 

• Our model is one class classification model, which only trained using benign files, therefore, 
compared with other machine learning based method, our model has better generalization ability 
to recognize different types of adversarial samples, including unseen samples. 

• To evaluate the generalization ability of our method, we create an evaluation dataset.  We 
adopt different methods to generate byte perturbations and try different positions to insert 
perturbated bytes. This dataset can be used as benchmark dataset to evaluate the performance of 
adversarial sample detecting methods. 

2. Related Work 

Our study mainly involves two research fields. One is malware adversarial attack methods and the 
other is malware adversarial defense methods. In this section we introduce the research advances in these 
two areas, respectively. 

2.1 Malware Adversarial Attack Methods 

The adversarial attack algorithms in the malware domain are different from these in the computer 
vision domain. Each byte in a malware sample has a specified meaning, there- fore the generated sample 
should have the same functions and semantics as the original sample after being modified by the 
adversarial attack algorithms. Most of the existing adversarial attack algorithms in the malware domain 
are gradient-based algorithms, where perturbation is obtained by optimizing a distance metric 
between the original and the perturbed sample. To generate adversarial samples for MalConv model 
[1](a deep learning-based malware detec- tion model), Kolosnjaji [2] et al. firstly added random bytes 
to the tail of a malware sample and then iteratively update these bytes using a gradient algorithm, and 
only one byte is modified in each iteration. The experiments show more than 60% adversarial samples 
can evade the classifiers. Suciu [3] et al. proposed an enhanced attack on MalConv [1] using 
iterative FGM, which generates perturbations in the embedding space, and then finds the nearest 
neighbor bytes to the modified embedding representation by traversing the bytes in the computed 
embedding matrix, then modifies the current byte to be the nearest neighbor byte. In addition to the 
gradient-based attack model, Chen [4] et al. applied the feature visualization method Grad cam [5] to 
extract features of benign files important for MalConv [1] classifier, then added the extracted features 
to the tail of the malware samples to generate the adversarial samples. They also combined the FGSM 
algorithm to enhanced benign feature attack (BFA) to increase the success rate of attack. We also use 
the above adversarial attack method to build our test dataset. 
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2.2 Malware Adversarial Defense Methods 

There are the malware adversarial attack algorithms, and accordingly, there are malware adversarial 
defense meth- ods. For DNN-based malware detectors, Wang [6] et al. used the random feature 
failure method to defend against attack algorithms. Random feature failure defense against the attack 
by randomly deleting or masking the features of the input, and the disadvantage of this method 
is that the accuracy of malware detection is low. Grosse [7] et al. proposed two defenses, namely 
defensive distillation and adversarial training, to enhance the robustness of the DNN- based malware 
detectors. Modifying the structure of classifier can also defenses against the adversarial attack, e.g., 
using integrated classifiers or using model distillation. Smutz [8] et al. used the integrated classifier 
containing multiple basic classifiers to defense against the attack. The integrated classifier votes on the 
results returned by basic classifiers to make a decision. Also similar to integrated classification, Biggio 
[9] et al. proposed a one-and-a-half class classifier, specifically, the authors firstly combined a two-
class classifier with a one-class classifier and then com- bined them using another one-class classifier. 
In additional, other researchers also used random subspaces and bagging techniques to enhance SVM-
based malware detectors, which are called as Multi- Classifier System SVM (MCS-SVM). 

For windows malware, Dujaili [10] et al. proposed the maximum minimization adversarial training, 
which is used to enhance DNN-based detectors. In the defense method, the inner layer is optimized 
to generate hostile files by maximizing the loss function of the classifier, and the outer layer optimizes 
the parameters of the DNN to minimize the loss of the classifier for hostile classification. Li [11] et al. 
used variational self-encoder and multilayer perceptron to detect malware and combined their detection 
results to detect malware and defend against the adversarial attacks. 

3. Proposed Model 

The proposed detection model is an unsupervised one- class classification model based on anomaly 
detection tech- nology. The input data of this model are benign PE files. By learning the features of 
benign PE files, it has lower re- construction error for reconstructing benign samples. When 
reconstructing adversarial samples, a higher reconstruction error will be generated. Therefore, by 
evaluating the simi- larity between the original sample and the generated (recon- structed) sample, 
adversarial samples can be detected. Here, we describe how the model detects malware adversarial 
samples. Figure 1 shows the overview architecture of the abnormal detection, which consists of three 
stages. 

• Stage1: Data processing. All PE files are represented in two forms, one dimensional sequential 
data (1D) and two dimensional RGB image data (2D). 

• Stage2: Data Reconstruction. In this stage, we train two encoders and one decoder, the Enc1 
extracts features from the 1D byte sequences, and the Enc2 extracts the features from the 2D 
RGB data. We fuse the extracted 1D features and 2D features as the input of decoder. Then the 
Dec1 decodes the fused input to get the reconstructed output data. 

• Stage3: Adversarial Sample Detection. A testing sample is input to the encoders, and the decoder 
generates the reconstructed sample. By evaluating the reconstructed loss, we can decide if the 
testing sample is a malware adversarial sample. 

3.1 Data Processing 

a) Convert PE file to Two-dimensional image: PE files are portable and executable files in 
Windows OS, a PE file mainly includes DOS header, NT header, section table and specific sections. 
PE files have different size, and their 
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Fig. 1. Overview of the abnormal detection model. 
 
distribution is not uniform. It is impossible to use the entire PE file as the input of the model. Therefore, 
we need to process PE files to better learn the features of PE files. In order to learn the features of benign 
PE files well, we extract the bytes in each section in a PE file. Kancherla [14] et al. represented PE files 
into gray-scale images, but the size of PE files is large, it is unable to extract all bytes in a PE file to 
construct an image, some sections in a PE file have to be ignored, such as the. rsrc segment, which 
is at the end of the PE files, its information is often discarded. To fully represent a PE file, we represent 
PE files as RGB images. We extract bytes from each section as the data of channels of an RGB image. 
In details, the data of R channel is the first K bytes of the code section .txt, the data of G channel is 
the first K bytes of the data sections, including .rdata,.idata, .edata, .data, and the data of B channel 
is the first K bytes of the other parts of a PE file. If there are not enough bytes, padding 0 byte at the 
end of each channel. The bytes in each channel are expanded into a two-dimensional image and then 
fuse into an RGB image. 

b) Convert a PE file to a one-dimensional byte sequence: A PE file can be seen as a binary 
stream. We merge every 8 bits into one byte, and the value of each byte is from 0 to 255. we connect 
these bytes one by one to get the one-dimensional data representation of a PE file. Usually, the size of 
PE files is large, we cannot analysis the whole file. In our work, we extract the channels of the above 
RGB image, and connect each channel one by one to obtain the one-dimensional byte sequence used 
to describe a PE file. 

3.2 Data Reconstruction 

We construct a generation model to construct the input data. The generation model is an asymmetric 
autoencoder, which includes two encoders and one decoder. The first encoder Enc1 encodes the one-
dimensional byte sequence to get the 1D feature vector of a PE file and the second encoder encodes the 
2D image to get the 2D feature vector of a PE file. We make the dimension of 1D feature vector encoded 
by Enc1 the same as that of the 2D feature vector encoded by Enc2. Then, we connect these two 
feature vectors as the input of the decoder Dec. Then we use the decoder to reconstruct the original 
input. The size of the reconstructed output has the same dimension as the RGB image. So we can 
calculate the mean squared error (Mse) between the original 2D image and the reconstructed output to 
evaluate the similarity between them. We also extract the RGB channels form the reconstructed image, 
and get the one- dimensional byte sequence which has the same dimension as the original one-
dimensional byte sequence. In the same way we can calculate the mean squared error between the 
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original 1D sequence and the reconstructed sequence. The total loss function is shown as Eq(1). 
lMSE = ∥xd2  − [Dec(Enc1(xd1 ) + Enc2(xd2 ))]∥                                                      (1) 
+ ∥xd2 − Ext(Dec(Enc1(xd1) + Enc2(xd2)))∥ 

In Eq(1), X  denotes the set of original input samples. Ext means to extend two-dimentional 
image to one-dimentional sequence. Xd1 denotes the set of one-dimensional byte sequence for 
PE files, Xd2 denotes the set of two-dimensional RGB images for PE files, Enc1 denotes the 
encoder function that encodes the 1D sequence into a feature vector in the latent space, and Enc2 
denotes the encoder function encodes the 2D image into a feature vector in the latent space. Dec 
denotes the decoder function that converts the feature vectors in the latent space into the original input 
data. In our work, the structure of Enc1 contains seven one dimensional convolution layers. The active 
function in each layer is the Leakly relu function. The structure of Enc2 contains six two dimentional 
convolution layers and we also use Leakly relu function as the activation function. In Dec, we use six 
two dimensional deconvolution layers and the active function in each layer is the Leakly relu function. 
We calculate the total loss using Eq(1), and then use the gradient descent algorithm to train the encoders 
and decoder. The training process is shown in Algorithm 1. 
 

Algorithm 1 Training the generation model  
Require: Training set of benign PE files X, number of iterations N , length of extracted segments K. 
Ensure: Models: Enc1 for extracting one-dimensional fea- tures, Enc2 for extracting two-dimensional features, 

Dec for decoder. 
1:   function TRAINING(x,K,N ) 
2: for i = 1 N do 
3: for x in X do 
4: xd1 ← PREPRO ONE(x,K) 
5: xd2 ← PREPRO TWO(x,K) 
6: encres1 ← Enc1(xd1 ) 
7: encres2 ← Enc2(xd2 ) 
8: decr  ← Dec(encres1,encres2) 
9: lossencdec Msel(decr, xd1 ) 

10: + Msel(decr, xd2 ) 
11: Backpropogatelossencdec    to change Enc1, 
12: Enc2,Dec 
13: end for 
14: end for 
15: return   Enc1,Enc2,Dec 
 16: end function  

3.3 Abnormal Detection 

We only use the benign file to train the abnormal detection model. Therefore, if the testing sample is 
a benign sample, the mean square error between the reconstructed sample and the benign sample is 
lower, otherwise the mean squared error is high. According this, we can detect the adversarial sample. 
In the detection phase, a testing sample is input to the generation model. The encoder outputs a 
generated sample. Then we calculate the mean squared error between the generated sample and the 
testing sample. If the mean squared error is greater than a threshold value. The testing sample is 
classified as an adversarial sample. 

4. Experiment 

In this section, we mainly make three experiments. The first experiment is to decide the input length 
of the genera- tion model. The second experiment we make is to compare the performance of different 
malware adversarial sample detection models. The third experiment is the ablation ex- periment, which 
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prove fusing different features can improve the performance of the abnormal detection model. Before 
conducting the experiments, we constructed four different types of datasets based on different malware 
adversarial sample generation algorithms. 

4.1 Selecting Perturbation Locations for Adversarial samples 

• When a PE file is loaded from disk into memory, it takes up more virtual address space than 
it does on the hard disk. This is because the sections in each PE file are contiguous on 
disk, while in memory they are aligned by page, so there are some gaps between sections 
after being loaded. Adding random scrambled bytes in these gaps will not affect the functions 
of the PE file. The parameter PointerToRawData in the section table of each PE file specifies 
the offset of the current section on disk, V irtualSize is the total size loaded in memory, 
SizeOf RawData is  the  size  of the section on disk, and V irtualAddress is the offset address 
in memory. The actual size occupied when loaded into memory is smaller than the size 
occupied on disk, so we can get this gap interval and find the lo- cation where we can add 
scrambled bytes by indexing. Adding a scrambling between the start and end location is not 
going to affect the malicious functionality of the malware. Figure 2 shows the mapping of PE 
files on disk to memory. 

 
Fig. 2. PE file on disk corresponding to the memory 
 

• Besides the gaps between sections, we can add new sections in a PE file. By modifying the 
parameter values of the section table in the table header, we can add arbitrarily named new 
sections to a PE file. Since the codes in other sections of the PE file does not call the codes 
in the newly added sections, this inserting method also does not affect the functionality of the 
original PE files. According to the structure of the PE file, we can get the value of 
NumberOf Sections in the PE file header, which is the number of sec- tions. The value of 
FileAlignment in the PE optional header, which is the amount of alignment of the PE file 
on the disk. The value of SectionAlignment, which is the amount of alignment of the PE file 
in memory. And then we calculate the size of the real new section to be added by 
initializing the inser- tion size value and the amount of alignment in the disk. Meanwhile, 
we calculate the size of the last section in disk based on the PointerToRawData, SizeOf 
RawData values and  FileAlignment  of  the last section. And we calculate the size of the 
last section in memory based on the V irtualAddress and MiscV irtualSize of the last section. 
We create  a space of size SIZEOFSECTIONHEADER in the section table of the PE 
file and fill it with the data obtained above in the corresponding location of the new section 
table. Finally, we find the new section start offset value and the size of the section to be filled, 
and set all the byte values of added section to 0x00. At this point, the new section is added 
to the end of the PE files. In the papers of Kolosnjaji [3] and Chen [4], their methods add 
bytes directly at the end of PE files, these methods have a slight defect, their methods just 
read the start and end position of each section in the header of PE file, and get the length of 
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the whole PE file. So we can avoid reading the scrambled bytes added directly at the end. In this 
paper, we use the section gap of PE files and create a new section at the tail of PE files as the 
scrambled position. 

4.2 Selection of Model Parameters 

In the proposed model, we need to extract the first K bytes from each type of sections in the PE 
file. In the experiments, we choose K as 2 x104, 10 x104, 15 x104, 20 x104, 25 x104 respectively. 
The difference d between the reconstructed sample and the original sample is calculated by Eq.(1), which 
is a floating-point number. Since the training set we use only contains benign samples, we can get a 
mean square loss value for each sample after encoding and decoding. We average the mean square loss 
values of all train set samples to get the threshold. If the output result of the data in the test set 
through the model is greater than the threshold, we will determine it as an abnormal sample, otherwise 
it will be determined as a normal sample. During the training process, we use 15840 benign PE files 
as the training data and they vary in length from 3KB to 60MB. The experimental results are shown in 
Table 1. In Table 1, SinAD+Gap, SinAD+NS, IFGM+NS and BFA+NS represent four adversarial 
datasets. SinAD, IFGM and BFA represent the algorithms used to generate the adversarial samples. 
SinAD is the single-byte modified adversarial sam- ples generation algorithm [2], IFGM is the iterative 
FGM algorithm [3], BFA is the benign feature based algorithm [4]. Gap and NS represent the methods 
for inserting perturbated bytes. Gap means the perturbated bytes are inserted into the gaps between 
sections in a PE file, and NS means inserting perturbated bytes into newly created sections in a PE file. 
In the real scenario adversarial samples are far less than benign samples, so we set the ratio of 
adversarial samples to benign samples in the test dataset to be 1:10. We prepare four testing datasets, and 
each testing dataset includes one adversarial dataset, 150 adversarial samples and 1500 randomly 
selected benign samples. 

From Table 1 we can see that the highest AUC values are obtained on four testing datasets, which 
means the overall performance of the detector for K=2x104 is better than others. So in the following 
experiments, K is set as 2x104 for each abnormal detection model. 
 
TABLE 1 
EXPERIMENTAL RESULTS UNDER DIFFERENT K VALUES 

K Metric SinAD+GAP SinAD+NS IFGM+NS BFA+NS 
 Acc 0.788 0.770 0.770 0.809 
 Pre 0.901 0.888 0.887 0.938 

2W Recall 0.833 0.827 0.827 0.828 
 F1 0.866 0.856 0.856 0.879 
 Roc auc 0.702 0.679 0.683 0.764 
 Acc 0.889 0.882 0.865 0.911 
 Pre 0.889 0.883 0.903 0.913 

10W Recall 0.969 0.969 0.923 0.968 
 F1 0.927 0.924 0.913 0.939 
 Roc auc 0.529 0.489 0.606 0.477 
 Acc 0.849 0.824 0.810 0.782 
 Pre 0.892 0.888 0.899 0.912 

15W Recall 0.916 0.892 0.863 0.823 
 F1 0.904 0.890 0.880 0.865 
 Roc auc 0.681 0.639 0.638 0.592 
 Acc 0.895 0.899 0.916 0.932 
 Pre 0.900 0.911 0.885 0.954 

20W Recall 0.950 0.940 0.947 0.934 
 F1 0.924 0.931 0.909 0.929 
 Roc auc 0.867 0.842 0.925 0.896 
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 Acc 0.838 0.832 0.828 0.832 
 Pre 0.883 0.879 0.900 0.910 

25W Recall 0.915 0.913 0.882 0.872 
 F1 0.898 0.895 0.891 0.895 
 Roc auc 0.665 0.632 0.586 0.458 

4.3 Comparison With Other Anomaly Detection Algorithms 

In this section we compare the proposed model with two classical anomaly detection algorithms, 
LOF [12] and DeepSVDD [13]. As there is no anomaly detection algorithm to be used for detecting 
adversarial samples, we reproduce the two algorithm and apply them to detect adversarial samples. LOF 
is an anomaly detection algorithm based on domain density, and is widely used in the field of computer 
vision and the DeepSVDD is a deep learning-based anomaly detection algorithm. The results of the 
comparison experi- ments are shown in Table 2. 

From Table 2, it can be seen that the LOF algorithm has the lowest AUC value. The reason 
is that LOF is less effective for high-dimensional data classification. Our method is significantly better 
than the other two models. Compared with DeepSVDD, the structure of our model is flexible, in our 
model the decoder and encoder are separated, so we can easily increase new encoders to learn more 
useful data features. 

4.4 Ablation Study 

There are three modules in our model. To evaluate the influence of each module on the model 
performance, we 

 
TABLE 2 
COMPARISON EXPERIMENT WITH OTHER ANOMALY DETECTION ALGORITHM 
 

Method Metric SinAD+GAP SinAD+NS IFGM+NS BFA+NS 
 Acc 0.559 0.569 0.487 0.519 
 Pre 0.827 0.759 0.642 0.948 
LOF Recall 0.518 0.518 0.518 0.518 

 F1 0.637 0.615 0.573 0.670 
 Roc auc 0.599 0.594 0.473 0.525 
 Acc 0.906 0.912 0.928 0.918 
 Pre 0.957 0.964 0.981 0.974 
DeepSVDD Recall 0.939 0.939 0.939 0.939 

 F1 0.948 0.951 0.959 0.956 
 Roc auc 0.759 0.794 0.879 0.764 
 Acc 0.895 0.899 0.916 0.932 
 Pre 0.900 0.911 0.885 0.954 
Ours Recall 0.950 0.940 0.947 0.934 

 F1 0.924 0.931 0.909 0.929 
 Roc auc 0.867 0.842 0.925 0.896 

 
conduct ablation experiments. We consider three scenarios. The first scenario is that we don’t use 
the Enc1 to extract 1D features of PE files. The second scenario is that we don’t use the Enc2 to extract 
2D features of PE files. And the last scenario is that we use all modules for training and testing. We 
also use these four test sets, and the values of AUC for the ablation experiments are shown in Table 3. 
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TABLE 3 
ABLATION EXPERIMENT COMPARISON RESULT 

Ablation Metric SinAD+GAP SinAD+NS IFGM+NS BFA+NS 
 Acc 0.880 0.800 0.918 0.107 
 Pre 0.907 0.898 0.885 0.870 

No Enc1 Recall 0.935 0.851 0.959 0.838 
 F1 0.921 0.874 0.920 0.123 
 Roc auc 0.632 0.570 0.909 0.450 
 Acc 0.820 0.810 0.872 0.814 
 Pre 0.892 0.882 0.863 0.913 

No Enc2 Recall 0.881 0.882 0.887 0.836 
 F1 0.886 0.882 0.875 0.873 
 Roc auc 0.707 0.679 0.872 0.751 
 Acc 0.895 0.899 0.916 0.932 
 Pre 0.900 0.911 0.885 0.954 

ALL Recall 0.950 0.940 0.947 0.934 
 F1 0.924 0.931 0.909 0.929 
 Roc auc 0.967 0.842 0.925 0.896 

 
From the results of the ablation experiments, deleting Enc1 or Enc2 all leads the decrease of the 

overall perforam- nce. The lack of Enc1 has a greater impact on the BFA+NS dataset. However, 
regardless of removing any encoder, the overall detection performance on IFGM+NS dataset does not 
change much. It can be seen that on most datasets, the 1D feature has greater influence on the 
reconstructed data than the 2D feature. Overall, all three modules have a positive impact on the final 
classification performance, and none are indispensable. 

5. Conclusion 

We propose an anomaly detection model to detect mal- ware adversarial samples. The model is 
trained by learning the features of benign samples and treats all non-benign samples as anomalous data. 
To better learn data features, we represent benign samples as binary files and 2D image files 
respectively, and design two encoders to learn both 1D and 2D features. In the testing phase, we detect 
adversarial sample according to the similarity between the reconstructed sample and the original sample. 
The experiments show that the proposed model can effectively detect malware adversarial samples 
mixed in benign samples. 
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