
A Model for Detecting Malware Adversarial Samples Based on
Anomaly Detection Technology1

Yubin Ma, Yuxin Ding, Wen Qian

Harbin Institute of Technology (Shenzhen), Shenzhen, China

Abstract
Deep-learning-based malware detection methods have been widely used. Although these
models have strong learning ability and can automatically learn malware features, most of
these models are vulnerable to adversarial samples. In this paper, we propose a malware
adversarial samples detection model to solve this issue. The model uses the anomaly detection
techniques to detect malware adversarial samples. To better represent the features of PE files,
we represent an PE file as an RGB image and a one-dimensional byte sequence respectively.
We design a generation model to extract data features and reconstruct the original sample. The
generation model includes two different encoders, one encoder extracts the one-dimensional
feature of the PE file, and the other encoder extracts the two-dimensional features of the PE
file. The extracted one-dimensional and two-dimensional features are fused as the input of the
decoder. The decoder is responsible for reconstructing the input. In the training phase, we only
provide benign PE files as the training data, which makes the encoder only well fit benign
samples. Therefore, malware adversarial samples have larger reconstruction loss than benign
PE files. In this way, adversarial samples can be detected. We conduct adversarial attacks
against the existing malware classifier MalConv, and construct four types of adversarial sample
datasets. The proposed model gets high accuracy for detecting adversarial samples.

Keywords
Anomaly detection, Adversarial samples, Mal- ware adversarial samples detection

1. Introduction

While the Internet brings great convenience to information transmission and sharing, it also
intensifies the widespread spread of malware. Currently malware has seriously threat- ened the security
of Internet. Malware has many variants, and updates quickly, which makes malware detection tech-
nology face serious challenges. With the rapid development of deep learning technologies, deep
learning-based malware detection models have been proposed and achieved high de- tection accuracy.
However adversarial samples can evade the detection of deep learning models, which poses a potential
threat to the security of deep learning models.

To recognize adversarial samples, two categories of ad- versarial sample defense methods are
proposed. The first category is the robust defense method, which improves the robustness of the
classifier to defend against adversarial samples. The second category is the detection method, which uses
the detection algorithm to detect adversarial examples mixed with normal samples.

Most of the adversarial sample defense methods in the malware detection field are robust defense
methods, such as adversarial training, model distillation, random feature failure, and integrated
classifier. Adversarial training is to add adversarial samples generated by the adversarial sample
generation algorithm into the training dataset and retrain the classifier and thus improve the robustness
of the classifier. Model distillation defends against adversarial samples by improving the generalization
performance of small networks. Random feature failure randomly masks some features of the input to
defend against some adversarial sample attack algorithms. Integrated classifier uses multiple classifiers

AHPCAI2022@2nd International Conference on Algorithms, High Performance Computing and Artificial Intelligence
EMAIL: Corresponding author, Email: yxding@hit.edu.cn (YuXin Ding)

© 2022 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

75

to learn malware features and then integrates the decisions of multiple classifiers to identify malware.
The difficulty for detecting malware adversarial samples is that attackers can design different

attacking methods to generate adversarial samples, it is impossible to know all of them, therefore it is
very hard to train a machine learning model that can detect all kinds of adversarial samples. The similar
problem also exists in the robust defense methods, only the known adversarial samples can be added
into the training set to retrain a classifier. The retrained classifier still cannot detect the unknown
adversarial samples.

To solve this issue, an abnormal detection model is pro- posed to detect adversarial samples. the
anomaly detection model consists of two parts, one is an asymmetric generation mode, which includes
two encoders and one decoder. The data set for training the generation model only includes benign
samples. The second part is the detection model. This model evaluates the similarity between the
generated sample and the original sample. If the generated sample has a big difference from the original
sample. The original sample is recognized as an adversarial sample. We conduct adversarial attacks
against the deep learning detection model MalConv [1], and construct four types of adversarial samples.
Ex- periments show that the proposed model can achieve high detection accuracy for detecting
adversarial samples. The contributions we have made are as follows.

• To the best of our knowledge, we are the first to apply anomaly detection to recognize malware
adversarial examples.

• Our model is one class classification model, which only trained using benign files, therefore,
compared with other machine learning based method, our model has better generalization ability
to recognize different types of adversarial samples, including unseen samples.

• To evaluate the generalization ability of our method, we create an evaluation dataset. We
adopt different methods to generate byte perturbations and try different positions to insert
perturbated bytes. This dataset can be used as benchmark dataset to evaluate the performance of
adversarial sample detecting methods.

2. Related Work

Our study mainly involves two research fields. One is malware adversarial attack methods and the
other is malware adversarial defense methods. In this section we introduce the research advances in these
two areas, respectively.

2.1 Malware Adversarial Attack Methods

The adversarial attack algorithms in the malware domain are different from these in the computer
vision domain. Each byte in a malware sample has a specified meaning, there- fore the generated sample
should have the same functions and semantics as the original sample after being modified by the
adversarial attack algorithms. Most of the existing adversarial attack algorithms in the malware domain
are gradient-based algorithms, where perturbation is obtained by optimizing a distance metric
between the original and the perturbed sample. To generate adversarial samples for MalConv model
[1](a deep learning-based malware detec- tion model), Kolosnjaji [2] et al. firstly added random bytes
to the tail of a malware sample and then iteratively update these bytes using a gradient algorithm, and
only one byte is modified in each iteration. The experiments show more than 60% adversarial samples
can evade the classifiers. Suciu [3] et al. proposed an enhanced attack on MalConv [1] using
iterative FGM, which generates perturbations in the embedding space, and then finds the nearest
neighbor bytes to the modified embedding representation by traversing the bytes in the computed
embedding matrix, then modifies the current byte to be the nearest neighbor byte. In addition to the
gradient-based attack model, Chen [4] et al. applied the feature visualization method Grad cam [5] to
extract features of benign files important for MalConv [1] classifier, then added the extracted features
to the tail of the malware samples to generate the adversarial samples. They also combined the FGSM
algorithm to enhanced benign feature attack (BFA) to increase the success rate of attack. We also use
the above adversarial attack method to build our test dataset.

76

2.2 Malware Adversarial Defense Methods

There are the malware adversarial attack algorithms, and accordingly, there are malware adversarial
defense meth- ods. For DNN-based malware detectors, Wang [6] et al. used the random feature
failure method to defend against attack algorithms. Random feature failure defense against the attack
by randomly deleting or masking the features of the input, and the disadvantage of this method
is that the accuracy of malware detection is low. Grosse [7] et al. proposed two defenses, namely
defensive distillation and adversarial training, to enhance the robustness of the DNN- based malware
detectors. Modifying the structure of classifier can also defenses against the adversarial attack, e.g.,
using integrated classifiers or using model distillation. Smutz [8] et al. used the integrated classifier
containing multiple basic classifiers to defense against the attack. The integrated classifier votes on the
results returned by basic classifiers to make a decision. Also similar to integrated classification, Biggio
[9] et al. proposed a one-and-a-half class classifier, specifically, the authors firstly combined a two-
class classifier with a one-class classifier and then com- bined them using another one-class classifier.
In additional, other researchers also used random subspaces and bagging techniques to enhance SVM-
based malware detectors, which are called as Multi- Classifier System SVM (MCS-SVM).

For windows malware, Dujaili [10] et al. proposed the maximum minimization adversarial training,
which is used to enhance DNN-based detectors. In the defense method, the inner layer is optimized
to generate hostile files by maximizing the loss function of the classifier, and the outer layer optimizes
the parameters of the DNN to minimize the loss of the classifier for hostile classification. Li [11] et al.
used variational self-encoder and multilayer perceptron to detect malware and combined their detection
results to detect malware and defend against the adversarial attacks.

3. Proposed Model

The proposed detection model is an unsupervised one- class classification model based on anomaly
detection tech- nology. The input data of this model are benign PE files. By learning the features of
benign PE files, it has lower re- construction error for reconstructing benign samples. When
reconstructing adversarial samples, a higher reconstruction error will be generated. Therefore, by
evaluating the simi- larity between the original sample and the generated (recon- structed) sample,
adversarial samples can be detected. Here, we describe how the model detects malware adversarial
samples. Figure 1 shows the overview architecture of the abnormal detection, which consists of three
stages.

• Stage1: Data processing. All PE files are represented in two forms, one dimensional sequential
data (1D) and two dimensional RGB image data (2D).

• Stage2: Data Reconstruction. In this stage, we train two encoders and one decoder, the Enc1
extracts features from the 1D byte sequences, and the Enc2 extracts the features from the 2D
RGB data. We fuse the extracted 1D features and 2D features as the input of decoder. Then the
Dec1 decodes the fused input to get the reconstructed output data.

• Stage3: Adversarial Sample Detection. A testing sample is input to the encoders, and the decoder
generates the reconstructed sample. By evaluating the reconstructed loss, we can decide if the
testing sample is a malware adversarial sample.

3.1 Data Processing

a) Convert PE file to Two-dimensional image: PE files are portable and executable files in
Windows OS, a PE file mainly includes DOS header, NT header, section table and specific sections.
PE files have different size, and their

77

Fig. 1. Overview of the abnormal detection model.

distribution is not uniform. It is impossible to use the entire PE file as the input of the model. Therefore,
we need to process PE files to better learn the features of PE files. In order to learn the features of benign
PE files well, we extract the bytes in each section in a PE file. Kancherla [14] et al. represented PE files
into gray-scale images, but the size of PE files is large, it is unable to extract all bytes in a PE file to
construct an image, some sections in a PE file have to be ignored, such as the. rsrc segment, which
is at the end of the PE files, its information is often discarded. To fully represent a PE file, we represent
PE files as RGB images. We extract bytes from each section as the data of channels of an RGB image.
In details, the data of R channel is the first K bytes of the code section .txt, the data of G channel is
the first K bytes of the data sections, including .rdata,.idata, .edata, .data, and the data of B channel
is the first K bytes of the other parts of a PE file. If there are not enough bytes, padding 0 byte at the
end of each channel. The bytes in each channel are expanded into a two-dimensional image and then
fuse into an RGB image.

b) Convert a PE file to a one-dimensional byte sequence: A PE file can be seen as a binary
stream. We merge every 8 bits into one byte, and the value of each byte is from 0 to 255. we connect
these bytes one by one to get the one-dimensional data representation of a PE file. Usually, the size of
PE files is large, we cannot analysis the whole file. In our work, we extract the channels of the above
RGB image, and connect each channel one by one to obtain the one-dimensional byte sequence used
to describe a PE file.

3.2 Data Reconstruction

We construct a generation model to construct the input data. The generation model is an asymmetric
autoencoder, which includes two encoders and one decoder. The first encoder Enc1 encodes the one-
dimensional byte sequence to get the 1D feature vector of a PE file and the second encoder encodes the
2D image to get the 2D feature vector of a PE file. We make the dimension of 1D feature vector encoded
by Enc1 the same as that of the 2D feature vector encoded by Enc2. Then, we connect these two
feature vectors as the input of the decoder Dec. Then we use the decoder to reconstruct the original
input. The size of the reconstructed output has the same dimension as the RGB image. So we can
calculate the mean squared error (Mse) between the original 2D image and the reconstructed output to
evaluate the similarity between them. We also extract the RGB channels form the reconstructed image,
and get the one- dimensional byte sequence which has the same dimension as the original one-
dimensional byte sequence. In the same way we can calculate the mean squared error between the

78

→

←

original 1D sequence and the reconstructed sequence. The total loss function is shown as Eq(1).
lMSE = ∥xd2 − [Dec(Enc1(xd1) + Enc2(xd2))]∥ (1)
+ ∥xd2 − Ext(Dec(Enc1(xd1) + Enc2(xd2)))∥

In Eq(1), X denotes the set of original input samples. Ext means to extend two-dimentional
image to one-dimentional sequence. Xd1 denotes the set of one-dimensional byte sequence for
PE files, Xd2 denotes the set of two-dimensional RGB images for PE files, Enc1 denotes the
encoder function that encodes the 1D sequence into a feature vector in the latent space, and Enc2
denotes the encoder function encodes the 2D image into a feature vector in the latent space. Dec
denotes the decoder function that converts the feature vectors in the latent space into the original input
data. In our work, the structure of Enc1 contains seven one dimensional convolution layers. The active
function in each layer is the Leakly relu function. The structure of Enc2 contains six two dimentional
convolution layers and we also use Leakly relu function as the activation function. In Dec, we use six
two dimensional deconvolution layers and the active function in each layer is the Leakly relu function.
We calculate the total loss using Eq(1), and then use the gradient descent algorithm to train the encoders
and decoder. The training process is shown in Algorithm 1.

Algorithm 1 Training the generation model
Require: Training set of benign PE files X, number of iterations N , length of extracted segments K.
Ensure: Models: Enc1 for extracting one-dimensional fea- tures, Enc2 for extracting two-dimensional features,

Dec for decoder.
1: function TRAINING(x,K,N)
2: for i = 1 N do
3: for x in X do
4: xd1 ← PREPRO ONE(x,K)
5: xd2 ← PREPRO TWO(x,K)
6: encres1 ← Enc1(xd1)
7: encres2 ← Enc2(xd2)
8: decr ← Dec(encres1,encres2)
9: lossencdec Msel(decr, xd1)

10: + Msel(decr, xd2)
11: Backpropogatelossencdec to change Enc1,
12: Enc2,Dec
13: end for
14: end for
15: return Enc1,Enc2,Dec
 16: end function

3.3 Abnormal Detection

We only use the benign file to train the abnormal detection model. Therefore, if the testing sample is
a benign sample, the mean square error between the reconstructed sample and the benign sample is
lower, otherwise the mean squared error is high. According this, we can detect the adversarial sample.
In the detection phase, a testing sample is input to the generation model. The encoder outputs a
generated sample. Then we calculate the mean squared error between the generated sample and the
testing sample. If the mean squared error is greater than a threshold value. The testing sample is
classified as an adversarial sample.

4. Experiment

In this section, we mainly make three experiments. The first experiment is to decide the input length
of the genera- tion model. The second experiment we make is to compare the performance of different
malware adversarial sample detection models. The third experiment is the ablation ex- periment, which

79

prove fusing different features can improve the performance of the abnormal detection model. Before
conducting the experiments, we constructed four different types of datasets based on different malware
adversarial sample generation algorithms.

4.1 Selecting Perturbation Locations for Adversarial samples

• When a PE file is loaded from disk into memory, it takes up more virtual address space than
it does on the hard disk. This is because the sections in each PE file are contiguous on
disk, while in memory they are aligned by page, so there are some gaps between sections
after being loaded. Adding random scrambled bytes in these gaps will not affect the functions
of the PE file. The parameter PointerToRawData in the section table of each PE file specifies
the offset of the current section on disk, V irtualSize is the total size loaded in memory,
SizeOf RawData is the size of the section on disk, and V irtualAddress is the offset address
in memory. The actual size occupied when loaded into memory is smaller than the size
occupied on disk, so we can get this gap interval and find the lo- cation where we can add
scrambled bytes by indexing. Adding a scrambling between the start and end location is not
going to affect the malicious functionality of the malware. Figure 2 shows the mapping of PE
files on disk to memory.

Fig. 2. PE file on disk corresponding to the memory

• Besides the gaps between sections, we can add new sections in a PE file. By modifying the
parameter values of the section table in the table header, we can add arbitrarily named new
sections to a PE file. Since the codes in other sections of the PE file does not call the codes
in the newly added sections, this inserting method also does not affect the functionality of the
original PE files. According to the structure of the PE file, we can get the value of
NumberOf Sections in the PE file header, which is the number of sec- tions. The value of
FileAlignment in the PE optional header, which is the amount of alignment of the PE file
on the disk. The value of SectionAlignment, which is the amount of alignment of the PE file
in memory. And then we calculate the size of the real new section to be added by
initializing the inser- tion size value and the amount of alignment in the disk. Meanwhile,
we calculate the size of the last section in disk based on the PointerToRawData, SizeOf
RawData values and FileAlignment of the last section. And we calculate the size of the
last section in memory based on the V irtualAddress and MiscV irtualSize of the last section.
We create a space of size SIZEOFSECTIONHEADER in the section table of the PE
file and fill it with the data obtained above in the corresponding location of the new section
table. Finally, we find the new section start offset value and the size of the section to be filled,
and set all the byte values of added section to 0x00. At this point, the new section is added
to the end of the PE files. In the papers of Kolosnjaji [3] and Chen [4], their methods add
bytes directly at the end of PE files, these methods have a slight defect, their methods just
read the start and end position of each section in the header of PE file, and get the length of

80

the whole PE file. So we can avoid reading the scrambled bytes added directly at the end. In this
paper, we use the section gap of PE files and create a new section at the tail of PE files as the
scrambled position.

4.2 Selection of Model Parameters

In the proposed model, we need to extract the first K bytes from each type of sections in the PE
file. In the experiments, we choose K as 2 x104, 10 x104, 15 x104, 20 x104, 25 x104 respectively.
The difference d between the reconstructed sample and the original sample is calculated by Eq.(1), which
is a floating-point number. Since the training set we use only contains benign samples, we can get a
mean square loss value for each sample after encoding and decoding. We average the mean square loss
values of all train set samples to get the threshold. If the output result of the data in the test set
through the model is greater than the threshold, we will determine it as an abnormal sample, otherwise
it will be determined as a normal sample. During the training process, we use 15840 benign PE files
as the training data and they vary in length from 3KB to 60MB. The experimental results are shown in
Table 1. In Table 1, SinAD+Gap, SinAD+NS, IFGM+NS and BFA+NS represent four adversarial
datasets. SinAD, IFGM and BFA represent the algorithms used to generate the adversarial samples.
SinAD is the single-byte modified adversarial sam- ples generation algorithm [2], IFGM is the iterative
FGM algorithm [3], BFA is the benign feature based algorithm [4]. Gap and NS represent the methods
for inserting perturbated bytes. Gap means the perturbated bytes are inserted into the gaps between
sections in a PE file, and NS means inserting perturbated bytes into newly created sections in a PE file.
In the real scenario adversarial samples are far less than benign samples, so we set the ratio of
adversarial samples to benign samples in the test dataset to be 1:10. We prepare four testing datasets, and
each testing dataset includes one adversarial dataset, 150 adversarial samples and 1500 randomly
selected benign samples.

From Table 1 we can see that the highest AUC values are obtained on four testing datasets, which
means the overall performance of the detector for K=2x104 is better than others. So in the following
experiments, K is set as 2x104 for each abnormal detection model.

TABLE 1
EXPERIMENTAL RESULTS UNDER DIFFERENT K VALUES

K Metric SinAD+GAP SinAD+NS IFGM+NS BFA+NS
 Acc 0.788 0.770 0.770 0.809
 Pre 0.901 0.888 0.887 0.938

2W Recall 0.833 0.827 0.827 0.828
 F1 0.866 0.856 0.856 0.879
 Roc auc 0.702 0.679 0.683 0.764
 Acc 0.889 0.882 0.865 0.911
 Pre 0.889 0.883 0.903 0.913

10W Recall 0.969 0.969 0.923 0.968
 F1 0.927 0.924 0.913 0.939
 Roc auc 0.529 0.489 0.606 0.477
 Acc 0.849 0.824 0.810 0.782
 Pre 0.892 0.888 0.899 0.912

15W Recall 0.916 0.892 0.863 0.823
 F1 0.904 0.890 0.880 0.865
 Roc auc 0.681 0.639 0.638 0.592
 Acc 0.895 0.899 0.916 0.932
 Pre 0.900 0.911 0.885 0.954

20W Recall 0.950 0.940 0.947 0.934
 F1 0.924 0.931 0.909 0.929
 Roc auc 0.867 0.842 0.925 0.896

81

 Acc 0.838 0.832 0.828 0.832
 Pre 0.883 0.879 0.900 0.910

25W Recall 0.915 0.913 0.882 0.872
 F1 0.898 0.895 0.891 0.895
 Roc auc 0.665 0.632 0.586 0.458

4.3 Comparison With Other Anomaly Detection Algorithms

In this section we compare the proposed model with two classical anomaly detection algorithms,
LOF [12] and DeepSVDD [13]. As there is no anomaly detection algorithm to be used for detecting
adversarial samples, we reproduce the two algorithm and apply them to detect adversarial samples. LOF
is an anomaly detection algorithm based on domain density, and is widely used in the field of computer
vision and the DeepSVDD is a deep learning-based anomaly detection algorithm. The results of the
comparison experi- ments are shown in Table 2.

From Table 2, it can be seen that the LOF algorithm has the lowest AUC value. The reason
is that LOF is less effective for high-dimensional data classification. Our method is significantly better
than the other two models. Compared with DeepSVDD, the structure of our model is flexible, in our
model the decoder and encoder are separated, so we can easily increase new encoders to learn more
useful data features.

4.4 Ablation Study

There are three modules in our model. To evaluate the influence of each module on the model
performance, we

TABLE 2
COMPARISON EXPERIMENT WITH OTHER ANOMALY DETECTION ALGORITHM

Method Metric SinAD+GAP SinAD+NS IFGM+NS BFA+NS
 Acc 0.559 0.569 0.487 0.519
 Pre 0.827 0.759 0.642 0.948
LOF Recall 0.518 0.518 0.518 0.518

 F1 0.637 0.615 0.573 0.670
 Roc auc 0.599 0.594 0.473 0.525
 Acc 0.906 0.912 0.928 0.918
 Pre 0.957 0.964 0.981 0.974
DeepSVDD Recall 0.939 0.939 0.939 0.939

 F1 0.948 0.951 0.959 0.956
 Roc auc 0.759 0.794 0.879 0.764
 Acc 0.895 0.899 0.916 0.932
 Pre 0.900 0.911 0.885 0.954
Ours Recall 0.950 0.940 0.947 0.934

 F1 0.924 0.931 0.909 0.929
 Roc auc 0.867 0.842 0.925 0.896

conduct ablation experiments. We consider three scenarios. The first scenario is that we don’t use
the Enc1 to extract 1D features of PE files. The second scenario is that we don’t use the Enc2 to extract
2D features of PE files. And the last scenario is that we use all modules for training and testing. We
also use these four test sets, and the values of AUC for the ablation experiments are shown in Table 3.

82

TABLE 3
ABLATION EXPERIMENT COMPARISON RESULT

Ablation Metric SinAD+GAP SinAD+NS IFGM+NS BFA+NS
 Acc 0.880 0.800 0.918 0.107
 Pre 0.907 0.898 0.885 0.870

No Enc1 Recall 0.935 0.851 0.959 0.838
 F1 0.921 0.874 0.920 0.123
 Roc auc 0.632 0.570 0.909 0.450
 Acc 0.820 0.810 0.872 0.814
 Pre 0.892 0.882 0.863 0.913

No Enc2 Recall 0.881 0.882 0.887 0.836
 F1 0.886 0.882 0.875 0.873
 Roc auc 0.707 0.679 0.872 0.751
 Acc 0.895 0.899 0.916 0.932
 Pre 0.900 0.911 0.885 0.954

ALL Recall 0.950 0.940 0.947 0.934
 F1 0.924 0.931 0.909 0.929
 Roc auc 0.967 0.842 0.925 0.896

From the results of the ablation experiments, deleting Enc1 or Enc2 all leads the decrease of the

overall perforam- nce. The lack of Enc1 has a greater impact on the BFA+NS dataset. However,
regardless of removing any encoder, the overall detection performance on IFGM+NS dataset does not
change much. It can be seen that on most datasets, the 1D feature has greater influence on the
reconstructed data than the 2D feature. Overall, all three modules have a positive impact on the final
classification performance, and none are indispensable.

5. Conclusion

We propose an anomaly detection model to detect mal- ware adversarial samples. The model is
trained by learning the features of benign samples and treats all non-benign samples as anomalous data.
To better learn data features, we represent benign samples as binary files and 2D image files
respectively, and design two encoders to learn both 1D and 2D features. In the testing phase, we detect
adversarial sample according to the similarity between the reconstructed sample and the original sample.
The experiments show that the proposed model can effectively detect malware adversarial samples
mixed in benign samples.

6. Acknowledgement

This work was supported by the National Natural Sci- ence Foundation of China (Grant No.
61872107) and the Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies
(2022B1212010005).

7. References

[1] Raff E, Barker J, Sylvester J, et al. Malware detection by eating a whole exe[C]//Workshops at the
Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

[2] Kolosnjaji B, Demontis A, Biggio B, et al. Adversarial malware binaries: Evading deep learning
for malware detection in executa- bles[C]//2018 26th European signal processing conference (EU-
SIPCO). IEEE, 2018: 533-537.

[3] Suciu O, Coull S E, Johns J. Exploring adversarial samples in malware detection[C]//2019 IEEE
Security and Privacy Workshops (SPW). IEEE, 2019: 8-14.

83

[4] Chen B, Ren Z, Yu C, et al. Adversarial samples for cnn-based malware detectors[J]. IEEE Access,
2019, 7: 54360-54371.

[5] Selvaraju R R, Cogswell M, Das A, et al. Grad-cam: Vi- sual explanations from deep
networks via gradient-based localiza- tion[C]//Proceedings of the IEEE international conference
on com- puter vision. 2017: 618-626.

[6] Wang Q, Guo W, Zhang K, et al. Adversary resistant deep neural networks with an application to
malware detection[C]//Proceedings of the 23rd ACM sigkdd international conference on
knowledge discovery and data mining. 2017: 1145-1153.

[7] Grosse K, Papernot N, Manoharan P, et al. Adversarial samples for malware
detection[C]//European symposium on research in computer security. Springer, Cham, 2017: 62-
79.

[8] Smutz C, Stavrou A. When a Tree Falls: Using Diversity in Ensemble Classifiers to Identify
Evasion in Malware Detectors[C]//NDSS. 2016.

[9] Biggio B, Corona I, He Z M, et al. One-and-a-half-class multiple classifier systems for secure
learning against evasion attacks at test time[C]//International Workshop on Multiple Classifier
Systems. Springer, Cham, 2015: 168-180.

[10] Al-Dujaili A, Huang A, Hemberg E, et al. Adversarial deep learn-ing for robust detection of
binary encoded malware[C]//2018 IEEE Security and Privacy Workshops (SPW). IEEE, 2018:
76-82.

[11] Li H, Zhou S, Yuan W, et al. Robust Android Malware Detection against Adversarial Example
Attacks[C]//Proceedings of the Web Conference 2021. 2021: 3603-3612.

[12] Breunig M M, Kriegel H P, Ng R T, et al. LOF: identifying density- based local
outliers[C]//Proceedings of the 2000 ACM SIGMOD international conference on Management of
data. 2000: 93-104.

[13] Sandra K, Lee S H. BM3D and Deep Image Prior based Denoising for the Defense against
Adversarial Attacks on Malware Detection Networks[J]. International journal of advanced smart
convergence, 2021, 10(3): 163-171.

[14] Zhang Y, Li H, Zheng Y, et al. Enhanced DNNs for malware classifi- cation with GAN-based
adversarial training[J]. Journal of Computer Virology and Hacking Techniques, 2021, 17(2): 153-
163.

84

