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Abstract 
While the IoT cooperates with big data to deeply reconstruct all walks of life, it also poses 
more severe challenges to data security. Accurate identification of sensitive data is a 
prerequisite for data security. Compared with traditional machine learning algorithms, deep 
learning algorithms show great functionality and flexibility in large-scale data processing. 
However, the existing deep learning-based sensitive data identification methods focus on the 
mining of a single content feature, ignoring contextual information, and the identification 
accuracy of sensitive data with insignificant content features is not high.Therefore, this paper 
proposes a sensitive data comparison algorithm based on spatiotemporal label distribution 
fusion. The algorithm can simultaneously model the spatial and temporal patterns of the data 
flow, mine the spatial and temporal labels, and identify the type of data through a 
comprehensive judgment strategy. It solves the problem of identifying sensitive data with 
insignificant content characteristics. Finally, the algorithm is independently repeated 
experiments on multiple data sets and compared with multiple algorithms. The results show 
that the Best F-score and NAB score of this model are significantly better than other algorithms, 
which are 0.812 and 69.2, respectively. The algorithm proposed in this paper can more 
accurately identify sensitive data. 
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1. Introduction 
Markedness ambiguity is a hot research direction in the field of machine learning. In the existing 

machine learning paradigm, there are mainly two data labeling methods: (1) assigning a label to an 
example; (2) An example assigns multiple tags. Single-Label Learning (SLL) assumes that all the 
examples in the training set are labeled in the first way, while Multi-Label Learning (MLL) [1] allows 
the training examples to be labeled in the second way. Therefore, multi-label learning can deal with the 
ambiguity that an example belongs to multiple categories. Whether it is single-label learning or multi-
label learning, it aims to answer an essential question, that is, "which labels can describe this example?" . 
However, none of them directly answered the relative importance of each marker to this example. 

For many problems in the real world, the importance of different markers is often different. For 
example, a natural scene image [2] is marked with multiple markers such as "sky", "water", "forest" and 
"clouds", but these markers describe the image in different degrees; In facial emotion analysis [3], 
people's facial expressions are often the result of a mixture of many basic emotions (such as happiness, 
sadness, surprise, anger, disgust and fear), and these basic emotions often express different intensities in 
a specific expression, thus presenting complicated emotions. There are many similar examples, because 
once an example is related to multiple markers at the same time, these markers are generally not all 
equally important to the example, but are more likely to have the priority. For applications similar to the 
above examples, a natural method is to assign a real number dx

y to each possible mark y for an example 
x, indicating the degree to which y describes x. Without losing generality, suppose dx 

y ∈[0,1], and 

 
AHPCAI2022@2nd International Conference on Algorithms, High Performance Computing and Artificial Intelligence 
EMAIL: * 86503739@qq.com (Pengfei Yu), sshicongcong@geiri.sgcc.com.cn (Congcong Shi) 

 
© 2022 Copyright for this paper by its authors. 
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  
 

85



further suppose that the tag set is a complete set, that is, all the tags in the set can completely describe an 
example, so ∑ dy

x
y =1. dx

y that meets the above two conditions is called the description degree of y to x. 
For an example, the descriptions of all labels constitute a data structure similar to probability distribution, 
so it is called label distribution, and the process of learning on the data set labeled with label distribution 
is called Label Distribution Learning (LDL) [4]. 

Distributed label learning can be described as follows: 
Let X=Rq represent the feature space of the example, and Y={y1, y2, ...,yc} represent the marker 

space. Given a training set S={ (x1,d1), (x2, d2), ..., (xn,dn)}, the goal of label distribution learning is to 
learn a conditional probability quality function p (y|x)  from S, where x∈X and y ∈ Y. 

Assume that the parametric model of p (y|x) is expressed as p (y|x; θ), where θ is the parameter vector. 
Given the training set S, the goal of label distribution learning is to find a θ, so that given the example 
xi, p (y|x; θ) can generate a marker distribution as similar as possible to the real marker distribution di 
of xi. 

 

2. Related Technology 

2.1 Variational Auto-Encoder 
Variational Auto-Encoder (VAE) is a generative model proposed by Kingma and Welling in "Auto-

Encoding Variational Bayes" in 2014 [5]. Its network structure is consistent with AE, which consists of 
encoder and decoder. A known encoder can encode raw data into a low-dimensional vector, and we call 
this known initial vector a latent vector. The AE algorithm achieves the purpose of reproducing the input 
to the best of its ability, but it cannot generate any unknown data because it cannot generate reasonable 
latent variables at will. To solve this problem, the VAE constrains the encoder to produce latent variables 
that follow a unit Gaussian distribution. 

The biggest difference between VAE and AE is that the AE middle layer outputs the specific values 
of the hidden variables, while the VAE middle layer outputs the specific distribution of the hidden 
variables. Unlike AE, which produces real-valued vectors, VAE's encoder produces two vectors: one for 
the mean and one for the standard deviation. This way, the model can take additional samples from this 
distribution and feed it into the decoder. 

It should be noted that the error of the model is not only the reconstruction error at this time, VAE 
needs to balance the accuracy of the reconstructed data and the fit of the unit Gaussian distribution, so 
the loss function is the sum of two aspects: on the one hand, and Like AE, the output and the input are 
used for comparison, that is, the reconstruction error, which is generally measured by Kullback Leibler 
Divergence (KLD). 

The VAE constraint on the Gaussian distribution of the decoder variable, in addition to enabling it to 
generate random latent variables, also greatly improves the ability of the network to generate pictures. 
For example, assuming that each real number in the interval [0, 10] corresponds to an object name, the 
interval can represent an infinite number of object names. For example, 7.01 corresponds to apples, and 
7.02 corresponds to bananas. When data 7.01 is received, it is known that it represents Apple. 
Considering that real-world data contains a certain amount of Gaussian noise, when the received data is 
7.01, the original value may be any number between [6.5~7.5], such as 7.02 (banana). Therefore, the 
greater the variance of a given data, the less usable information this vector of averages will carry. 
Similarly, in VAE, the more efficient the encoding, the closer the standard deviation vector is to the unit 
standard deviation of the standard Gaussian distribution. This constraint forces the encoder to be more 
efficient and able to generate informative latent variables. This in turn improves the performance of 
generating images. 

 

2.2 Hierarchical Temporal Memory 
Hierarchical Temporal Memory (HTM), also known as cortical learning, is a new generation of 

artificial intelligence algorithms published by Numenta, and has now launched the corresponding Python 
platform and visual recognition software toolbox. HTM originated from the memory-prediction 
framework proposed by Jeff Hawkins in his book "On Intelligence". The framework has a bionic 
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hierarchical structure, which can be modeled by memory patterns and sequences, and information 
between levels is transmitted up and down. HTM is designed to simulate how the neocortex works, 
turning complex problems into pattern matching and prediction. True to its name, this algorithm differs 
from ordinary neural network algorithms in many ways. HTM emphasizes the layering of "neurons". 
Hierarchy, Invariant Representations of Spatial Patterns and Temporal Patterns of information, and 
Sequence Memory are the three core points of HTM. 

The fundamental difference between HTM and neural network algorithms is like the difference 
between general circuits and gate circuits. Connecting the simulated "neurons" according to the structure 
of the neocortex will produce a completely different effect from the general neural network. The general 
neural network pays attention to feedforward, while the HTM algorithm pays more attention to the two-
way communication of information, which is also the reason why neuroanatomy found that the number 
of feedback synapses is no less than that of feedforward. And feedback doesn't get most people's attention. 

In addition, most of the traditional artificial intelligence algorithms are designed for specific task 
objectives, while the HTM algorithm focuses on transforming the problem into a pattern matching and 
prediction problem before solving it, making the "unified theory" of artificial intelligence possible. HTM 
algorithms are based on a lot of anatomy and neuroscience. The HTM algorithm believes that the new 
cerebral cortex is an indispensable and necessary condition for human intelligence, and it is responsible 
for high-level brain activities. Our brains work by matching the various patterns we receive with those 
in memory, predicting and reacting to the information we will receive in the next moment, and so on. 
This is the manifestation of its timeliness (Temporal). 

 

3. Sensitive Data Comparison Model 

3.1 Model Overview 
Fig. 1 is the block diagram of sensitive data identification system based on spatio-temporal tag 

distribution fusion. The system is divided into two parts: hierarchical real-time memory time tag 
extraction stage (top) and variational self-encoder space tag extraction stage (bottom). The former is 
mainly responsible for mining time tags in time series, while the latter is mainly responsible for mining 
space tags in time series. 

As mentioned above, the sequential memory algorithm of hierarchical real-time memory further 
expands the original input information, and allows the algorithm to make a more accurate prediction and 
identification of the next sensitive data in the context of understanding the current input. In this paper, 
the type identification of sensitive data is transformed into a binary classification problem, and the 
distribution of labels is represented by the distribution probability Lt , and a threshold is set. When 
Lt ≥ 1-γ, that is, 1- Lt ≤ γ, HTM considers that the label distribution characteristics of this sensitive data 
belong to Type II; otherwise, the label distribution characteristic of the sensitive data is Type I. VAE can 
accurately grasp the general pattern of current data and reconstruct its label distribution with high 
probability, but can't reconstruct outliers (abnormal label distribution) well. Label distribution is 
characterized by reconstruction probability Pr, and the threshold is also set. When Pr ≤ η, VAE thinks 
that the label distribution characteristics of this data belong to the Type II of spatial label distribution, 
and vice versa is Type I on the spatial label distribution. 

 
Figure 1.  System block diagram of sensitive data identification scheme based on spatiotemporal label 
distribution fusion 
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Figure 2.  Sensitive data comparison scheme determination strategy based on spatiotemporal label 
distribution fusion 

 

3.2 Label Distribution Decision Strategy 
The decision strategy is shown in Fig. 2. The abscissa is reconstruction probability Pr, the ordinate is 

1-Lt , and the horizontal and ordinate ranges from 0 to 1. When the evaluation results of the two 
algorithms are consistent, the evaluation result of either party is the identification result of the sensitive 
data: the sensitive data both judged as Type II are classified as Type II sensitive data (red area "Type II"), 
and the sensitive data both judged as Type I are classified as Type I sensitive data (green area "Type I"). 
When the two algorithms determine the contradiction, the sensitive data will enter the pending state, and 
the system will further determine it: (1) If HTM determines that its time label distribution is the first type, 
but VAE determines that its space label distribution is the second type, the point will enter the pending 
area in the upper left corner (purple area "Pending I"). Reduce the value of sliding window W and observe 
Pr. If  Pr continues to increase until the point enters the first-class area, the system determines that the 
sensitive data is the first-class sensitive data. On the contrary, if  Pr is always less than  η, it is determined 
that the sensitive data is the second sensitive data. (2) If HTM determines that its time label distribution 
is the second category, but VAE determines that its space label distribution is the first category, then the 
point enters the undetermined area in the lower right corner (yellow area " Pending II"). Increase the 
value of sliding window W and observe  1- Lt. If  1- Lt continues to increase until the point enters the 
first-class area, the system will determine the sensitive data as the first-class sensitive data. On the 
contrary, if  1- Lt is always less than γ, it is determined that the sensitive data is the second sensitive data. 

The significance of the above operation is: for the point to be Pending I, the system knows the 
distribution of the time label but not its spatial label. After reducing the window value, if VAE admits 
that it belongs to the first class in this small range, it will be judged as the first class sensitive data, thus 
avoiding the false alarm caused by VAE's inability to respond to the concept drift phenomenon in time. 
For the point to be Pending Ⅱ, the system knows its spatial label distribution but not its time label 
distribution. After increasing the window value, if HTM learns this time pattern in a wider range, the 
prediction error of this point will be reduced, and the corresponding label distribution in the threshold 
range will change this point into the first sensitive data, thus avoiding the false alarm caused by HTM's 
inability to learn the complete distribution pattern due to its small window value. At the same time, the 
multi-terminal control of time-space distribution label fusion makes the system solve the problem of 
"whether the value of the sample point is right" and "whether the sample point should come at this time", 
which greatly reduces the false alarm rate and false alarm rate, and makes the model more detailed and 
three-dimensional.  

 

4. Experiments and Results 
For the test of sensitive data comparison, this paper selects 12 typical IoT data sets (three data sets 

for each type) from an open source real-world data set [5, 6], including CPU utilization, intelligent 
industrial system temperature sensor, Electro Cardio Gram (ECG) and HTTP service response delay. 

Fig. 3 shows the comprehensive detection results of sensitive data comparison scheme based on 
spatio-temporal distribution tag fusion. Fig. 3 (a), 3 (b), 3 (c) and 3 (d) correspond to data sets A, B, C 
and D, respectively. A represents the data set of CPU utilization, B represents the data set of temperature 
sensor, 
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(a) CPU usage                                 (b) Temperature 

 

(c) ECG                  (d) HTTP service delay 

Figure 3.  Comprehensive detection results obtained by the sensitive data comparison scheme  
 

TABLE 1.  MODEL SCORES OBTAINED BY MULTIPLE ALGORITHMS USING NAB SCORING MECHANISM 
Algorithm Standard Score Reward Low FP Reward Low FN 

perfect 100 100 100 
ST 69.5 62.1 72.4 

HTM only 31.2 30.8 34.9 
VAE only 43.1 39.9 46.7 
LSTM-AE 50.8 46.4 55.3 

LSTM-VAE 30.3 25.6 33.8 
random 8.5 3.1 11.5 

null 0 0 0 
 
C represents the data set of ECG, and D represents the corresponding delay of HTTP service. The 

proportion of sensitive data markers in the original data set is 10%. In the figure, the abscissa is the time 
axis, the blue line is the original data, the red line is the spatial label result obtained from the encoder 
based on variation, and the green line is the time label result obtained from hierarchical real-time memory. 
It can be seen from the figure that VAE can stably and successfully detect the corresponding spatial tags 
for obvious abnormal changes, such as sudden peaks and valleys. Fortunately, HTM can sensitively 
detect subtle changes and successfully detect the time stamp. 

Table 1 shows the model scores obtained by various algorithms using NAB scoring mechanism. The 
result of "null" detector is 0, the result of "perfect" detector is 100, and the result of "random" detector is 
the average of a series of random seeds. In addition, the algorithms involved in the comparison are as 
follows: Spatio-temporal sensitive data comparison schemes ST(Spatio-Temporal), HTM only, VAE 
only, LSTM-AE [7-9] which uses long short term memory, and LSTM-VAE [10-12] which uses long 
short term memory. Standard Score is the score obtained by NAB standardized calculation (AFP = AFN) 
after all data sets are tested, Reward Low FP is the score obtained by testing and calculating FP preference 
NAB (AFP > AFN) on D1~D3 data sets, Reward Low FN is the score obtained by testing and calculating 
FN preference NAB (AFP < AFN) on C1~C3 data sets. 

Generally speaking, ST, the spatio-temporal fusion detection scheme in this paper, has the highest 
score, and the self-encoder with LSTM is ranked second, followed by the spatial detection algorithm that 
only uses VAE. HTM only and LSTM-VAE have the lowest scores. The results show that the spatio-
temporal fusion measurement model proposed in this paper has excellent detection performance in 
anomaly detection tasks, and it also proves the effectiveness of using LSTM as encoder and decoder to 
fit time series. 
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5. Conclusions 
To solve the problem that the existing machine learning algorithms have low recognition accuracy 

for sensitive data with insignificant features, this paper studies the sensitive data label generation 
technology and sensitive data label comparison technology, then proposes a sensitive data comparison 
model based on spatio-temporal label distribution fusion, and formulates a label distribution 
comprehensive judgment strategy for this model, which divides the sample data into the first sensitive 
data, the second sensitive data and the pending data. For the sample points in the undetermined area, 
dynamically debug by changing the window size, and make two rounds of judgment to get the final 
detection result. Experimental results show that the Best F-score and NAB score of this model are 
obviously due to other algorithms, which are 0.812 and 69.2 respectively. 

However, in the experiment of this paper, the classified experimental data is only part of the training 
set of the original data set. Next, we can try to test the classification of the complete data set, which is of 
great significance to investigate the generalization ability and multi-classification ability of the model 
(up to 39 abnormal and 1 normal, totaling 40 kinds). 
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