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Abstract
Pattern condensed representations are an important concept in inductive databases. They aim at
summarizing the information contained in a set of patterns. This paper is not an exhaustive survey of the
20 years of proposals on condensed representations but rather a general overview. We propose a simple
formalism modeling a large part of the exact and approximate condensed representations. Through this
modeling, we show that many of the condensed representations are based on the same foundations, we
highlight the compression and generalization sides of the condensed representations and we describe
several trends. Finally, we discuss the current extents of the work on condensed representations within
pattern mining.
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1. Introduction

Pattern condensed representations is a central concept in knowledge discovery in inductive
databases [1] to cope with the “pattern flooding which follows data flooding” that is unfortu-
nately so typical in exploratory Knowledge Discovery in Databases (KDD) processes. The key
idea of pattern condensed representations is to take benefit of the redundancy of a collection
of patterns to construct a concise representation of the patterns instead of mining all patterns.
Given a set of patterns 𝑆, the principle of pattern condensed representations is to compute a set
𝑅 of representative patterns, 𝑅 being a representation of 𝑆 which is lossless (Step 2 in Fig. 1) and
𝑅 has to be as concise as possible. Then the whole collection of patterns 𝑆 can be efficiently
derived from 𝑅 (Step 3 in Fig. 1) without coming back to data.

The research field on pattern condensed representations began at the origin of pattern
mining. A lot of works were conducted about twenty year ago to define pattern condensed
representations addressing the frequency measure [2, 3, 4, 5, 6, 7, 8] to name a few. Pattern
condensed representations are a large part of the tutorial entitled “Inductive databases and
Constraint-based Mining”at ECML/PKDD 2002 [9]. The paper “Mining All Non-derivable
Frequent Itemsets” [10] won the award of the best paper at ECML/PKDD 2002. This paper
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Figure 2: Examples of uses of CR

presents deduction rules to derive tight bounds on the frequency of patterns. These rules
allow for constructing a minimal representation for all frequent itemsets. Ten years after, these
authors won the ten year award talk with this paper.

More generally, many research directions on condensed representations have been developed.
The principle has been extended from items to other pattern languages such as sequences [11, 12]
or graphs [13]. In order to improve the efficiency of the approach and to get more concise
representations, approximate condensed representations [3] were proposed (with approxi-
mate representations, a bounded error is tolerated when the whole collection of patterns is
regenerated). On the other hand, a few works address measures other than frequency [14, 15].

At the beginning, pattern condensed representations focus on the obsession with the speed
of algorithms. Literature emphasizes that the total running time of Step 1 and 2 is in general
much smaller than that of Step 3 (cf. Fig. 1). Interestingly, the pattern mining community
over time has witnessed a sharp shift from efficiency-based approaches to multiple uses of
pattern condensed representations. This interest comes from the nice properties satisfied by the
condensed representations and their representative patterns. As an example, let us consider the
frequent closed patterns which are the representative patterns of condensed representations
based on closed patterns. A closed pattern captures the maximum amount of similarity of a
set of data, which is an essential property in conceptual clustering [16]. Several data mining
methods in the clustering field are based on these patterns [17, 18]. Closed patterns also optimize
frequency-based measures [19] and looking for closed patterns is enough to provide the best
patterns according to these measures. Regarding associative classification [20], free or 𝛿-free
patterns are suitable to design rules minimizing the risk of overfitting by pointing the minimal
information allowing to conclude on a class for a set of data [21, 22]. Fig. 2 provides a few
examples of uses of representative patterns.

In this paper, we propose a simple formalism modeling a large part of the exact and approxi-
mate condensed representations. This formalism defines an abstraction on the characteristics of
the condensed representations and it is based on three ingredients: a function 𝑓which represents
the measure or the query according to which the condensation is performed, a function 𝜌𝑅 pro-
viding the representative patterns and a binary relation ≃ expressing the relationship between
a pattern and its representative. Presenting pattern condensed representations through this
formalism gives an unifying point of view enabling us to better understand the links between



the different types of condensed representations. Especially, we think that the relation ≃ is
an original characterization of condensed representations and nicely explains the differences
between exact, approximate and dominant representations. In short, our formalization shows
that many of the condensed representations are based on the same foundations. Especially,
this formalization highlights the compression and generalization sides of the condensed repre-
sentations. We propose a brief review of the 20 years of condensed representation proposals
with some messages. Finally, we draw up a few research lines of pattern mining as a legacy of
condensed representations.

The paper is not an exhaustive survey of the 20 years of proposals on condensed representa-
tions. For more details on extraction techniques and methods for condensed representations of
frequent patterns, we recommend reading [23]. Note that we focus on the research contributions
of the pattern mining community but there are strong links and obvious intersections with the
Formal Concept Analysis field [24].

The guidelines of the paper are as follows. We start by recalling preliminaries on pattern
condensed representations and we describe our formalism to model condensed representations.
In Section 3, we present exact condensed representations. Approximate and dominant represen-
tations are reported in Section 4. Finally, we discuss in Section 5 the current extents and trends
of the work on condensed representations within pattern mining.

2. Preliminaries

Basic definitions Condensed representations of patterns take place in the framework of
inductive databases [1, 25]. Given a database 𝐷, there is a language 𝐿 which describes the
sentences (or subgroups or patterns) of 𝐷. 𝐿 is provided with a specialization relation ⪯. For
example, 𝐿 can describe itemsets, sequences, trees, graphs or association rules. Note that <
also denotes an arbitrary total order over the language 𝐿. Pattern mining is the art of finding
interesting sentences in 𝐿, and this interestingness is modeled by a function 𝑓, whose range is
either a number – 𝑓 is a measure – or a Boolean – 𝑓 is a constraint or a query. In general, pattern
mining methods return collections of patterns, named theory, that are far too large and hold
many redundancies. Quite quickly, it appeared necessary to summarize (or even generalize)
these patterns based on the notion of representation:

Definition 1 (Representation). Given a set of patterns 𝑆 ⊆ 𝐿 and a binary relation ≃⊆ 𝐿 × 𝐿, a
set of patterns 𝑅 ⊆ 𝑆 is a representation of 𝑆 for ≃ iff there exists a surjective function 𝜌𝑅 ∶ 𝑆 → 𝑅
such that 𝑋 ≃ 𝜌𝑅(𝑋).

Representations are precious because they allow to focus on particular patterns whose value
of the interest function are emblematic (for an underlying relation ≃ that is not necessarily
symmetrical). In the following, we will wonder if the representation is exact (see Section 3),
i.e. if the pattern in 𝑅 gives the exact value of the function of the representative pattern
in 𝑆 (𝑋 ≃ 𝑌 ⇔ 𝑓 (𝑋) = 𝑓 (𝑌 )) or if it induces good properties on 𝑓 (see Section 4) such as
𝑋 ≃ 𝑌 ⇔ 𝑓 (𝑋) ≤ 𝑓 (𝑌 ).

For example, let us consider the representation offered by the closed patterns. These patterns
are useful in Boolean databases; the language here is the powerset of the set of items. In such



databases, one could be interested in finding the frequent itemsets. The closed patterns are
the patterns whose supersets have a lower frequency, or they are the maximal elements of the
equivalence class of support. Then, focusing on the only closed patterns allows to find the
frequency of each pattern.

Interest of representations In order to be actionable, a condensed representation has to
fulfill different requirements. First of all, the condensation has to be effective, i.e. the cardinal
of 𝑅 should be lower than this of 𝑆. In practice, there are orders of magnitude between these
cardinals but there is no general formal relation between these cardinals. Indeed, extreme
cases exist where datasets have 2𝑛 frequent patterns but only one closed pattern (think about
a database where each object is in relation with each item). A contrario, there are situations
where each frequent pattern is closed.

Second, algorithms for computing the representative patterns should be at least as efficient
as those used for computing the whole set of patterns. In fact, there is usually some extra
cost to compute the representative patterns, but since there are far fewer of them, the overall
calculation of the representation is paid for. Most of time, the representative function has nice
properties: it is either intensive (𝜌𝑅(𝑋) ⊆ 𝑋) or extensive (𝑋 ⊆ 𝜌𝑅(𝑋)). As the interestingness
function 𝑓 underlying of ≃ is also increasing or decreasing according to the partial order, it
gives rise to (anti-)monotone constraints which facilitate the pruning.

Third, the condensed representation should be useful and actionable. First approaches on
condensed representation tried to show that it was easy to regenerate the whole collection
starting only from the representation (see [26] for the example of the association rules), though
the regeneration of the whole collection was not always useful. One could prefer an inductive
database approach [27]: information on a pattern could be found using the representation
function by querying the representation, without accessing the database. On the other hand,
multiple direct uses of these representations were found (classification, clustering, basis of
association rules) that avoid the regeneration of the whole collection.

Problem formulation Given a set of patterns 𝑆 and a binary relation ≃, the goal is to find a
smallest representation 𝑅∗ of 𝑆 for ≃:

𝑅∗ = argmin
𝑅⊆𝐿

|𝑅| subject to (∀𝑋 ∈ 𝑆)(𝑋 ≃ 𝜌𝑅(𝑋))

Of course, the naive computation of this expression by enumerating all the possible set of
patterns is just impossible. Hence, the idea is rather to enumerate the patterns 𝑋 ∈ 𝑆 to be
represented and to select for each one its representative 𝜌𝑅(𝑋). For example, in Section 3, we
will define the condenser function which associates to each pattern a closed pattern to build a
condensed representation of frequent patterns.

This formalization of the representation 𝑅∗ puts forward an optimization problem where one
of the smallest representations is sought. At first sight, it is just a compression problem where
the patterns 𝑅∗ allow to find all the information about 𝑆 with an imprecision controlled by ≃.
This compression is also reminiscent of the Minimum Description Length principle where this
smallest pattern set 𝑅∗ would be the best code table of the pattern set 𝑆. With this perspective,



𝑅∗ appears rather as a generalization of 𝑆. In practice, we will see that this point of view is
reinforced by the choice of the patterns which are the most general/specific (see the notion of
condenser function in Section 3) and by the choice of the ≃ relation to better generalize the
data in spite of the noise or a non-compressible function 𝑓 (see Section 4).

3. Exact Condensed Representations

Definition of exact condensed representation Intuitively, a condensed representation is
just a set of patterns extracted individually from groups of contiguous patterns having the same
value for a given function 𝑓. Considering Definition 1, each pattern 𝑋 in 𝑆 and its representative
pattern 𝜌𝑅(𝑋) have the same value for 𝑓 meaning that 𝑋 ≃ 𝑌 ⇔ 𝑓 (𝑋) = 𝑓 (𝑌 ):

Definition 2 (Exact Condensed Representation). Given a set of patterns 𝑆 ⊆ 𝐿 and a func-
tion 𝑓, a representation 𝑅 of 𝑆 is an exact condensed representation adequate to 𝑓 iff (∀𝑋 ∈ 𝑆)(𝑓 (𝑋) =
𝑓 (𝜌𝑅(𝑋))).

Thanks to an exact condensed representation, it is possible to find exactly the value of the
function 𝑓 for any pattern of 𝑆 without the original database 𝐷 (considering of course that we
keep the value of 𝑓 for the representative patterns of 𝑅). For example, it will be possible for a
pattern to know if it is frequent (𝑓 is then 𝑋 ↦ freq(𝑋 , 𝐷) ≥ 𝛾, see Section 3.1) or more precisely,
how frequent it is (𝑓 is then the frequency freq, see Section 3.2). Note that only the pattern set 𝑆
is represented. In practice, if we query the representative function 𝜌𝑅 with a pattern outside of
𝑆, we will not find any representative. In such a situation, we may associate a default value (for
instance, false for a predicate or 0 for the frequency). Other approaches recommend adding
parts of the negative border to the condensed representation [23, 28].

Table 1 gives details about the most common condensed representations including maximal,
closed, (𝛿-)free and strong patterns. For each representation, it precises the adequate function 𝑓
being used, how is defined the representation and what is the representative function 𝜌𝑅. This
table suggests several remarks. First of all, the representation function 𝜌𝑅 is generic when the
representation is known: it links a pattern with this of the representation which is directly
above or below (according to the direction of the condenser function, see below). Note that
when several representative patterns in 𝑅 are available for a given pattern, it is necessary to use
an arbitrary order < in order to retain only one pattern. Second, the representative function 𝜌𝑅
uses its image set. That means that the entire image set has to be computed before being able
to compute the representative.

Condenser function To compute the condensed representation, it is therefore not possible
to take advantage of the representative function 𝜌𝑅 which is based on 𝑅. The direct computation
of the definition of the condensed representation 𝑅 as defined in Table 1 is not very interesting
because it relies on the complete extraction of the set of patterns 𝑆. Another way to avoid
this would be to use the adequate function to compute the representative pattern. In fact,
there is a strong connection or even a duality between the definition of the representation
and the representative function. For example, for the closed patterns, one could benefit from
𝑋 ↦ max⊆{𝑌 ∈ 𝑆 ∶ 𝑋 ⊆ 𝑌 ∧ 𝑓 (𝑌 ) = 𝑓 (𝑋)}. It is then possible to go through the patterns and



to focus on the representative ones. More generally, most exact condensed representations will
just retain, for each pattern, the largest or the smallest contiguous pattern with respect to an
order relation ⪯ having the same value for the function 𝑓:

Definition 3 (Condenser function). Given a function 𝑓 and an order relation ⪯, the condenser
function, denoted by 𝜅𝑓 ,⪯, is defined as 𝑋 ↦ max⪯{𝑌 ∈ 𝐿 ∶ (∀𝑋 ⪯ 𝑍 ⪯ 𝑌)(𝑓 (𝑍) = 𝑓 (𝑋))}.

Definition 3 means that the condenser function returns the most specialized patterns w.r.t ⪯
having the same value for 𝑓. Note that for some order relation or some languages (e.g, for the
graphs [29]), the condenser function returns several patterns, among which one will choose in
an arbitrary way, for example according to an enumeration order.

The condenser function is useful for computing the condensed representation 𝑅 by computing
the representative of each pattern in 𝑆. In contrast, it cannot be used as a representative function
because it involves the adequate function 𝑓. Instead, it is enough to take the closest pattern with
respect to the order relation ⪯. The definition of the function 𝜅𝑓 ,⪯ is simple but its computation
may be costly in practice. However, in many cases, its use is efficient, especially when it returns
only one representative pattern for any pattern in 𝐿. Indeed, in such a situation, the condenser
function is a closure operator leading to nice pruning properties of the search space or to
transposition trick [30].

3.1. Borders, frontiers and version spaces

The first proposals of condensed representations [25] were just interested in summarizing a
predicate 𝑞. Typically, they aimed at representing concisely by 𝑅 the set 𝑆 of all frequent patterns.
In practice, a pattern 𝑋 not represented in 𝑅 means that 𝑋 does not belong to 𝑆 and that it does
not satisfy 𝑞.

The maximal (resp. minimal) border of patterns generalizes this principle to the set of anti-
monotone (resp. monotone) Boolean predicates 𝑞 i.e., having a downward (resp. upward) closed
solution space. Consequently, it is possible by using a maximal border and a minimal border
together to represent any predicate generating a convex solution space [31]. For more complex
constraints, it is possible to decompose a theory into a set of convex spaces [32]. Note that the
maximal (resp. minimal) border can be calculated by applying the condenser function 𝜅𝑞,⪯ (resp.
𝜅𝑞,⪰) to all patterns in 𝑆. Dually, it is also possible to consider 𝐿 ⧵ 𝑆 by considering negative
borders [25]. Negative borders represent rather the patterns not belonging to the set of patterns
𝑆. This is one of the rare cases where 𝑅 is not included in 𝑆. Figure 3 illustrates the maximal
patterns and the negative minimal border for a downward closed space 𝑆. Note that the most
general patterns w.r.t ⪯ are at the top of the lattice represented as a diamond.

These boundary techniques compress very strongly the set of patterns satisfying a monotone
and/or anti-monotone constraint. Beyond that, these borders delimiting a concept in the
language is similar to the work on generalization in symbolic machine leaning [33] with version
spaces.

From a compression perspective, all the patterns verifying an (anti-)monotone constraint can
be regenerated without loss. But, it may be necessary to have more precise information on each
pattern with respect to an interestingness measure motivating the condensed representations
introduced in the next section.



Figure 3: Illustration of borders for a downward closed space 𝑆

Figure 4: Illustration of minimal/maximal patterns of equivalence classes for the itemsets

3.2. Equivalence classes

Exact condensed representations for measures are based on the concept of equivalence class.
All patterns that are comparable with respect to the order relation ⪯ and have the same value
for the measure 𝑚 belong to the same equivalence class. For example, in the case of frequency,
this means that two patterns in the same equivalence class share the same transactions in the
dataset. Then, a representative is chosen from each of the equivalence classes. In order to easily
find the representative of a pattern, the simplest way is to choose the minimal patterns (named
free patterns1) or maximal patterns (named closed patterns). It turns out that these patterns
also have good properties to be computed efficiently and to be used in machine learning. In
the literature, maximal patterns of equivalence classes are clearly the most used. A literature
review in 2014 indicated that there were 4 times more papers dedicated to closed patterns than
dedicated to free patterns [34]. Figure 4 illustrates the closed and free patterns for the itemset
language. Each equivalence class is represented by a shape where all patterns are comparable
w.r.t of inclusion and of equal frequency. For each equivalence class, the most general itemsets
are free while the most specific itemset is closed.

Introduced in [6], the frequent closed itemsets are the largest patterns with equal frequency.
They correspond exactly to the condensed representation computed by 𝜅freq,⊆, which is the
main closure operator used in Formal Concept Analysis. Interestingly, it has been shown that

1Also named key patterns or generators.



this representation of closed patterns is also adequate for all measures involving sub-datasets
𝐷𝑖 ⊆ 𝐷 (e.g., confidence or growth rate) [35, 36]. In contrast, specific condensed representations
are necessary for other interestingness measures. For example, it is possible to use the 𝜅𝑓 ,⊆
operator for aggregate functionsmin,max or sum [15]. The notion of closed patterns has mostly
been extended to a large set of languages including sequences [37], trees [38], graphs [39], and
so on. There are also works that can take into account various languages by exploiting the
notion of set systems [40].

As mentioned before, the free patterns [4] are the minimal patterns of the equivalence classes.
They correspond exactly to the patterns computed with 𝜅freq,⊇. There are also proposals for
other interestingness measures including the disjunctive frequency [41] and the bond measure
[42]. For most languages, several minimal patterns may exist for the same equivalence class
leading to difficulties during their computation. However, pattern mining methods have been
proposed for sequential patterns [11, 43], graphs [13] and set systems [44]. It should be noted
that several generalizations of free patterns exploit the inclusion-exclusion principle such as
non-derivable itemsets [10] (with a non trivial extension to sequences [45]) or 𝑘-free [46], which
is very specific to frequency2. This principle allows to eliminate some free itemsets whose
frequency can be deduced from the others [23]. Free patterns are often used as left-hand sides
for association rules [12] as a free pattern captures the shortest information to infer a rule
conclusion and therefore reducing the risk of overfitting. Apart from this usage, these patterns
and their generalization have received much less attention in the literature than closed patterns.
One possible explanation is that it rather captures a lack of correlation between the items
belonging to the pattern.

4. Non-Exact Condensed Representations

4.1. Approximate condensed representations

The cost of extracting exact condensed representations may remain high (especially in noisy
data). This observation explains why from the origin of condensed representations researchers
are looking for approximate condensed representation frameworks [27]. In short, an approx-
imate condensed representation is a set of patterns that enables to recover the values of the
function 𝑓 on the patterns of 𝑆 but eventually with some loss of precision (bounded by an error
𝜖). Considering Definition 1, it means that given the adequate function 𝑓, the similarity 𝑋 ≃ 𝑌
equals to |𝑓 (𝑋) − 𝑓 (𝑌 )| ≤ 𝜖 leading to the following definition:

Definition 4 (Approximate Condensed Representation). Given a set of patterns 𝑆 ⊆ 𝐿 and
a function 𝑓, a representation 𝑅 of 𝑆 is an approximate condensed representation adequate to 𝑓 with
an error 𝜖 ≥ 0 iff (∀𝑋 ∈ 𝑆)(|𝑓 (𝑋) − 𝑓 (𝜌𝑅(𝑋))| ≤ 𝜖).

𝛿-free [3] itemsets form one of the most famous approximate condensed representations. The
key intuition of a 𝛿-free itemset 𝑋 is the absence of rule between 𝑋 and its subsets with at most
𝛿 exceptions. The higher 𝛿, the more concise the representation. The freeness of itemsets is

2We think that these condensed representations are purely (nice) compression techniques, but the representative
patterns have a lower ability to generalize.



anti-monotone in that sense that if 𝑋 is not a free itemset then none of its supersets can be a
free itemsets, leading to efficient mining algorithms. Beyond a higher conciseness and a lower
mining time, this representation allowed to induce classification rules with a controlled and
high confidence [22]. Again, the compression initially sought has given way to uses (without
regeneration) in symbolic machine learning.

Approximate condensed representations have clearly received less attention than exact
condensed representations because the latter do not generalize naturally, especially for maximal
patterns of equivalence classes such as [47]. However, a generalization framework to different
interestingness measures exists for free patterns [48] assuming that the language is representable
by a set system. As for the 𝛿-free, it is then possible to tolerate an error 𝜖 for aggregate functions
and disjunctive function.

4.2. Dominant Representations

Constraint-based pattern mining just returns too many patterns even by using condensed
representations. It then appears necessary to switch to optimization techniques by selecting
only the best patterns. It is relevant to look at representations where we no longer have an
equality between the represented pattern 𝑋 ∈ 𝑆 and its representative 𝜌𝑅(𝑋), but only a upper
bound.

Considering Definition 1, it means that given the adequate function 𝑓, the similarity 𝑋 ≃ 𝑌
equals to the non-symmetrical relation 𝑓 (𝑋) ≤ 𝑓 (𝑌 ) leading to the following definition:

Definition 5 (Dominant Representation). Given a set of patterns 𝑆 ⊆ 𝐿 and a function 𝑓, a
representation 𝑅 of 𝑆 is a dominant representation for 𝑓 iff (∀𝑋 ∈ 𝑆)(𝑓 (𝑋) ≤ 𝑓 (𝜌𝑅(𝑋))).

It is easy to see that any exact condensed representation adequate to 𝑓 is also a dominant
representation for 𝑓. But, more interestingly, there are dominant representations with situations
where 𝑓 (𝑋) is strictly less than 𝑓 (𝜌𝑅(𝑋)). For example, 𝛿-free forms a dominant representation
for frequency. There are even more favorable situations where a condensed representation
adequate to 𝑓 can serve as dominant representation for another function 𝑔 (whereas 𝑅 is not a
condensed representation adequate to 𝑔). For instance, let us consider a dataset 𝐷where 𝐷1 ⊆ 𝐷,
the set of closed patterns in 𝐷1 forms a condensed representation adequate to freq(𝑋 , 𝐷1) (i.e.,
freq(𝑋 , 𝐷1) = freq(𝜅freq𝐷1 ,⊆(𝑋), 𝐷1) where 𝜅freq𝐷1 ,⊆ is the closure operator in 𝐷1). This same
representation is a dominant representation with respect to the frequency-based measures
because the closed pattern of 𝑋 in 𝐷 is a subset of the closed pattern of 𝑋 in 𝐷1 implying,
freq(𝜅freq𝐷,⊆(𝑋), 𝐷) ≥ freq(𝜅freq𝐷1 ,⊆(𝑋), 𝐷). This dominant representation is relevant because it
retains the patterns characteristic of 𝐷1 by maximizing many frequency-based interestingness
measures such as the growth rate[35] or confidence [36, 49].

This principle can be generalized to all condensed representations:

Property 1. Given an exact condensed representation 𝑅 of a pattern set 𝑆 ⊆ 𝐿 adequate to a
function 𝑓 with 𝜌𝑅 as representative function, 𝑅 is also a dominant representation for 𝑔 if (i) 𝜌𝑅 is
extensive w.r.t ⪯ and (ii) 𝑓 (𝑋) = 𝑓 (𝑌 ) implies 𝑔(𝑋) ≤ 𝑔(𝑌 ) for all 𝑋 ⪯ 𝑌.



This property is straightforward, but very relevant in practice. For instance, the area measure
𝑋 ↦ |𝑋 | × freq(𝑋 , 𝐷) has no interesting condensed representation because of the length.
Nevertheless, the condensed representation of closed patterns is a dominant representation
because, with equal frequency between two patterns 𝑋 ⊆ 𝑌, 𝑌 has a larger area. The computation
of skypatterns with respect to a set of measure 𝑀 benefits from a dominant relation for the
function 𝑋 ↦ (𝑚(1)(𝑋), … , 𝑚(𝑘)(𝑋)) [50]. Indeed, given a set of measures 𝑀 = {𝑚(1), … , 𝑚(𝑘)},
a pattern in 𝐿 is a Pareto-optimal pattern (or skypattern) with respect to 𝑀 iff there is no other
pattern 𝑌 such that 𝑚(𝑖)(𝑋) ≤ 𝑚(𝑖)(𝑌 ) for 𝑖 ∈ {1, … , 𝑘} with at least one measure 𝑚(𝑗) where
𝑚(𝑗)(𝑋) < 𝑚(𝑗)(𝑌 ).

In the end, dominant condensed representations have a twofold advantage when a task
requires a complex function 𝑓 for which no exact condensed representations exist. First, they
allow to build very concise representations adequate to the targeted task. Secondly, the selected
patterns are a good compromise between diversity and quality. Indeed, the dominant condensed
representations cover well the whole language 𝐿 unlike the top-𝑘 patterns, which often focus
on a small part of the language leading to strong redundancies between patterns.

5. Discussion

In this paper, we have proposed a simple formalism modeling a large part of the exact and
approximate condensed representations. This formalization shows that many of the condensed
representations are based on the same foundations. It characterizes differences between exact,
approximate and dominant representations. Whereas a condensed representation is often seen
as a compression tool, the proposed framework clarifies the compression and generalization
sides of the condensed representations.

The end of the paradigm of the exhaustive search. There was an active research around
pattern condensed representations during the “golden age” of pattern mining (2000-2005) with
notably two consecutive awards at ECML/PKDD in 2002 [10] and 2003 [46]. However, ten years
after these successes, when he received at ECML/PKDD 2012 the award for the most influential
paper, Toon Calders gave the following message: “Please, please stop making new algorithms
for mining all patterns”. Clearly, we observe that works on pattern mining move from an
exhaustive search to non-exhaustive methods. Is the end of the paradigm of the exhaustive
search means that this paper is the last survey on condensed representations? We think that
ideas and principles of condensed representations are disseminated in several research directions
that we sketch below.

Advance uses of condensed representations. Condensed representations are used for
their good generalization properties which are further developed with approximate and dom-
inant representations. A lot of data mining tasks such as the search of contrast patterns,
the design of classification systems and more generally the design of models take benefit of
condensed representations. This trend has been accompanied by works on pattern set min-
ing [51, 52] which, even better, guarantee a complementarity between patterns in order to
reduce redundancies. On the other hand, for the past few years, optimization techniques are



introduced in pattern mining to select the best patterns according to given criteria. Dominant
representations are especially useful in this context (cf. Section 4.2). Condensed representations
are at the basis of a recent method of multi-objective optimization of several functions [53].
Contrary to pattern sets, optimization in condensed representations are local (the quality of a
pattern in 𝑅 does not depend on the other patterns of 𝑅).

Modern compression techniques for pattern mining. The idea of compressing to keep
the best patterns is still at the heart of most of the recent pattern mining methods using notably
the Minimum Description Length principle [54, 55] or Boolean matrix factorization [56]. A
major difference is that these works are based on the compression of the dataset, and not on a
collection of patterns extracted from the dataset. The MDL principle is looking for the simple
model which fits the data. In practice, a trade-off is done between the complexity of the model
and the fit of the model to the data. Compression is used as a tool to compare models. Many
data mining tasks (e.g. segmentation, classification, missing values) have been revisited through
MDL [57, 58]. The main objective when applying the MDL principle is to moved from mining
collections of good patterns to mining good collections of patterns.

Interactive pattern mining. From the perspective of inductive databases, condensed repre-
sentations were seen as caches of patterns to speed up answers to future queries. The idea was
really to extract as much information as possible to be able to answer any query. Nowadays,
interactive methods dedicated to pattern mining rather exploit fast and repeated extractions
by benefiting from Beam Search [59], Monte Carlo Tree Search [60] or even, sampling [61]
methods. Indeed, these non-exhaustive techniques have the advantage of being fast enough to
extract patterns on the fly while relying on complex interestingness measures, updated at each
iteration by integrating user feedback.
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Examples of representations
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