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Abstract
A core idea of inductive databases was the creation of systems that can be queried declaratively for
patterns and models. A natural question during the development of inductive databases was how such
systems would work for one of the most popular models in machine learning, the decision tree. In our
first work on this topic, in 2007, we introduced DL8, an algorithm that showed how to calculate optimal
decision trees from itemset patterns. Driven by an interest in imposing additional requirements on
predictive models, such requirements of interpretability and fairness, in recent years the calculation of
optimal decision trees has gained a lot of interest again. In this context, we proposed an extension of
DL8, DL8.5, which obtained better performance than competitor systems. This abstract describes how
research on inductive databases led to these recent systems and provides an overview of these systems.
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1. Introduction

A core idea of inductive databases was to create systems similar to database systems that would
allow a user to query a database for patterns and models in a declarative manner: a user could
specify requirements on patterns or models in a declarative language, after which this system
would be responsible for finding the patterns or models satisfying the requirements. Initially, a
lot of this research focused on developing systems for patterns: indeed, in the first iterations of
the international workshop on Knowledge Discovery using Inductive Databases (KDID), the
majority of the papers focused on pattern mining [1, 2], and languages were studied that would
allow a user to impose constraints on patterns.

However, as it was recognized that predictive models are very important in machine learning
and data mining, subsequent studies considered inductive databases that would support models
as well. One such model was the decision tree, as reported on in the KDID workshop of
2006 [3, 4]. The general idea was to create a system that would allow users to formulate and
answer queries such as:

Given a database 𝐷
Find a classification tree 𝑇
Such that
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• accuracy(𝑇 ) is maximal
• depth(𝑇 ) <maxdepth
• ∀𝑙 ∈ leaves(𝑇 ): support(𝑙) ≥minsup

Here maxdepth and minsup are parameters specified by the user, and users would have the
ability to add additional constraints, as required by the application context. These queries would
be expressed in a form of SQL [3] (following the ADReM approach using Mining Views) or
using a form of logic [4]; an underlying algorithm would find trees satisfying these conditions.

The constraints proposed initially were relatively simple in nature, involving characteristics
such as accuracy, size and depth. However, soon it was realized that other constraints could
also be relevant, such as on the privacy preserving nature or the cost of the decision trees, and
these were added to the language of constraints that inductive databases could support [5].

For many years, this work went unnoticed. However, in recent years the interest in imposing
additional requirements on predictive models has risen significantly: issues of explainability,
fairness, and privacy have grown dramatically in importance. This has led to a renewed interest
in the question of how to impose requirements on decision tree models. Here, the work on
inductive databases has recently been shown to be particularly relevant. In this abstract, we
present a short summary of how the work on inductive databases led to recent state-of-the-art
algorithms for learning optimal decision trees.

2. Algorithms in Inductive Databases

While creating a language for formulating some form of decision tree queries is not very
difficult, an important challenge for inductive database systems was how to create algorithms
for answering these queries. Traditional algorithms for learning decision trees, such as CART,
are heuristic in nature and have no functionality to ensure that good trees are found under
constraints [6]. Indeed, one variant of the decision tree learning problem under constraints
was shown in 1976 to be NP complete and similar problems are assumed to be NP complete as
well [7].

A first attempt to address this problem in the context of inductive databases was made by
Fromont et al. [3] in 2006. This work proposed an exhaustive search algorithm that would
enumerate all possible decision trees up to a certain size, filtering out those that would not
meet the constraints specified by the user. When accuracy was used as optimisation criterion, a
bound based on accuracy was also used to prune the search space.

The scalability of this approach was still limited; it only worked on all but the smallest
databases. A challenge remained how to answer inductive queries on more realistic databases.

One idea that surfaced here was based on the observation that significant effort in the inductive
databases community had been spent on how to build efficient algorithms for pattern mining
and itemset mining in particular [8, 9]. We asked the question: given the high performance of
itemset mining algorithms, can databases with patterns be used to efficiently find decision trees
under constraints?

In 2007, this led to our proposal for the DL8 algorithm (‘Decision trees from Lattices’) [10]. The
core idea underlying this algorithm is that a decision tree consists of paths, paths are itemsets,



and hence decision trees can be constructed from itemsets. Indeed, our initial implementation
in fact operated on the output of a frequent itemset mining algorithm (Eclat).

Compared to earlier algorithms, a key element of the DL8 algorithm is that it solves the
problem of finding a decision tree using dynamic programming. For the following problem:

[Depth-Constrained Accurate Trees]
Given a Boolean database 𝐷 with examples labeled in two classes
Find a classification tree 𝑇
Such that

• error(𝑇 ) is minimal
• depth(𝑇 ) ≤maxdepth

the following recursive equation is at the basis of this dynamic programming approach:

𝑚𝑖𝑛_𝑒𝑟𝑟𝑜𝑟(𝐼) =
{︂

min𝐹∈ℱ
∑︀

𝑡∈𝑡𝑒𝑠𝑡𝑠(𝐹 )𝑚𝑖𝑛_𝑒𝑟𝑟𝑜𝑟(𝐼 ∪ {𝑡}) if |𝐼| < 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ;

leaf _error(𝐼) if |𝐼| = 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ.

Here the recursion starts at 𝑚𝑖𝑛_𝑒𝑟𝑟𝑜𝑟(∅), 𝐼 is an itemset, ℱ is the set features in the database,
𝑡𝑒𝑠𝑡𝑠(𝐹 ) returns two items for each feature (one item for the value 0, one item for the value 1),
and 𝑙𝑒𝑎𝑓_𝑒𝑟𝑟𝑜𝑟(𝐼) is the number of examples in the minority class of the examples covered
by the itemset 𝐼 . In words, the tree with minimal error is obtained by picking in the root the
feature which leads to the lowest sum of errors for the left-hand and right-hand child.

The dynamic programming approach is based on storing the value 𝑚𝑖𝑛_𝑒𝑟𝑟𝑜𝑟 for itemsets
such that they do not need to be recalculated later on when the same features are considered in
a different order. This trick has as effect that the algorithm does not need to enumerate all trees,
but only needs to enumerate itemsets. We showed in 2007 that this makes it possible to find
optimal decision trees for a much larger number of databases [10]. Here we used a customized
search algorithm that exploited many of the implementation tricks of itemset mining algorithms
at the time.

While in our example above we use a depth constraint, in our original publication we did
not give this constraint much attention; we introduced an optimisation which allowed the
algorithm to find optimal decision specifically in cases where this constraint was absent, and
did our experiments for that setting. In these experiments we found that in some cases optimal
decision trees have better predictive performance than heuristically learned trees, in other cases
their performance is worse.

We subsequently showed that this approach of dynamic programming over itemsets can also
be used in other settings: when adding a regularisation term in the optimisation criterion, when
taking into account costs and when taking into account a score for discrimination [5].

3. Optimal Decision Trees using MIP

For a number of years there was little interest in the problem of finding optimal decision trees.
A publication by Bertsimas and Dunn [11] in 2017 seems to have been important in the revival
of the topic, and has attracted a wide interest in the topic. Their work showed the following:



• for the problem of finding Depth-Constrained Accurate Trees, optimal decision trees in
many cases perform better than heuristically learned trees;

• the problem of finding optimal trees can be formalized as a Mixed Integer Programming
problem, allowing the use of Mixed Integer Programming solvers to find such trees.

This led to a large interest in the topic, in particular among researchers with an expertise in
Mixed Integer Programming. A number of subsequent publications demonstrated improvements
in how to model decision trees in MIP [12, 13, 14] and applied the MIP approach to include
other forms of optimisation criteria, such as based on fairness [15, 16]. In particular the fact
that additional constraints can be added by adding constraints in the MIP formulation, makes
this approach attractive, as it means no new algorithms need to be developed and expertise in
mathematical modeling is sufficient to solve other forms of learning problems.

4. Reviving DL8

Bertsimas and Dunn were clearly unaware of prior work on learning decision trees in the
inductive database context; hence, their publication also did not include a comparison with our
earlier work on DL8. In 2019 we decided to compare our original DL8 implementation with one
of the optimized versions of the MIP approach, BinOCT [12], on exactly the same optimisation
problem, that is, a problem with a depth constraint. The results are reproduced in Figure 1,
where it is shown how much time is needed to find an optimal tree for a number of instances
(where each instance corresponds to a dataset). The comparison showed that the performance
of the MIP-based approach was much worse than that of the DL8 algorithm. BinOCT could only
find optimal trees within reasonable time for a depth of 2 and finding these trees still took much
more time than required by DL8. This led us to give DL8 a second look, in particular in the
context of depth-constrained decision trees. This led to the following additional contributions.
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Figure 1: Cumulative number of instances solved over time

First, we studied whether the idea of using bounds during a branch-and-bound search could
be added to DL8. This turned out to be possible, and was implemented in an algorithm that



we called DL8.5. Results for this algorithm are also shown in Figure 1: a significant further
speed-up compared to DL8 was obtained, making the gap with MIP-based approach even larger.

A perceived strength of the MIP-based approach is that it allows to model other learning
problems simply by changing the MIP formulation, similar to how inductive databases would
allow to find many different types of models. To make DL8.5 also more generally usable, we
created a library in Python which allows the user also to implement their own scoring function
in Python [17]; this makes it possible to use DL8.5 easily also for regression problems, clustering
problems, and more, simply by writing a small amount of Python code. This brings DL8.5
practically closer to a system that allows writing queries.

We studied whether the idea of finding optimal trees can also be extended towards forests of
decision trees, and showed that this is the case for LP-Boost based methods [18]. The addition
of further constraints is here however still an unsolved problem.

Compared to MIP, a possible weakness of DL8.5 is its memory use: it stores large amounts of
itemsets in order to calculate decision trees from them. In practice this means that the algorithm
can run out of memory on machines with small amounts of memory. We addressed this challenge
in an extension of DL8.5 which from time to time also removes itemsets from memory; while
this could mean these itemsets need to be recalculated later, with proper heuristics we can
assure that this does not happen too often. In practice this makes it possible to run the algorithm
in memory constrained environments for the price of not too much additional run time; indeed,
even under memory constraints DL8.5 remains much faster than MIP-based approaches [19].

Despite its better performance, DL8.5 still takes significant amounts of time for calculating
an optimal tree on some datasets. We asked the following question: suppose the user stops the
algorithm after a certain amount of time, can we still assure that the algorithm will return a
good tree at that moment? This led us to study other orders for traversing the search space [20].

The good performance of DL8.5 has led other people to continue with this algorithmic ap-
proach. In particular, Demirovic et al. proposed MurTree [21], which improves the performance
of DL8.5 further by proposing a specialised algorithm for trees of depth 2 and by improving the
bounds used in the branch-and-bound search. In this work low-level optimisations are used that
have some resemblance to the optimisations that were also used in itemset mining algorithms
some time ago. This study, which used an implementation created from scratch, confirmed
also independently the superior performance of the DL8-type of algorithm over MIP-based
approaches for finding decision trees on Boolean data.

An extension of DL8.5’s algorithm was also used to find decision trees for certain types of
non-linear scoring functions [22].

5. Conclusions

In this paper, we provided a short overview of optimal decision tree learning such as studied
initially in the context of the Knowledge Discovery in Inductive Databases workshop, and how
this has led to a type of algorithm, DL8, which has recently been studied in detail again and led
to numerous new publications.

Given the fact that also in the first half of 2022 already many new publications have appeared
on algorithms for finding optimal decision trees, we believe that this work will continue to be



relevant. Also other older results in the domains of inductive databases and pattern mining may
here gain relevance once more.

For instance, many of the current approaches are focused on depth-constrained decision trees.
However, in our past work we showed that optimisations based on condensed representations
of itemsets allow to find optimal decision trees also without such a constraint. The use of
condensed representations may hence also merit a new look in this context.

Motivated by concerns over discrimination, privacy and explainability, the integration of
additional constraints continues to be relevant. We expect that DL8-style algorithms will
continue to be important in this context.

DL8’s performance derives from dynamic programming, where it assumed that the left-hand
and right-hand side of a test in a tree can be optimised independently. For some scoring functions
this independence does not apply. Search algorithms such as developed by Fromont et al. [3]
could still be relevant here.

At its core, DL8 still performs a form of itemset mining. Many ideas present in the itemset
mining literature, such as FP-Trees [23], have not been evaluated in the context of DL8 yet.

A remaining challenge for DL8-style algorithms continues to be how to treat find trues or
numerical data. The integration of better discretization algorithms could be relevant here.
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