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Abstract
We report on new evaluations regarding the use of a Memory Networks deep learning architecture for
deductive RDF reasoning. Evaluation on the SemRec CaLiGraph dataset show performance consistent
with previously reported results, even without re-training on the CaLiGraph dataset. We also report on a
preliminary evaluation regarding performance of the Memory Networks system with imperfect data. It
shows that the system gracefully degrades.

Keywords
RDF Reasoning, Deep Deductive Reasoning, Deep Learning, Memory Networks

1. Introduction

Deep learning has led to major and sometimes unexpected breakthroughs in machine learning
and artificial intelligence (AI) in the past decade. Yet, as approaches and technologies mature,
limitations also start to become apparent. As one of the results, recently a growing number of
researchers turn to combining deep learning with symbolic AI approaches from the subfield
of Knowledge Representation and Reasoning, where formal logic is used to capture expert
knowledge and deductive logical reasoning, performed by sophisticated algorithms, are of
central importance. Such combined approaches are sometimes dubbed Neuro-Symbolic AI
[1, 2, 3].

Since deductive logical reasoning is a central task in symbolic AI, the investigation of the
learnability, by deep learning systems, of deductive logical reasoning is of obvious interest, and
an overview of recent publications can be found in [4]. The discussion shows that this remains
a significant challenge for deep learning, even for rather simple logics, such as RDFS.

RDFS (or RDF Schema) [5] is a part of the mature W3C Standard RDF (Resource Description
Framework) [6] used for describing knowledge graphs [7]. It is a relatively simple formal logic
with a formal semantics and reasoning can be performed over it using thirteen forward-chaining
entailment rules [8].

The earliest paper describing Deep Deductive Reasoning over RDFS is [9]. However, this
approach is only able to reason over RDF graphs that are using the same vocabulary (i.e., IRIs)
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as the training data. While this can be useful in some cases, deductive reasoning as defined is
not dependant on the names of identifiers, i.e. the reasoning remains the same after a rewriting
of identifier names into different ones. Due to this, we believe that it is only fair to say that
a deep learning system has achieved deductive reasoning, if it performs well on completely
new input RDF graphs including new vocabulary (i.e., IRIs). In other words, we prefer a Deep
Deductive Reasoner to be able to transfer to completely new datasets.

The Memory Network system we report here is indeed capable of transfer. In fact, for part of
the evaluation, the system was not re-trained – it is the trained system reported in [4] which
we re-evaluate.

The plan of the paper is as follows. In Section 2 we will briefly recap the architecture of the
Memory Network system we use in our experiments and recall previously published evaluation
results. In Section 3 we present our new evaluation results. And in Section 4 we conclude.

2. Architecture and Previous Results

Our system is an end-to-end Memory Network (MemN2N) [10] which learns memory cell
embeddings, attention mechanism, and all other model weights at the same time. Transfer is
achieved by a normalization of the inputs, whereby each IRI not in the RDF or RDFS namespaces
is converted to a random integer from a predefined set {1, . . . , 𝑛}, where 𝑛 is the maximum
size of the knowledge graphs (in terms of number of distinct IRIs) that can be considered by
the system. IRIs in the RDF or RDFS namespaces are not renamed, as they are necessary for
performing RDFS entailment. The system then learns to embed the normalized IRIs as a vector
in R𝑑, and a knowledge graph with 𝑘 triples then becomes a (𝑑× 𝑘) tensor. Further details and
analyses can be found in [4, 11], and the system is available at https://github.com/Monireh2/
kg-deductive-reasoner.1

The evaluation of classification as reported in [4] was done using training and test data from
the LOD Laundromat2 and the Linked Data Cloud3 website. Table 1 is a partial replica from [4]
with evaluation results – see the table caption for details.

In summary, we see that for the natural unmodified datasets the f-measure falls between 0.68
and 0.96. For the artificially harder datasets, it falls between 0.27 and 0.77 (with only one value
lower than 0.54), and for the synthetic datasets it falls between 0.25 and 0.62.

3. New Evaluations

We performed three evaluations of the Memory Network system. The first was on the SemRec
2022 CaLiGraph dataset, including training on the same. The second was using our pre-trained
system, exactly as used for the experiments reported in [4], for inferencing on the CaLiGraph
dataset. The third was on one of our own datasets for the purpose of understanding how the
system performs under imperfect data.

1We actually used a cloud version of the identical algorithm that was put in place for improved training times.
2http://lodlaundromat.org
3https://lod-cloud.net
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Training Test
Valid Triples Class Invalid Triples Class

Accuracy
Prec (%) Rec F-Measure Prec Rec F-Measure

A LD 1 93 98 96 98 93 95 96
A (90%) A (10%) 88 91 89 90 88 89 90
A B 79 62 68 70 84 76 69
A Synth 1 65 49 40 52 54 42 52
A LD 2 54 98 70 91 16 27 86
C LD 2 62 72 67 67 56 61 91
C (90%) C (10%) 79 72 75 74 81 77 80
A D 58 68 62 62 50 54 58
C D 77 57 65 66 82 73 73
A Synth 2 70 51 40 47 52 38 51
C Synth 2 67 23 25 52 80 62 50

Table 1
Previous Evaluation Results. The first four rows show the actual evaluation, with A and B being
unmodified RDF datasets (including RDF serializations of OWL), LD 1 being a mix of native Linked RDF
Data, and Synth being a synthetic dataset over which RDFS reasoning is considerably harder than over
the other, natural, datasets. The bottom part of the table has particularly difficult artificial training or
test datasets that were compiled from the natural ones used in the top part; this part of the evaluation
was done for additional analysis of system behavior. Precision, recall, and f-measure (given in %) are
reported separately for the valid (i.e. correctly inferrable) and the invalid (i.e., correctly not inferrable)
triples.

3.1. SemRec 2022 CaLiGraph Evaluation

The SemRec 2022 CaLiGraph dataset4 was provided as part of the ISWC 2022 Semantic Reasoning
Evaluation Challenge.5 CaLiGraph is a large cross-domain knowledge graph generated from
categories, list pages and other lists in Wikipedia [12]. For the challenge, three different datasets
were provided. Clg_Full consists of approx. 54M triples, Clg_10e5 consists of approx. 4.5M
triples, and Clg_10e4 consists of approx. 300k triples.

The current Memory Network system accepts RDF graphs consisting of maximum 1,000
triples. In order to process the CaLiGraph datasets, they were split into disjoint subsets of
maximum 1,000 triples each. Inferences were obtained for each of the resulting datasets, thus
providing the required ground truth for training and validation. We note that this means that
the system does not provide all inferences over the full dataset, it is limited to graphs with
maximum 1,000 triples, and combining all inferences from the smaller subsets does not in
general provide all infereneces over the full graph.

The evaluation results we received are shown in Table 2 (left) for the correctly inferrable
triples. We note that the values are well in line with previously reported results, see Section 2.

3.2. CaLiGraph Evaluation On Pre-Trained System

In order to assess transfer capability of our Memory Network system, we also used the SemRec
CaLiGraph validation datasets to assess how well our pre-trained system can reason over this

4http://data.dws.informatik.uni-mannheim.de/CaLiGraph/CaLiGraph-for-SemREC/SemREC-2022-Datasets/
5https://semrec.github.io/



Dataset Precision Recall F-Measure Precision Recall F-Measure
Clg_Full 78 84 82 70 76 73
Clg_10e4 72 78 76 62 70 66
Clg_10e5 68 73 70 64 73 68

Table 2
Results from the CaLiGraph Evaluation, left for the newly trained system (Section 3.1), right for the
pre-trained system (Section 3.2)

Error Rate Precision Recall F-Measure
10% 54 61 57
12% 52 57 54
15% 51 58 53
20% 50 64 56
25% 52 59 54
30% 48 62 53

Table 3
Results from the graceful degradation evaluation

completely new dataset. The results can be found in Table 2 (right). We see that the system
manages transfer well to this dataset. The values are not quite as good as for the the system
trained on the CaLiGraph data, but the correctness loss is moderate.

3.3. Evaluation With Imperfect Data

We finally ran an evaluation on data into which we introduced random errors, in order to assess
whether system performance degrades gracefully. We ran a series of test with different error
rates; e.g., an error rate of 10% means that we modified 10% of the IRIs by replacing them with
randomly chosen IRIs from the same pool. Evaluation, however was done with respect to the
inferences in the unmodified data (i.e., no introduced errors). The base datasets used were those
from the original evaluation reported on in Section 2.

Results of the experiments can be found in Table 3, for correctly inferrable triples. We see
that the correctness values are lower than for data without introduced errors, but precision,
recall and f-measure are only moderately lower. We also notice that higher error rates hardly
decrease correctness, which is somewhat surprising; further evaluation and analysis will be
needed to understand this behavior.

4. Conclusion

Performance of our Memory Network based deep deductive reasoner on the SemRec CaLiGraph
data was consistent with our previous findings. In addition, we note that the system transferred
well to the new dataset without re-training. Regarding reasoning over data with introduced
errors, the system showed graceful degradation, but follow-up analysis will be needed.

A major limitation of our system is that it can only deal with input RDF graphs of at most
1,000 triples. However, training time is already rather substantial for this size, i.e. a significant



increase in processable knowledge graph size does currently not appear to be reasonable with
this exact approach. Another limitation of the Memory Network based system is that it is query
based, i.e. the system does not quickly produce a graph with inferred triples; rather, it has to be
queried about each triple whether it is inferred or not. A generative system that would be able
to quickly produce a graph with inferred triples would be much preferred, however at this time
we know of no published work that would describe a Deep Deductive Reasoning system that is
both generative and that can transfer, even for as simple a logic as RDFS.

References

[1] M. K. Sarker, L. Zhou, A. Eberhart, P. Hitzler, Neuro-symbolic artificial intelligence:
Current trends, AI Commun. 34 (2021) 197–209. doi:10.3233/AIC-210084.

[2] P. Hitzler, M. K. Sarker (Eds.), Neuro-Symbolic Artificial Intelligence: The State of the
Art, volume 342 of Frontiers in Artificial Intelligence and Applications, IOS Press, 2021.
doi:10.3233/FAIA342.

[3] P. Hitzler, F. Bianchi, M. Ebrahimi, M. K. Sarker, Neural-symbolic integration and the
semantic web, Semantic Web 11 (2020) 3–11. doi:10.3233/SW-190368.

[4] M. Ebrahimi, A. Eberhart, F. Bianchi, P. Hitzler, Towards bridging the neuro-symbolic
gap: deep deductive reasoners, Appl. Intell. 51 (2021) 6326–6348. doi:10.1007/
s10489-020-02165-6.

[5] D. Brickley, R. Guha (Eds.), RDF Schema 1.1, W3C Recommendation 25 February 2014,
2014. Available from http://www.w3.org/TR/rdf-schema/.

[6] R. Cyganiak, D. Wood, M. Lanthaler (Eds.), RDF 1.1 Concepts and Abstract Syntax, W3C
Recommendation 25 February 2014, 2014. Available from http://www.w3.org/TR/rdf11-
concepts/.

[7] P. Hitzler, A review of the semantic web field, Commun. ACM 64 (2021) 76–83. doi:10.
1145/3397512.

[8] P. Hayes, P. Patel-Schneider (Eds.), RDF 1.1 Semantics, W3C Recommendation 25 February
2014, 2014. Available from http://www.w3.org/TR/rdf11-mt/.

[9] B. Makni, J. A. Hendler, Deep learning for noise-tolerant RDFS reasoning, Semantic Web
10 (2019) 823–862. doi:10.3233/SW-190363.

[10] S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus, End-to-end memory networks, in: C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, R. Garnett (Eds.), Advances in Neural Information
Processing Systems 28: Annual Conference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec, Canada, 2015, pp. 2440–2448.

[11] M. Ebrahimi, M. K. Sarker, F. Bianchi, N. Xie, D. Doran, P. Hitzler, Reasoning over RDF
knowledge bases using deep learning, arXiv preprint arXiv:1811.04132 (2018).

[12] N. Heist, H. Paulheim, The CaLiGraph ontology as a challenge for OWL reasoners, in:
G. Singh, R. Mutharaju, P. Kapanipathi (Eds.), Proceedings of the Semantic Reasoning
Evaluation Challenge (SemREC 2021) co-located with the 20th International Semantic
Web Conference (ISWC 2021), Virtual Event, October 27th, 2021, volume 3123 of CEUR
Workshop Proceedings, CEUR-WS.org, 2021, pp. 21–31.

http://dx.doi.org/10.3233/AIC-210084
http://dx.doi.org/10.3233/FAIA342
http://dx.doi.org/10.3233/SW-190368
http://dx.doi.org/10.1007/s10489-020-02165-6
http://dx.doi.org/10.1007/s10489-020-02165-6
http://dx.doi.org/10.1145/3397512
http://dx.doi.org/10.1145/3397512
http://dx.doi.org/10.3233/SW-190363

	1 Introduction
	2 Architecture and Previous Results
	3 New Evaluations
	3.1 SemRec 2022 CaLiGraph Evaluation
	3.2 CaLiGraph Evaluation On Pre-Trained System
	3.3 Evaluation With Imperfect Data

	4 Conclusion

