
Concept Search: Semantics Enabled
Syntactic Search

Fausto Giunchiglia, Uladzimir Kharkevich, and Ilya Zaihrayeu

Department of Information Engineering and Computer Science
University of Trento, Italy

{fausto,kharkevi,ilya}@disi.unitn.it

Abstract. Historically, information retrieval (IR) has followed two prin-
cipally different paths that we call syntactic IR and semantic IR. In syn-
tactic IR, terms are represented as arbitrary sequences of characters and
IR is performed through the computation of string similarity. In seman-
tic IR, instead, terms are represented as concepts and IR is performed
through the computation of semantic relatedness between concepts. Se-
mantic IR, in general, demonstrates lower recall and higher precision
than syntactic IR. However, so far the latter has definitely been the win-
ner in practical applications. In this paper we present a novel approach
which allows it to extend syntactic IR with semantics, thus leverage the
advantages of both syntactic and semantic IR. First experimental re-
sults, reported in the paper, show that the combined approach performs
at least as good as syntactic IR, often improving results where semantics
can be exploited.

1 Introduction

The goal of information retrieval (IR) is to map a natural language query, which
specifies the user information needs, to a set of objects in a given collection,
which meet these needs. Most existing systems also compute a numeric score
on how relevant each retrieved object is to the query, and order these objects
according to the degree of relevance.

Historically, there has been two major approaches to IR that we calls syntac-
tic IR and semantic IR. In syntactic IR, search engines use words or multi-words
phrases that occur in documents and queries as atomic elements in document
and query representations. The search procedure, used by these search engines,
is principally based on the syntactic matching of document and query represen-
tations. These search engines are known to suffer in general from low precision
while being good at recall.

Semantic IR is based on fetching document and query representations through
semantic analysis of their contents using natural language processing techniques
and then retrieving documents by matching these semantic representations. Dif-
ferently from syntactic IR, in this approach the meaning of words is analyzed and
not only their syntactic representations. Semantics-based approaches, in general,
allow to reach a higher precision but lower recall than syntactic approaches [11].

SemSearch 2008, CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-334/

In practice, results of semantic IR are inferior to that of syntactic one. In fact,
most of the state of the art search engines are based on syntactic IR. There are
many reasons for this, where one of them is that techniques based on semantics,
to be used properly, need a lot of background knowledge which is in general not
available [6].

In this paper we propose a novel approach to IR which extends syntactic IR
with semantics, thus addressing the problem of low precision of syntactic IR. We
call it Concept Search (C-Search in short). The main idea is to keep the same
machinery which has made syntactic IR so successful, but to modify it so that,
whenever possible, syntactic IR is substituted by semantic search, thus improving
the system performance. This is why we say that C-Search is semantics enabled
syntactic search. In principle, our approach allows it to scale on the continuum
from purely syntactic search to purely semantic search, performing at least as
well as syntactic search and improving over it by taking advantage of semantics
when and where possible. Our approach scales as much as syntactic IR can scale
because semantics is seamlessly integrated in the syntactic search technology.

The remainder of the paper is organized as follows. In Section 2, we first
discuss IR in general and then we discuss syntactic search approach to IR. In
Section 3, we discuss semantic IR and introduce semantics enabled syntactic
search. In Section 4, we describe how semantic matching of (complex) concepts,
the core of semantic search algorithm, can be efficiently implemented using in-
verted index technology. Section 5 presents some preliminary experimental re-
sults. In Section 6, we discuss the state-of-the-art in semantic search and compare
our approach with other related approaches. Section 7 summarizes the achieved
results and concludes the paper.

2 Syntactic Search

The goal of an information retrieval system is to map a natural language queries
Q, which specify user information needs, to a set of documents in the document
collection D, which meet these needs, and (optionally) to order these documents
according to the degree of relevance. The search S in general can be represented
as a mapping function:

S : Q → D (1)

In order to implement an IR System we need to decide (i) what is an atomic
element (Term) in document and query representations, (ii) which matching
techniques (Match) are used for matching of document and query terms, (iii)
which models (Model) are used for document and query representations, for
computing query answers and relevance ranking, and (iv) which data structures
(Data Structure) are used for document indexing and retrieval. Thus, the IR
System is a 4-tuple:

IR System =< Model, Data Structure, Term, Match > (2)

SemSearch 2008, CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-334/

The Bag of words model, i.e., the model in which the ordering of words in
a document is not considered, is the most widely used model for document rep-
resentation. The Boolean Model, the Vector Space Model, and the Probabilistic
Model are the classical examples of models used for computing query answers
and relevance ranking [1].

Various index structures, such as Signature File and Inverted Index, are used
for efficient retrieval. Inverted Index, which stores a mapping from terms to their
locations in documents, is the most popular solution [1].

In syntactic IR, Term and Match are instantiated as follows:

– Term - a word or a multi-words phrase,
– Match - a syntactic matching of words or phrases.

In the simplest case, syntactic matching is computed through search for equiv-
alent (possibly stemmed [14]) words. Some systems approximate matching by
search for words with common prefixes or words within a certain edit distance
with a given word.

Let us consider the document collection shown in Figure 1.

D1 : A small baby dog runs after a huge white cat. . . .

D2 : A laptop computer is on a coffee table. . . .

D3 : A little dog or a huge cat left a paw mark on a computer table. . . .

Fig. 1. A document collection

In Figure 2, we show examples of four queries, which are submitted to this
document collection.

Q1 : Babies and dogs Q3 : Table computer

Q2 : Paw print Q4 : Carnivores

Fig. 2. Queries

An example of syntactic IR using Inverted Index technology is given in Fig-
ure 3. The two parts of an Inverted Index are: Dictionary, i.e., a list of terms used
for document indexing; and posting lists (Postings), where every posing list is
associated with a term and consists of documents in which this term occur. The
query processing in Inverted Index is separated into two main steps: (i) to locate
terms in dictionary which match query terms, and (ii) to search Inverted Index
with these terms. Consider, for example, processing a query table computer.
First, for each query term we identify those terms in dictionary that match this
term (table → {table} and computer → {computer}). Second, we search inverted

SemSearch 2008, CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-334/

D2 D3table

D3little

D1 D3

computer

Dictionary (Words)

dog

Query Postings

D2 D3

table computer

…
…

…

…
…

…

Fig. 3. Inverted Index in classical syntactic search

index with computed dictionary terms (table → {D2, D3} and computer →
{D2, D3}). And finally, we take the intersection of document sets, found for
every query terms, as an answer to the query (D2 and D3 in our example).

There are several problems which negatively affect the performance of syn-
tactic search. These problems are discussed bellow:
Polysemy. The same word may have multiple meanings (see Figure 4) and,
therefore, in syntactic search, query results may contain documents where the
query word is used in a meaning which is different from what the user had in
mind. For instance, a document which talks about baby in the sense of a very
young mammal is irrelevant if the user looks for documents about baby in the
sense of a human child who has not yet begun to walk or talk. An answer for
query Q1, computed by syntactic search engine, includes document D1, while
the correct answer is an empty set.
Synonymy. Two different words can express the same meaning in a given con-
text, i.e., they can be synonyms (see Figure 5). Syntactic search approaches do
not explicitly take synonymous words into account. For instance, words mark
and print are synonymous when used in the sense of a visible indication made
on a surface, however, only documents using word print will be returned if the
user query was exactly this word. An answer for query Q2, computed by syntac-
tic search engine, is an empty set, while the correct answer includes document
D3.

W1

W
o
rd

s
C

o
n
ce

p
ts

C1 C2

Fig. 4. Polysemy

W2

W
o
rd

s
C

o
n
ce

p
ts

C1

W1

Fig. 5. Synonymy

SemSearch 2008, CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-334/

Complex concepts. State-of-the-art syntactic search engines fall short in tak-
ing into account complex concepts formed by natural language phrases and in
discriminating among them (see Figure 6). For instance, phrases computer table
and table computer denote two quite different concepts, whereas a conventional
search engine is very likely to return similar results if they are submitted as
queries. Moreover, the results of these queries may contain documents irrelevant
to both of them, e.g., a document, containing a sentence A laptop computer is
on a coffee table, being irrelevant to both of our queries, is likely to be found
as an answer to these queries. An answer for query Q3, computed by syntactic
search engine, includes documents D2 and D3, while the correct answer is an
empty set.
Related concepts. Syntactic search does not take into account concepts which
are closely related to the query concept (see Figure 7). For instance, a user look-
ing for carnivores might not only be interested in documents which talk about
carnivores but also in those which talk about the various kinds of carnivores such
as dogs and cats. An answer for query Q4, computed by syntactic search engine,
is an empty set, while the correct answer includes documents D1 and D3 .

W2

W
o
rd

s
C

o
n
ce

p
ts

C1

W1

C2 C3

W2W1+

Fig. 6. Complex concepts

W2
W

o
rd

s
C

o
n
ce

p
ts

C1

W1

C2

Fig. 7. Related concepts

3 Semantics Enabled Syntactic Search

In semantic search, Term and Match elements of the model, described in For-
mula 2, are instantiated as follows:

– Term - an atomic or a complex concept,
– Match - semantic matching of concepts.

Where concepts are computed, for example, by mapping words to concepts in a
lexical database such as WordNet [13]. Semantic matching can be implemented
by using semantic matching approach described in [7–9]. The main idea of seman-
tic matching is to compare meanings (concepts) and not words, as in syntactic
matching. For example, phrase A little dog or a huge cat syntactically is very
different from a word carnivores but semantically they denote related concepts.

Because we build on top of standard syntactic search technology, classical
information retrieval models and data structures can be fully reused in semantic

SemSearch 2008, CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-334/

search with the difference in that now words (W) are replaced with concepts (C)
and syntactic matching of words (WMatch) is replaced with semantic matching
of concepts (SMatch).

Syntatic Search
(W → C), (WMatch → SMatch)−−−−−−−−−−−−−−−−−−−−−−−→ Semantic Search

Note that semantic search can solve the problems related to the ambiguity of
natural language, namely, the problems of polysemy and synonymy, because
concepts are unambiguous by definition.

In this paper we propose an approach in which semantic search is build on top
of syntactic search. We call it semantics enabled syntactic search (C-Search). In
our approach, we extend the classical syntactic search approach with semantics
as follows:

– Indexing and searching documents is done using complex concepts. Complex
concepts are computed by extracting multi-word phrases (that function as a
single unit in the syntax of a sentence) and then by analyzing the meaning of
these phrases. For example, phrase A little dog or a huge cat is converted into
concept C(A little dog or a huge cat) which then is used as a single term
during document indexing and retrieval. Note that because we analyze multi-
word phrases we solve the problem related to complex concepts discussed in
Section 2.

– The notion of complex concepts allows us to represent uncertainty (partial
information) coming from the coordination conjunction “OR” in natural
language. For instance, phrase A little dog or a huge cat represents a concept
which encodes the fact that it is unknown if a little dog or a huge cat is
actually described in the document. Note that classical syntactic search is
not capable of representing this kind of uncertainty and, therefore, of taking
it into account during indexing and retrieval.

– Searching for documents describing concepts which are semantically related
to query concepts. We assume that when a user is searching for a concept
she is also interested in more specific concepts. For example, the extension of
concept C(A little dog or a huge cat) is a subset of the extension of concept
C(carnivores). Therefore, documents describing the former concept should
be returned as answers to the query describing the later concept. In our
approach, semantic matching is used in order to implement a search for
related (complex) concepts. It allows us to solve the problem with related
concepts discussed in Section 2.

– Semantic continuum. When we move from words to concepts in semantic
search it is not always possible to find a concept which corresponds to a given
word. The main reason for this problem is lack of background knowledge,
i.e., a concept corresponding to a given word may not exist in the lexical
database. In this case, in our approach, semantic search is reduced to an
underlying syntactic search, i.e., we index and retrieve by words and not
by concepts. This means that C-Search should perform at least as good as
classical syntactic search.

SemSearch 2008, CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-334/

An example of semantics enabled syntactic search using Inverted Index tech-
nology is given in Figure 8. Analogously to syntactic search, the query processing
in semantics enabled Inverted Index is separated into two main steps: (i) to locate
terms (which can be concepts or words) in dictionary which match query terms,
and (ii) to search Inverted Index with these terms. Note that the second step is
identical to that of syntactic search. First step may require semantic matching
of (complex) concepts in a query to (complex) document concepts stored in the
Inverted Index dictionary (see Section 4). Consider, for example, processing a
query mark of canine or feline.

D3

D2

D2

mark

Dictionary

(Concepts + Words)Query Postings

D3

…
…

…

…
…

…

C(A laptop computer)

C(A coffee table)

C(A little dog or a huge cat)

C(canine or feline)mark of

SM
atch

WMatch

Fig. 8. Inverted Index in C-Search

Assume that words canine and feline present in our lexical database and word
mark does not. In this case, phrase canine or feline will be converted into a com-
plex concept C(canine or feline) defined as a set of all fissiped mammals with
non-retractile claws and typically long muzzles, or lithe-bodied roundheaded
fissiped mammals with retractile claws, and word mark will not be changed.
Modified query is processed as follows. First, for each query term, i.e., for word
mark and for concept C(canine or feline), we identify those terms in dictionary
that match these query terms (mark WMatch−−−−−−→{mark} and C(canine or feline)
SMatch−−−−−→ {C(A little dog or a huge cat)}). Second, we search inverted index with
computed dictionary terms (mark→{D3} and C(A little dog or a huge cat) →
{D3}). And finally, we take the intersection of document sets, found for every
query term, as an answer to the given query (D3 in our example).

4 Concept Indexing

In this section, we discuss how we implement the semantic matching of (complex)
query concepts Cq to related (complex) document concepts Cd stored in the
Inverted Index dictionary. Let Cms(Cq) be a set of all (complex) document
concepts Cd matching (complex) query concept Cq, i.e., a set of all Cd, which
are equivalent or more specific (ms) than the given Cq.

Cms(Cq) = {Cd | Cd v Cq} (3)

SemSearch 2008, CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-334/

During the query processing we need to compute set Cms(Cq) for every query
concept Cq in the query. One approach to computing this set is to sequentially
iterate through each concept Cd, compare it to the given query concept Cq by
using semantic matching [7–9] technique, and collect those concepts for which
semantic matching returns more specific (v) relation. This approach may become
prohibitory expensive as there may be thousands and millions of concepts stored
in the document index dictionary. In this section we show how Inverted Index
technology can be used in order to allow search for concepts in Cms(Cq), as
efficient as Inverted Index technology can allow.

It is known, that in natural language, concepts are expressed as noun phrases [17].
In order to support complex concepts which encode uncertainty (see Section 3),
we introduce the notion of descriptive phrase, where descriptive phrase is a set
of noun-phrases, representing alternative concepts, connected by coordinating
conjunction “OR”:

descriptive phrase ::= noun phrase {OR noun phrase} (4)

Descriptive phrases are converted into concepts expressed in Propositional
Description Logic language LC by following the approach described in [5]. Com-
plex document concepts extracted from descriptive phrases are DNF formulas
of atomic concepts representing words

Cd = t uAd (5)

For instance, descriptive phrase A little dog or a huge cat is converted into the
following complex concept.

Cd
1 (A little dog or a huge cat) =(A(little) uA(dog)) t (A(huge) uA(cat))

where A(w) is an atomic concept corresponding to the word w.
Let CDNF be the set of all complex document concepts and Cu be the

set of conjunctive clauses from which concepts in CDNF are composed. For
instance, concept Cd

1 belongs to CDNF and its conjunctive clauses, i.e., concepts
C2 = A(little) uA(dog) and C3 = A(huge) uA(cat), belong to Cu.

Assume that query concept is converted into CNF

Cq = u tAq (6)

Recall also that if A,B, and C are concepts, then:

(A tB) v C ⇐⇒ A v C and B v C

A v (B u C) ⇐⇒ A v B and A v C
(7)

Given 5, 6, and 7, Formula 3 can be rewritten as follows:

SemSearch 2008, CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-334/

Cms(Cq) = {Cd ∈ CDNF | (t uAd) v (u tAq)}
= {Cd ∈ CDNF | ∀(tAq) ∈ Cq,∀(uAd) ∈ Cd, (uAd) v (tAq)}
=

⋂

tAq∈Cq

{Cd ∈ CDNF | ∀(uAd) ∈ Cd, (uAd) v (tAq)}

=
⋂

tAq∈Cq

Cms(tAq)

(8)

where by Cms(tAq) we denote the set of all concepts in CDNF which are equiv-
alent to or more specific than disjunctive clause tAq:

Cms(tAq) = {Cd ∈ CDNF | ∀(uAd) ∈ Cd, (uAd) v (tAq)} (9)

Formula 9 can be rewritten as follows:

Cms(tAq) = {Cd ∈ CDNF | ∀(uAd) ∈ Cd, (uAd) ∈ Cums(tAq)} (10)

where by Cums(tAq) we denote the set of all conjunctive clauses in Cu which are
equivalent to or more specific than the given disjunctive clause (tAq):

Cums(tAq) = {uAd ∈ Cu | (uAd) v (tAq)} (11)

Set Cms(tAq) (see Formula 10) consists of complex concepts Cd ∈ CDNF

which have all its conjunctive clauses uAd in Cums(tAq). In order to allow fast
computation of Cms(tAq) at query time, every concept Cd ∈ CDNF containing
more than one conjunctive clause is indexed (at indexing time) by its conjunctive
clauses in the index which we call the concept t-index. Concept t-index stores
a mapping from each conjunctive clause to a set of all concepts Cd ∈ CDNF

which contain this conjunctive clause (conjunctive clause → {dnf concept}).
In Figure 9 we show a fragment of a concept t-index for concept Cd

1 .

C1,…

C1,…

…

Concept -index

C2(little dog)

C3(huge cat)

…

Fig. 9. Concept t-index

Now let us consider set Cums(tAq) (see Formula 11). Notice that from Word-
Net we can extract only relations between atomic concepts (e.g., A v B).

SemSearch 2008, CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-334/

Therefore, using WordNet as our background knowledge, we can prove that
(uAd) v (tAq) only if ∃Aq, ∃Ad, such that Ad v Aq. Taking this into account,
Formula 11 can be rewritten as follows:

Cums(tAq) = {uAd ∈ Cu | ∃Aq,∃Ad, s.t. Ad v Aq}
=

⋃

Aq∈tAq

{uAd ∈ Cu | ∃Ad, s.t. Ad v Aq} =
⋃

Aq∈tAq

Cums(A
q) (12)

where by Cums(A
q) we denote the set of all conjunctive clauses uAd ∈ Cu which

are equivalent to or more specific than the given atomic concept Aq:

Cums(A
q) = {uAd ∈ Cu | ∃Ad, s.t. Ad v Aq} (13)

Formula 13 can be rewritten as follows:

Cums(A
q) = {uAd ∈ Cu | ∃Ad, s.t. Ad ∈ Ams(Aq)} (14)

where by Ams(Aq) we denote a set of all atomic concepts Ad which are equivalent
to or more specific than the given atomic concept Aq:

Ams(Aq) = {Ad | Ad v Aq} (15)

Set Cums(Aq) (see Formula 14) consists of conjunctive clauses uAd ∈ Cu with
at least one its atomic concept Ad in Ams(Aq). In order to allow fast computation
of Cums(A

q) at query time, conjunctive clauses Cu, containing more than one
atomic concept, are indexed (at indexing time) by them in the index which we
call the concept u-index. Concept u-index stores a mapping from each atomic
concept to a set of all conjunctive clauses in Cu which contains this concept
(atomic concept → {conjunctive clause}). In Figure 10, we show a fragment
of a concept u-index which indexes conjunctive clauses of concept Cd

1 , i.e., it
indexes concepts C2 and C3.

C2, …

C2, …
…

C3, …

C3, …

…

Concept -index

A1(little)

A2(dog)

…

A3(huge)

A4(cat)

…

Fig. 10. Concept u-index

SemSearch 2008, CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-334/

Now we will describe how concept retrieval, i.e., computation of Cms(Cq),
can be performed given that concept u- and t- indices were constructed. As an
example of query concept we will consider the following concept.

Cq
1 ≡ A(canine) tA(feline)

Set Cms(Cq) is computed in the following six steps:
1. Query concept is converted into CNF. For example, concept Cq

1 is already in
CNF, so it will not be changed.
2. For every atomic concept Aq we search the lexical database for all atomic
concepts which are equivalent to or more specific than Aq, i.e., we compute set
Ams(Aq) (see Formula 15). For example, Ams(A(canine)) = {A(dog), A(wolf),
. . . } and Ams(A(feline)) = {A(cat), A(lion), . . . }.
3. For every atomic concept Aq we compute set Cums(Aq) (see Formula 14), i.e.,
a set of all conjunctive clauses which are equivalent to or more specific than Aq.
Sets Cums(A

q) are computed by searching concept u-index with atomic concepts
in Ams(Aq). For example, Cums(A(canine)) = {C2, . . . } and Cums(A(feline))
= {C3, . . . }.
4. For every disjunctive clause tAq we compute a set Cums(tAq) (see For-
mula 12), i.e., a set of all conjunctive clauses which are equivalent to or more
specific than disjunctive clause tAq. We compute Cums(tAq) by taking the union
of all the sets Cums(Aq):

Cums(tAq) =
⋃

Aq∈tAq

Cums(A
q) (16)

For example, Cums(A(canine) tA(feline)) = {C2, C3, . . . }.
5. For every disjunctive clause tAq we compute set Cms(tAq) (see Formula 10),
i.e., a set of all complex document concepts in CDNF which are equivalent to
or more specific than disjunctive clause tAq. Sets Cms(tAq) are computed by
searching concept t-index with conjunctive clauses in Cums(tAq). Note that we
search only for concepts Cd which have all its conjunctive clauses in Cums(tAq),
and discard other concepts. For example, Cms(A(canine)tA(feline)) = {Cd

1 , . . . }.
6. We compute Cms(Cq) (see Formula 8) by taking the intersection of all the
sets Cms(tAq):

Cms(Cq) =
⋂

tAq∈Cq

Cms(tAq) (17)

For example, concept Cq
1 has only one disjunctive clause, therefore, set Cms(C

q
1)

is equal to set Cms(A(canine) tA(feline)), i.e., Cms(C
q
1) = {Cd

1 , . . . }.
Note that steps described above require searching the lexical database, search-

ing inverted indices, computing union and intersection of sets. All these oper-
ations are fast in practice and, therefore, the computation of Cms(Cq) is also
time efficient.

SemSearch 2008, CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-334/

5 Evaluation

The data-set, used for the evaluation of our approach, was generated from Home1

subtree of DMoz web directory. Documents classified to nodes in the sub-tree
are used as a document set, labels of nodes are used as a query set2, and node-
document links represents relevance of documents to queries. The data-set con-
sists of 29506 documents and 890 queries.

To locate descriptive phrases in documents and queries we, first, follow a
standard NLP pipeline to locate noun phrases, i.e., we perform sentence de-
tection, tokenization, part-of-speech (POS) tagging, and noun phrase chunking
and after that we perform addition step which we call descriptive phrase chunk-
ing, where the goal of this step is to locate descriptive phrases, satisfying For-
mula 4, given that noun phrases are already identified. In particular, we use
the GATE [3] infrastructure and resources. Queries usually are short phrases
and, as shown in [20], standard NLP technology, primarily designed to be ap-
plied on full-fledged sentences, is not effective enough in its application on such
phrases. Therefore, for query processing we use a POS-tagger from [20], which
is specifically trained on short phrases.

The conversion of descriptive phrases into formulas in LC was performed as
follows. First, for each token in a descriptive phrase, we looked up and enumer-
ated its meaning(s) in WordNet [13]. Next, we performed word sense filtering,
i.e., we discard word senses which are not relevant in the given context. In order
to do this, we followed the approach presented in [20], which exploits POS tag-
ging information and WordNet lexical database for WSD in short noun phrases.
Differently from [20] we did not use the filtering technique which leaves only the
most probable sense of the word, because of its low accuracy. Finally, for every
descriptive phrase we build a complex concept which encodes the meaning of
this phrase. Each word is represented as an atomic concept, noun phrases are
translated into logical conjunction of atomic concepts, and descriptive phrases
are translated into logical disjunction of formulas for noun phrases.

In order to evaluate our approach, we built two inverted indices. First index
was build by using Lucene3. Second index was build by using semantics enabled
version of Lucene, which was implemented following the methodology described
in Sections 3 and 4. Evaluation results for both indexes are reported in Table 1.

Table 1. Evaluation results

Precision (%) Recall (%)

Lucene 7.72 20.43

C-Search 8.40 24.69

1
http://www.dmoz.org/Home/.

2 Queries were created by concatenation of node’s and its parent’s labels adding
“AND” in between. Queries created from nodes which contained less than 10 or
more than 100 documents were eliminated from the query set.

3 http://lucene.apache.org/java/docs/index.html

SemSearch 2008, CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-334/

After manual inspection of the results, we concluded that the main reason
for low precision and recall, achieved by Lucene and C-Search, is low quality
of the data-set. Documents in our collection represent web-sites with many in-
terconnected pages, whereas we indexed only root page for each web-site. This
leads to low recall because relevant information can be stored on pages other
than the root page. Queries in the used data-set are also not always good, for
instance, query purchasing AND new (created from node New4) was associated
only with documents about automobiles because nodes purchasing and new are
children of the node automobiles, whereas, obviously, information about pur-
chasing of something new can be found in documents from other subtrees. The
problem with queries leads to low precision. Nevertheless, in this particular data
set, C-Search performed better than purely syntactic search, which supports the
underlying assumption of our approach.

6 Related work

The fact that the syntactic nature of the classical IR leads to problems with
precision was recognized in the IR community long ago (e.g., see [18]). There
were two major approaches to addressing this problem: one is based on natural
language processing and machine learning techniques in which (noun) phrases in
a document corpus are identified and organized in a subsumption hierarchy which
is then used to improve the precision of retrieval (e.g., see [19]); and the other is
based on a linguistic database which is used to associate words in a document
corpus with atomic lexical concepts in the database and then to index these
documents by the associated concepts (e.g., see [16]). Our approach is different
from these two because the former approach is still essentially syntactic (and
semantics is only implicitly derived with no guarantee of correctness) and in the
latter approach only atomic concepts are indexed, wherein C-Search allows for
indexing of complex concepts and explicitly take into account possible relations
between them which allows it to compute more accurate query results. More
importantly, our approach extends syntactic search and not replaces it as it is
the case in the latter approach. Therefore, our approach supports a continuum
from purely syntactic to fully semantic IR in which indexing and retrieval can
be performed at any point of the continuum depending on how much semantic
data are available.

In the Semantic Web community, semantic search is primarily seen as the
task of querying an RDF graph based on the mapping of terms appearing in
the input natural language query to the elements of the graph. An analysis of
existing semantic search systems is provided in [10]. Our approach is principally
different because, like in classical IR, input query is mapped to document con-
tents and not to elements of a knowledge representation structure. Document
retrieval approaches developed in the context of the Semantic Web are surveyed
in [12]. Matching of document and query representations, in these approaches,
is based on query expansion (e.g., see [2]), graph traversal (e.g., see [15]), and
4

http://www.dmoz.org/Home/Consumer Information/Automobiles/Purchasing/New/.

SemSearch 2008, CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-334/

RDF reasoning (e.g., see [4]). Differently from these approaches, in C-Search,
document and query representations are matched via semantic matching [7–9]
of complex concepts, which is implemented by using Inverted Index technology.

7 Conclusions

In this paper we presented an approach in which syntactic IR is extended with
a semantics layer which allows it to improve over results of a purely syntactic
search. The proposed approach performs as good as syntactic search while al-
lowing for an improvement where semantics is properly integrated. In principle,
our approach supports a continuum from purely syntactic to fully semantic IR
in which indexing and retrieval can be performed at any point of the continuum
depending on how much semantic data are available. The reported experimen-
tal results demonstrate the proof of concept of the proposed solution. Future
work includes: (i) development of document relevance metrics based on both
syntactic and semantic similarity of query and document descriptions; (ii) inte-
gration of more accurate algorithms for concept identification during indexing;
(iii) comparing the performance of the proposed solution with the state-of-the-
art syntactic IR systems using a syntactic IR benchmark; and, (iv) providing
support for queries in which concepts can be associated with a semantic scope
such as equivalence, more/less general, disjoint.

References

1. Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Information Re-
trieval. ACM Press / Addison-Wesley, 1999.

2. Irene Celino, Emanuele Della Valle, Dario Cerizza, and Andrea Turati. Squiggle:
a semantic search engine for indexing and retrieval of multimedia content. In
SEMPS, pages 20–34, 2006.

3. H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A framework
and graphical development environment for robust NLP tools and applications. In
Proceedings of the 40th Anniversary Meeting of the Association for Computational
Linguistics, 2002.

4. John Davies and Richard Weeks. QuizRDF: Search technology for the semantic
web. In HICSS ’04: Proceedings of the 37th Annual Hawaii International Con-
ference on System Sciences (HICSS’04) - Track 4, page 40112, Washington, DC,
USA, 2004. IEEE Computer Society.

5. Fausto Giunchiglia, Maurizio Marchese, and Ilya Zaihrayeu. Encoding classifi-
cations into lightweight ontologies. In Journal on Data Semantics (JoDS) VIII,
Winter 2006.

6. Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. Discovering missing
background knowledge in ontology matching. In Proc. of ECAI, 2006.

7. Fausto Giunchiglia and Mikalai Yatskevich. Element level semantic matching. In
Meaning Coordination and Negotiation workshop, ISWC, 2004.

8. Fausto Giunchiglia, Mikalai Yatskevich, and Enrico Giunchiglia. Efficient semantic
matching. In Proc. of ESWC, Lecture Notes in Computer Science. Springer, 2005.

SemSearch 2008, CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-334/

9. Fausto Giunchiglia, Mikalai Yatskevich, and Pavel Shvaiko. Semantic matching:
Algorithms and implementation. Journal on Data Semantics (JoDS), 9:1–38, 2007.

10. M. Hildebrand, J. van Ossenbruggen, and L. Hardman. An analysis of search-based
user interaction on the semantic web. Technical Report INS-E0706, Centrum voor
Wiskunde en Informatica, MAY 2007.

11. Bernardo Magnini, Manuela Speranza, and Christian Girardi. A semantic-based
approach to interoperability of classification hierarchies: evaluation of linguistic
techniques. COLING ’04: Proceedings of the 20th international conference on
Computational Linguistics, pages 11–33, 2004.

12. Christoph Mangold. A survey and classification of semantic search approaches.
Int. J. Metadata Semantics and Ontology, 2(1):23–34, 2007.

13. George Miller. WordNet: An electronic Lexical Database. MIT Press, 1998.
14. M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.
15. C. Rocha, D. Schwabe, and M. de Aragao. A hybrid approach for searching in the

semantic web. In Proceedings of the 13th International World Wide Web Confer-
ence, 2004.

16. Hinrich Schutze and Jan O. Pedersen. Information retrieval based on word senses.
In Fourth Annual Symposium on Document Analysis and Information Retrieval,
1995.

17. J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, 1984.

18. Christopher Stokoe, Michael P. Oakes, and John Tait. Word sense disambiguation
in information retrieval revisited. pages 159–166, 2003.

19. William A. Woods. Conceptual indexing: A better way to organize knowledge.
1997.

20. I. Zaihrayeu, L. Sun, F. Giunchiglia, W. Pan, Q. Ju, M. Chi, and X. Huang.
From web directories to ontologies: Natural language processing challenges. In 6th
International Semantic Web Conference (ISWC 2007). Springer, 2007.

SemSearch 2008, CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-334/

