CEUR-WS.org/Vol-3340/paper33.pdf

A Semantic Rule Based Expert System for the
Discovery and Composition of Cloud Services

12,34, 12%

Beniamino Di Martino T Antonio Esposito and Michele Di Giovanni®*

TUniversita della Campania Luigi Vanvitelli, Dipartimento di Ingegneria, Caserta, Italy
2Consorzio Interuniversitario Nazionale per I'Informatica, Rome, Italy
3Department of Computer Science and Information Engineering, Asia University,Taichung, Taiwan

*Department of Computer Science, University of Vienna, Vienna, Austria

Abstract

Cloud Services discovery and Composition represents a hot topic, due to the high number of Cloud
Offers currently available, and the extreme variability in the exposed services’ interfaces. Such a
variability often results in interoperability and portability issues of applications and data among different
Cloud Platforms, especially considering that Providers themselves often tend to lock-in their own users.
Semantic technologies have indeed shown the capability to reduce such issues for users, by providing a
common and shareable set of concepts, properties and relations that can be used as a ground to efficiently
compare Services and adapt their exposed interfaces. In this work, a semantic description of Cloud
Services and their agnostic composition is used to support users in implementing their own solution,
by explicitly declaring their requirements. The proposed Expert System uses an existing semantic
representation of Cloud Services, which has been further extended, and OWL-S descriptions of Agnostic
Services compositions, which are then mapped to a set of Vendor Specific Cloud Services, to discover
the required Services and finally compose a solution for the user. Users’ requirements are analysed and
processed by logical rules written in Prolog, which take care of building the actual composition. In this
paper such and Expert System is described in terms of its main inputs and outputs, together with a
description of the extended knowledge base used to represent the Cloud Services, and of the OWL-S
definitions of Agnostic Services compositions. Also, the Prolog rules used to create the Provider specific
Cloud Services compositions are reported.

Keywords
Cloud Services, Semantics, OWL-S, Prolog.

1. Introduction

Cloud Computing has been widely adopted, during past years, by several companies and
enterprises, especially of small and medium dimension. The high availability and reliability
of Cloud Services have strongly influenced and incentivised the adoption of Cloud solutions,
also considering the virtually infinite amount of resources that Cloud Platforms can provide.
This is strengthened by the relatively reduced necessity of initial investments that using Cloud

ITADATA2022: The 1* Italian Conference on Big Data and Data Science, September 20-21, 2022, Milan, Italy
*Corresponding author.

"These authors contributed equally.

& beniamino.dimartino@unicampania.it (B. D. Martino); antonio.esposito@unicampania.it (A. Esposito);
michele.digiovanni@studenti.unicampania.it (M. D. Giovanni)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
== CEUR Workshop Proceedings (CEUR-WS.org)

mailto:beniamino.dimartino@unicampania.it
mailto:antonio.esposito@unicampania.it
mailto:michele.digiovanni@studenti.unicampania.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

solutions implies. One of the main drawbacks that several companies need to address, when
approaching the Cloud Market, is represented by the extreme variety of available solutions,
which is paired by a general lack of formal, homogeneous descriptions of offered services. This
fact hinders the adoption of Cloud solutions, as the potentially of existing services in often
hidden by their lack of description or overshadowed by the technical difficulties which arise
when trying to build a complex solution, possibly merging several existing services. Indeed,
interoperability and portability issues are quite common when users try to create a complex
service starting from existing Cloud offers, especially when the composing services are exposed
by different companies and Cloud platforms.

This is where the adoption of Semantic Technologies for the description of Cloud Services, their
composition and orchestration, has demonstrated to be a possible solution to the lack of formal
descriptions of Services interfaces, dramatically mitigating interoperability and portability
issues.

Indeed, a Semantic representation of Services can be seamlessly exploited to achieve two
different goals.

The first one consists in defining a simplified means for users to access descriptions of Services
interfaces. This can be done by querying a Semantic knowledge base that, on the base of specific
requirements expressed by the users themselves, proposes a set of available Cloud Services
suiting such requirements.

The second one is instead focused on identifying possible compositions of identified Services
which, once adequately orchestrated and eventually adapted, provide complex functionalities
as requested by the user.

The two aforementioned goals can be treated separately, considering the Services Discovery as a
preliminary, necessary step to Services Composition and Orchestration. Indeed, in this paper the
two different aspects are treated separately, with a focus on the discovery goal. By leveraging a
Semantic Description of Agnostic Cloud Services, obtained through an OWL Ontology which
will be briefly introduced in Section 2, representing generic exposed functionalities that can be
then composed together, the prototype tool proposed in this paper selects the actual Vendor
Specific Services and propose a collection thereof, meeting the requirements expressed by the
user. Logical rules expressed in Prolog allow for the identification of the required Services.
Furthermore, to enable the actual composition and orchestration, OWL-S is exploited: in this
way the expert system prepares the ground for actual orchestration, by leveraging a composition
of Services using the OWL-S formalism.

The remainder of this paper is organised as follows: Section 2 provides an introduction to the
CSOntology and to OWL-S, which are necessary to understand the presented work; Section 3
describes the main components of the proposed Expert System; Section 3.1 provides an insight
on the main extensions provided to the existing CSOntology; Section 3.2 focuses on the semantic
representation of Agnostic Services, which is needed by the Expert System to define higher level
Service Compositions; Section 3.3 describes the NFR class used to represent Non-Functional
Requirements; Section 4 provides a description of the Prolog rules used by the Expert System;
Section 5 closes the paper with some final considerations and remarks.

2. Background

Classification, categorisation, discovery and Composition of Cloud Services has to be considered
as a hot topic, considering the consistent number of research efforts on its regards [1, 2].
Systematisation of exposed functionalities, operations, parameters and service models is not
a trivial matter, but it is a necessary step to achieve discovery and composition. Often the
criteria followed to categorise services are not clear, and provided semantic descriptions fail to
cover all the necessary aspects, in particular when it comes to exposed methods and parameters.
Machine readable standards for services’ representation and orchestration exist, and have
shown to be particularly reliable. The Topology and Orchestration Specification for Cloud
Applications (TOSCA) standard, proposed by OASIS, provides the means to describe topologies
of Cloud based web services, consisting in their components, relationships, and the processes
that manage them, and allow for their orchestration. Services described through TOSCA cannot
rely on Semantic descriptions, which renders them less discoverable and difficult to make
interoperant. Recent research results, published in [3], have tried to fill this gap by providing a
Semantic representation base for TOSCA services, by exploiting Semantic Web technologies to
provide discovery functionalities. The ontology used to semantically enrich TOSCA, namely the
Cloud Services Ontology (CSOntology), has been presented in [4], and it has been also used
in the current work as a base for Cloud Services identification and discovery. The CSOntology,
based on the work carried out within the mOSAIC project [5], and also successfully applied to
the definition and application of Cloud Patterns to Service Composition [6], provides a functional
categorisation of Cloud Services and Virtual Appliances. The ontology mainly divides Cloud
Services into two groups, namely Agnostic Services which represent generic functionalities
and are not specifically connected to a real Cloud Vendor, and Vendor Specific Services which
instead collect all Services exposed by a provider. Agnostic Services can be considered as place-
holders for services’ functionalities, and constitute a hierarchical architecture against which
Vendor specific services are annotated. Equivalences among several Services and their exposed
functionalities can be automatically inferred, starting from the explicitly declared equivalences
and exploiting SWRL rules contained within the CSOntology itself. Part of the work behind
the creation of the Expert System described in this manuscript consists in the extension of
the original CSOntology, as explained in Section 3.1. OWL-S [7] is a standard Ontology that
has been explicitly created to semantically enrich Web Services and compositions thereof. It
has been successfully used to represent the composition of Cloud Services, with limitations
depending on the different technologies Web and Cloud Services use for deployment.

3. An Expert System for the Composition of Cloud Services

In this Section an Expert system supporting users in the Composition of Cloud Services is
presented. The main objective of the System is to identify a possible composition of Provider
Specific Cloud Services, starting from a high-level description of a composition built upon Ag-
nostic Services, acting as a guide for the selection of actual Services. Such Agnostic Services are
automatically selected by the Expert System by applying a set of Non Functional Requirements
(NFRs) expressed by the user.

CSOntoloy
Extended
Agnostic
Services

,,/' - y

NF

Figure 1: General design of the Expert System

Composed
Services

The general design of the Expert System is reported in Figure 1. In order to work, the framework
requires three different kinds of inputs, allowing it to apply logical rules and create the Service
Composition:

« A knowledge base represented by an Ontology of Cloud Services, comprehending Compre-
hending TBox and ABox statements that can be used by the Expert System to identify the
best suiting Services and implement their composition. This role will be covered by and
extension of the CSOntology, which will be called CSOntologyExtended from here on,
and that will be discussed in Section 3.1. In order to apply logical rules to such a semantic
knowledge base, the software Thea [8] will be used to obtain a Prolog representation of
it, which can be used to apply rules accordingly.

+ A semantic description of Agnostic Services and compositions thereof, in terms of their
functionalities and internal workflow. Such descriptions will be provided through OWL-S.
As for the Cloud Services knowledge base, also the OWL-S representation will be be
processed by Thea in order to obtain a set of Prolog facts to work on.

+ A set of logical Rules expressing the NFR, used to select the most suitable Services and
compositions thereof, within the Knowledge Base and using the agnostic compositions
as a base template. Such logical rules will be expressed in Prolog. The SWI-Prolog
implementation environment is used to run the rules, in particular the ones described in
Section 4.

The output of the System is instead represented by the exact composition of Cloud Provider
Services to use to obtain the high-level functionalities required by the user, explicating the
sequence of calls among the composing Services which is necessary to build the overall workflow
of the composition.

3.1. The Cloud Services Knowledge Base

As already stated in Section 3, the Knowledge Base represented by the CSOntologyExtended
has been built upon the CSOntology briefly introduced in Section 2 and described in detail in
[4]. Figure 2 provides and overall view of the original CSOntology and of the actual CSOntolo-
gyExtended: on the right the ontology before the extension and on the left the result after the

Ontology metrics: ENELE owl:Thi

Metrics

Am:
API

ing
azonService

Axiom 397 CloudProvider
Logical axiom count 207 CloudService Ontology metrics:
Declaration axioms count 188 Company Metics
Class count 35 ImageType
Object property count 20 MicrosoftAzureService Hodom
Data property count 6 ModelCloudService Logical axiom count
Individual count 127 OpenstackService Declraton axioms count
Annotation Property count 1 ServiceCategory Class count

Al Object ropey count

Class axioms Data propenty count

SubClassOf

Object property axioms

InverseObjectProperties 1

TransitiveObjectProperty

(a) Overall view of the CSOntology before

VendorCloudPattern
VirtualAppliance

PSS

2

the extension

Business

Compute
Development
Educational
HealthCare
InformationManagement
Management
MultimediaProduction
Networking
OfficeSystem

o)
SystemManagement
WEB

Individual count
Annotaton Property count

Class axioms
SubClassOf

InverseObjeciProperties

TransitveObjectProperty
SymmetricObjectProperty

JuliZf

5470

446

otHardware

anePhpPython

(b) Overview of the CSOntologyExtended

Figure 2: CSOntology and its extension

extension. In order to create the CSOntologyExtended, new Providers, Service Categories and
Service Instances have been taken in consideration. In particular, the dataset provided by the
Public Project Cloud Comparer' has been used a source to extend the Cloud Categorization

and introduce new Services and relative parameters.

Cloud Comparer aims at describing a series of Cloud and Web Services, divided into Providers
and Categories, so that similar Services offered by different Providers can be compared. The

dataset can be downloaded as a JSON file, structured as shown in Listing 1.

Listing 1: Excerpt of the JSON dataset provided by Cloud Comparer

"category":

"service":

"name": "Virtual

"Properties": [

"Number of instance templates available", "GPU acceleration", "Custom instance

creation feature",

"name": "Compute", "ref": ""}

Server", "ref": "",

"CPU Limits", "Memory Limits", "Temporary Storage Limits"

1}

"aws":

[{"name": "Amazon EC2",

"ref": "https://aws.amazon.com/ec2/",
"icon": "Compute AmazonEC2.png",

"Properties": ["39", "Yes","No","1 -

Multiple Disks)"

b 3]

40","0,5 - 244 GB", "Up to 48 TB (

This part of the dataset shows the Services belonging to the Compute category, of type
BareMetal, and compares different alternatives. As an instance, Amazon Web Services (AWS)
offers the Amazon EC2 Bare Metal Instance, which has some specific declared characteristics

that can be compared with other offers from different providers.

The information derived from the Cloud Compare project have been used to extend and populate

'http://comparecloud.in/

the CSOntology. In particular, Pyhton scripts exploiting the owlready2? library have been
created.

In order to correctly populate the ontology, new classes have been defined as subclass of the
ServiceCategory class. The new classes comprehend categories listed in the Cloud Compare
dataset, such as Compute,Mobile Services, Artificial Intelligence. Individuals have been created
considering the actual Services described by the dataset, such as the Azure Bare Metal Serve
described in listing 2.

Listing 2: Excerpt of the JSON dataset provided by Cloud Compare defining a Service

"azure": [{ "name": "Azure Bare Metal Servers (Large Instance Only for SAP Hana)",
"ref": "https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/sap
/hana-overview-architecture",
"icon": "Azure Virtual Machine.png",
"Properties": [
"39",
"Yes",
"No",
"1 - 40",
"0,5 - 244 GB",
"Up to 48 TB (Multiple Disks)"]}]

New instances have been used to populate the ontology, such as Shared Web Hosting, Virtual
Server, Auto Scaling and Batch Jobs, considered as instances of Compute.

A Service description, as provided by Cloud Comparer, contains several properties. These have
been translated into DatatypeProperties, having the specific category class as a domain. Indeed,
each category has its own properties, which have been dynamically created by analysing the
JSON. Figure 3 shows class AutomatedDisasterRecoveryServices, its specific properties and
instances. AutomatedDisasterRecoveryServices is a subclass of DisasterRecovery, and it is the
domain of the Ref (url of a reference website) and offeredBy (connecting the Service to its
Cloud Provider) properties, and comprehends several instances, among which azureBackup
and azureSiteRecovery. Among other instances, it is also possible to identify Agnostic_
AutomatedDisasterRecoveryServices. Such an individual describes an agnostic Service that
represents the entire class: ServiceCategory’s subclasses all have one of such agnostic Service
individuals, which are used to create agnostic compositions with OWL-S.

The CSOntologyExtended ontology contains a CloudService class, with two subclasses, Ag-
nosticCloudService and VendorSpecificCloduService. AgnosticCloudService is the type to
which all agnostic Services refer, while vendor specific Services are instances of VendorSpecific-
CloduService.

So, each individual is considered as an instance of two separate classes: one is a subclass of
ServiceCategory, the other can be either AgnosticCloudService or VendorSpecificCloduService.
An individual of the AgnosticCloudService class is considered as the domain of the isServiceE-
quivalent ObjectProperty, whose range is instead represented by VendorSpecificCloduService.
This property expresses equivalence among Services, and is used to identify vendor specific
Services corresponding to agnostic Services. An example is show in Figure 4, where the prop-

*https://pypi.org/project/Owlready2/

https://pypi.org/project/Owlready2/

erty has been instantiated for the individual Agnostic_ApplicationService. Such individual
belongs to two different classes, AgnosticCloudService and ApplicationServices: the former
identifies Agnostic_ApplicationService as an agnostic Service, while the latter declares it to be
an Application Service. The equivalent individuals can either be Vendor Specific Services (such
as IbmCloudFunctions in the example) or Agnostic Services (such as logicApps in Figure 4).

3.2. Description of Agnostic Services

The second input of the Expert System is represented by the description of Agnostic Services,
which is used to allow it to identify an optimal configuration, or more than one, of Vendor
Specific Cloud Services, starting from an initial agnostic composition. OWL-S is exploited to
represent such agnostic Service compositions.

In order to describe how OWL-S is exploited in this approach, we are going to describe an
agnostic composition which is named watchFilm. This agnostic composition allows to watch
films after logging in to a Remote platform, which analyses the user’s behaviour though a Big
Data service to enhance her experience. So, the watchFilm Service is composed of a Login
service, and a SelectedForYou Service, which proposes a catalogue of films to watch, according
to the past selections made by the user. SelectedForYou is in turn composed of simpler agnostic
Services, BigData&AlI, scalableDatabase and agnostic_Compute. These Services could
be further broken down, but for simplicity we will stop at this level. Figure 5 shows such
a composition: each ellipse represents a Service, and the arrows describe a "composed of”
relationships. Let’s suppose a User requested the watchFilm Service. This would in turn rely

DisasterRecoverys

offeredBy exactly 1 CloudProvider
Ref some xsd:string

ToBeAdded some xsd:string

& Agnostic_AutomatedDisasterRecoveryServices
& alibabaDisasterRecovery

#® awsDisasterRecovery

& azureBackup

& azureSiteRecovery

& hybridBackupRecovery

@ oracleDatabaseBackup

Figure 3: Example of Properties defined for the AutomatedDisasterRecoveryServices class

AgnosticCloudservice
Applicationservices

Figure 4: Use of the isServiceEquivalent object property

\

watchFilm

Legin ::ElecleuFDr‘rou

e TN

—) NN

, scalableDatabase | @me/
| bigDataAn: D Al \ %

_//
Qu";u gm% Conlonluellvow@

Figure 5: watchFilm agnostic Service Composition

\

/w

f

on the Login Service to identify the User, in order to retrieve her personal information. Such
information would be used by the selectedForYouService to retrieve a list of suggested films,
which in turns relies on scalableDatabase as a data source for films, BigData&AlI to analyse the
User’s preferences, and agnostic_Compute to run the actual calculation.

This specific composition is obtained through OWL-S, using the Services defined in the CSOn-
tologyExtended as a reference. In order to define the composition, the SERVICE class de-
fined by OWL-S is populated with individuals representing the agnostic Services constituting
it, as shown in Figure 6. Each of the shown individuals is connected to an instance of the
COMPOSITEPROCESS class defined by OWL-S through the ObjectProperty describedBy
(also defined in OWL-S). Viceversa, each COMPOSITEPROCESS is connected to a SERVICE
individual through the describes ObjectProperty. In our specific case, selectedForYou_COM-
POSITEPROCESS is a composed process that describes the selectedForYou_SERVICE. The
selectedForYou_ COMPOSITEPROCESS is in turn constituted by the Services listed in Figure 6,
through the hasParticipant ObjectProperty, as shown in Figure 7.

All the Services used as participants in this composition are being defined in OWL-S as a
further composition of simpler Services, but the ones that cannot be broken down are directly
connected to an agnostic Service from the CSOntologyExtended ontology. This is the case
for the Agnostic_IdentityAccessManagement Service, which is used as a participant ah the
watchfilm_COMPOSITEPROCESS directly.

Instance
@ bigDataAl_SERVICE

& scalableDatabase_SERVICE
@ selectedForYou_SERVICE
@& watchFilm_SERVICE

Figure 6: Use of the Service class from OWL-S

Description: selectedForYou_COMPOSITEPROCESS [E ® & fProperty assertions: selectedForYou_COMPOSITEPR((I 5 ®

pes Object properiy asseriions
CompositeProcess mmdescribes selectedForYou_SERVICE

= hasParticipant
idual As scalableDatabase_COMPOSITEPROCESS

mm hasParticipant Agnostic_VirtualServer

Different Individuals mm hasParticipant
bigDataAl_COMPOSITEPROCESS

Figure 7: Use of the describes and hasParticipant properties for the selectedForYou Service

3.3. Description of Non-Functional Requirements

In order to describe Non-Functional Requirements (NFR), a new class has been defined in
the ontology, which has been then populated with individuals representing several kinds of
requirements, such as scalability (nfrScalability), security (nfrSecurity), use of a specific kind of
Database (nfrRelationalDB for a Relational Database) and so on.

In order to connect a Service Category with a specific NFR, the hasTargetService has been
created, and it has been explicitly exploited for the definition of the NFR class itself. As it
is shown in Figure 8, a series of connections have been created between the nfrScalability
individual and the Services satisfying Scalability requirements. If we take in consideration
the Scalability requirement, which is satisfied when the architecture of a system is dynamic

Property assertions: nfrScalability (I = M) =]

= hasTargetService
Agnostic_ContentDeliveryMetwork

mm hasTargetService
Agnostic VinualDedicated Host

m hasTargetService Agnostic_VirtualServer

m hasTargetService
Agnostic_MetworkingContentiDelivery

= hasTargetService Agnostic_LoadBalancers
= hasTargetService Agnostic_AutoScaling

Figure 8: Use of the Scalability NFR

and additional servers can be added as needed, then a first rule that can be implemented in
the knowledge base states that a Service composition will be scalable if all of its constituting
Services (either simple or composite) are also scalable. The logical rules that the expert system
will use in order to create the Services Compositions will take in consideration such definitions,
which will in turn be represented by ad-hoc Prolog rules.

4. Definition of Logical Rules in Prolog

Once the semantic description of the Services composition is ready, it is directly transformed
into a series of Prolog fact through the Thea software.

A set of low level rules have been defined, which represent the baseline to describe higher level
relationships and complex inferences. These low level rules are divided into three categories:

« Rules to identify the Class to which a Service belongs.

« Rules to check if a Service belongs to a specific Vendor and it is this recognisable as a
Vendor Specific Service.

« Rules to identify Agnostic Services.

The OWL-S structure is then transformed into a Prolog Functor, by using a recursive rule
that navigates composite processes until it reaches an Atomic or Simple Process, as defined by
the OWL-S standard.

In the example described in Section 3.2, watchFilm was a COMPOSITEPROCESS, constituted
by the Login and selectedForYou Services, the latter being again composite. The recursive rule
generating the resulting functor is provided in Listing 3.

Listing 3: Prolog Rule to create a Functor for a Service Composition

functorAgnosticCompositeService(S,Res,F):- classAssertion(agnosticCloudService,S), add(S,
[1,Res), F =..[S].

functorAgnosticCompositeService(S,Res,F) : -compositeProcess(S),findall(P,
serviceParticipants(S,P),Part), functorAgnosticCompositeService(Part,Res,_),flatten(
Res,FRes),F =..[S|FRes].

functorAgnosticCompositeService([Sh],Res,F):-functorAgnosticCompositeService(Sh, ,F),Res
= [F].

functorAgnosticCompositeService([Sh|St],Res,F) :-functorAgnosticCompositeService(Sh,_,F1),
functorAgnosticCompositeService(St,_,F2), Res = [F1,F2],F = [F1,F2].

The rule analyses each Service and its components by using the findall call, and it recursively
explores all the new identified Composite Process. The recursion stops when the exploration
does not provide new Composite Processes to further analyse.

Once a Service composition is retrieved, it is necessary to verify if it satisfies the NFRs expressed
by the user.

First, all the Services of the composition are analysed to check the agnostic requirements
introduced in the ontology as described in Section 3.3. The Prolog rule used for this in shown
in Listing 4. The rule analyses a Service S and a Requisite R, to verify if it is satisfied through
the hasTargetService property. Using Prolog predicates such as setof it would be possible to
have a complete list of satisfied requirements.

Listing 4: Prolog Rule to check agnostic NFR

agnosticMatch(S,R):- functorAgnosticCompositeService(S,_,F), subterm(T,F),
propertyAssertion(hasTargetService,R,T).

Once the agnostic composition has been checked and it satisfies the user’s requirement, it is
possible to choose matching Vendor Specific Services, by specifying further requirements on
the characteristics of the Service. This is done by examining the DataProperties associated to
the Vendor Specific Services, which have been defined in the Service ontology, as described in
Section 3.2. Such properties are directly transformed by Thea in Prolog facts, which can be
immediately used in logical rules.

Let’s consider again the composition obtained for the watchFilm Service. In order to request the
Vendor Specific Services that satisfy the user requirements, as an instance on the BigData&AI
and ScalableDatabase Services, the rules shown in Listing 5 have been applied.

Listing 5: Prolog Rules to check constraints on BigData&AI and ScalableDatabase Services

matchBigDataConstraint (S, Functor):-
agnosticToVendor (agnostic_BigDataQueryAsAService,R1),
propertyAssertion(memoryLimits_GB,R1,Expl),
intvalue(Expl,Vval),val>300,
functorCompositeService(agnostic_BigDataQueryAsAService,R1,F1),
agnosticToVendor(agnostic_MachineLearning,R2),
propertyAssertion(gpuAcceleration,R2,Exp2),
boolvalue(Exp2,true),
functorCompositeService(agnostic_MachineLearning,R2,F2)
-> functorCompositeService(bigDataAI_COMPOSITEPROCESS, [F1,F2],Functor),

S = bigDataAI_COMPOSITEPROCESS.

The BigData&Al service is required to have at least 300GB of available RAM, and a dedicated
GPU for Machine Learning. Through the agnosticToVendor rule, the Prolog engine can
identify Vendor Specific Services corresponding to an Agnostic one, provided that they satisfy a
set of specified requirements. In the example reported in Listing 5, agnosticToVendor is first
used on the agnostic_BigDataQueryAsAService Service, which is an agnostic Service providing
Big Data functionalities, to identify Vendor Specific Services that satisfy the 300 GB minimum
memory requirement. Then, the same rule is applied to the agnostic_MachineLearning
individual, identifying generic Machine Learning Services, by finding Vendor Specific Services
that offer Machine Learning functionalities that, at the same time, have GPU support. The
identified services are composed together by the final functorCompositeService funtor.

5. Conclusion and Future Works

In this paper, an Expert System has been presented with the capability of providing users a
composition of Vendor Specific Cloud Services, starting from an agnostic definition of such
a composition and a set of logical rules, used to identify Services which satisfy specific non
Functional Requirements. The agnostic composition is described by combining an ontology
of Cloud Services, which has been obtained by extending the already existing CSOntology

with information extracted from the Cloud Compare dataset, and the structure provided by
OWL-S. Several classes and new individuals have been added to the original CSOntology, here
renamed as CSOntologyExtended, by using the information available on the Cloud Comparer
website, which provides an in depth comparison among Cloud Services from several Vendors.
In particular, the JSON representation of the Cloud Services exposed by Cloud Comparer have
been automatically extracted and used to populate the new CSOntologyExtended.

The frameworks leverages the Thea software to translate the Ontological knowledge base
into a Prolog set of facts and assertions, which represent the base of executable logical rules.
The logical rules which have been defined allow for the creation of Prolog functors, that
express the composition of Services, which are specifically selected in order to provide the exact
requirements requested by the user. The resulting Service compositions can satisfy multiple
requirements at the same time. At the moment, the logical rule that express the NFRs chosen
by the user are still quite limited and hard coded, as they are not generated automatically, but
they require to be expressed either as new Prolog rules, or as SWRL rules that can be evaluated
by an inferential engine. However, in the future we will study a means to dynamically create
such rule, according to the User’s actual requirements, by means of a graphical interface that
can help her to express such requirements. Also a real system design as a service, useful also to
evaluate the scalability and the usability of the tool, will be realised.

References

[1] R.Buyya, C. Vecchiola, S. T. Selvi, Mastering cloud computing, Tata McGraw-Hill Education,
2013.

[2] D. Catteddu, Cloud Computing: benefits, risks and recommendations for information
security, Springer, 2010.

[3] B.Di Martino, A. Esposito, S. Nacchia, S. A. Maisto, U. Breitenbiicher, An ontology for oasis
tosca, in: Workshops of the International Conference on Advanced Information Networking
and Applications, Springer, 2020, pp. 709-719.

[4] B.D.Martino, G. Cretella, A. Esposito, G. Carta, An owl ontology to support cloud portability
and interoperability, International Journal of Web and Grid Services 11 (2015) 303-326.

[5] B.Di Martino, D. Petcu, R. Cossu, P. Goncalves, T. Mahr, M. Loichate, Building a mosaic of
clouds, in: Euro-Par 2010 Parallel Processing Workshops, Springer, 2011, pp. 571-578.

[6] B. D. Martino, G. Cretella, A. Esposito, Semantic and agnostic representation of cloud
patterns for cloud interoperability and portability, in: Cloud Computing Technology and
Science (CloudCom), 2013 IEEE 5th International Conference on, volume 2, IEEE, 2013, pp.
182-187.

[7] B. Mark, H. Jerry, L. Ora, M. Drew, M. Sheila, N. Srini, P. Massimo, P. Bijan, P. Terry,
S. Evren, S. Naveen, S. Katia, OWL-s: Semantic markup for web services, http://www.w?3.
org/Submission/2004/SUBM-OWL-S-20041122/, 2004.

[8] V. Vassiliadis, J. Wielemaker, C. Mungall, Processing owl2 ontologies using thea: An
application of logic programming., in: OWLED, volume 529, Citeseer, 2009.

http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

	1 Introduction
	2 Background
	3 An Expert System for the Composition of Cloud Services
	3.1 The Cloud Services Knowledge Base
	3.2 Description of Agnostic Services
	3.3 Description of Non-Functional Requirements

	4 Definition of Logical Rules in Prolog
	5 Conclusion and Future Works

