
Adversarial Attacks in Machine Learning Based Access
Control
Mohammad Nur Nobi1,2,4, Ram Krishnan1,2,3,5 and Ravi Sandhu1,2,3,4

1The University of Texas at San Antonio (UTSA), Texas, USA 78249
2Institute for Cyber Security (ICS), UTSA, Texas, USA 78249
3NSF Center for Security and Privacy Enhanced Cloud Computing (C-SPECC), UTSA, Texas, USA 78249
4Department of Computer Science, UTSA, Texas, USA 78249
5Department of Electrical and Computer Engineering, UTSA, Texas, USA 78249

Abstract
While machine learning-based access control systems demonstrated their potential in large-scale and
complex applications context for accurate and generalized access decisions, the security of such systems
is equally important due to the vulnerability of a machine learning (ML) model to adversarial attacks. A
small modification to the input could lead the ML model to make a completely inaccurate access decision.
This paper explores ML-based access control’s adversarial attack problem, focusing on manipulating
information of users and resources to gain unauthorized access. We experiment with this problem in
two simulated systems where a ResNet model decides access. We demonstrate that it is possible to
design adversarial attacks for ML models deployed for access decisions. Also, there is potential to reduce
adversarial attacks to some extent by utilizing access control-specific constraints.

Keywords
authorization, access control, machine learning, adversarial attack

1. Introduction

With advances in Big data, the Internet of Things (IoT), cloud computing, etc., the demand
for a more dynamic and efficient access control system is escalating. The traditional systems,
such as RBAC [1], ABAC [2], ReBAC [3], etc., have demonstrated their effectiveness in the
access control arena for a long time. However, with the increased complexity of computing
systems, their generality, flexibility, and usability come at a higher cost and are somewhat
inadequate [4, 5, 6]. To deal with such large-scale access control systems, the use of Machine
Learning (ML) is becoming common in different areas such as policy mining [7, 8, 9], attribute
engineering [10], role mining [11], etc. Contemporary researches also manifest the advantages
of using an ML model for more accurate access control decision-making [4, 6, 12, 13, 14, 15].
These systems decide accesses based on a trained ML model instead of a written access control
policy [16]. We refer to such systems as machine learning based access control (MLBAC). In

ITADATA2022: The 1𝑠𝑡 Italian Conference on Big Data and Data Science, September 20–21, 2022, Milan, Italy
Envelope-Open mohammadnur.nobi@my.utsa.edu (M.N. Nobi); ram.krishnan@utsa.edu (R. Krishnan); ravi.sandhu@utsa.edu
(R. Sandhu)
GLOBE http://profsandhu.com (R. Sandhu)
Orcid 0000-0002-2974-552X (M.N. Nobi); 0000-0002-7402-553X (R. Krishnan); 0000-0002-3165-1813 (R. Sandhu)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:mohammadnur.nobi@my.utsa.edu
mailto:ram.krishnan@utsa.edu
mailto:ravi.sandhu@utsa.edu
http://profsandhu.com
https://orcid.org/0000-0002-2974-552X
https://orcid.org/0000-0002-7402-553X
https://orcid.org/0000-0002-3165-1813
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Figure 1: The Adversarial Attack Problem in MLBAC.

MLBAC, the access control decisions (grant or deny) are made using user and resource metadata
and attributes. Metadata and attributes are the user/resource features that an ML model learns
for subsequent access decisions in MLBAC. For simplicity, we refer to both metadata and
attributes as ‘metadata’. These metadata could be expressed in categorical (e.g., ‘security_level,’
‘designation’) and continuous (e.g., ‘age,’ ‘salary’) data.

Among different ML models, neural networks are prevalent for obtaining a generalized and
accurate MLBAC system due to their ability to capture features from complex input [4, 6, 14].
Such quality of the neural networks poses some security concerns as they are highly sensitive
to the minor changes in the input— that is, a slight manipulation or introduction of additional
information to the input may result in an unintended output [17]. In ML, this issue is known
as an adversarial attack, and the manipulated data is an adversarial example. For instance, in
MLBAC, an attacker could perturb the user/resource metadata to gain access to a resource
forcibly. Figure 1 demonstrates the adversarial attack problem in MLBAC. An MLBAC is
deployed in a system where a user requests to access a resource at time ‘t1’, which the system
denies. At time ‘t2’, the user by itself or a third-party adversary purposefully manipulates
the respective user and resource metadata to gain access. As illustrated in the figure, system
administrators (sysadmin) may store metadata in the databases with different levels of security
restrictions, e.g., Tier 1, Tier 2, etc. Therefore, the adversary may or may not equally access
and modify each metadata. For example, an adversary may not have access to the ‘job_role’
metadata as a more restricted database could store them. On the contrary, the adversary may
manipulate (e.g., ‘expertise’ metadata) or influence (e.g., login_frequency) some metadata to
which the user may have direct or indirect access. As shown in the figure, after the manipulation,
the user requests the same access at the time ‘t3’, which is eventually granted by the MLBAC
system.

This area is studied carefully and comprehensively in the domains where inputs are generally
images [18, 19], e.g., computer vision. However, this problem is equally important in the access

control domain, especially for MLBAC, where the input data is non-image. As discussed, in
MLBAC, the input is the user/resource’s metadata which is tabular data expressed in terms of a
set of categorical and continuous values. Also, as shown in Figure 1, metadata may have different
levels of restrictions. Therefore, the adversarial attack needs to be investigated concerning the
access control domain. This paper investigates adversarial attacks in MLBAC. In particular,
we consider an MLBAC where the ML model is a deep neural network. To the best of our
knowledge, this is the first work of its kind in the access control domain. We summarize our
contributions as follows.

• We define adversarial attack problems in the MLBAC context. We also propose customized
objective functions for imposing additional constraints in the same context.

• We simulate the adversarial attack cases in the deep neural network-based MLBAC with two
complex and large-scale systems. Also, we consider underlying user/resource metadata in
both systems contain a mix of categorical and continuous data.

• We evaluate the performance of our experimentation and demonstrate that applying accessi-
bility constraints makes it harder for the adversarial attack generation.

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3
defines the adversarial attack problem in the context of MLBAC. Later, we discuss overall
experimentation methodologies in Section 4. We present evaluation metrics and results in
Section 5. Finally, Section 6 concludes the paper.

2. Related Work

2.1. Machine Learning Based Access Control (MLBAC)

In MLBAC, an ML model decides accesses based user and resource’s metadata and attributes.
We briefly discuss them below.

Cappelletti et al. [6] experiment with multiple ML techniques, including Decision Tree [20],
Random Forest (RF) [21], Support Vector Machines (SVM) [22], and Multi-Layer Perceptron
(MLP) [23], for making access control decisions. The authors train the ML models using access
history. The authors suggest using neural networks for complex systems. Chang et al. [12]
present an SVM-based time-constraint access control approach associated with the time (e.g., a
user may only have access to a resource during office hours). When an access request is made,
the trained SVM grants security access based on the user’s information and given time. Liu
et al. [13] propose a technique utilizing an RF algorithm. The authors build RF based on the
access logs of an existing access control system.

A more advanced ML algorithm is also becoming common to tackle situations where access
control requirements are complex. For example, Karimi et al. [4] establish a framework using
a reinforcement learning (RL) algorithm that maps access requests to the access decisions.
An RL agent learns access control policies through feedback (rewards for the right decision,
otherwise penalties) from the users/administrators and subsequently makes access decisions.
Srivastava et al. [15] developed risk adaptive access control (RAdAC) using a neural network

and an RF algorithm for dynamic access decisions. Before deciding on accesses, the RAdAC
assesses the genuineness of the user and the risk of the access based on metadata such as access
time, location, user history, resource sensitivity, etc. Recently, Nobi et al. [14] proposed a Deep
Learning Based Access Control (DLBAC) using deep neural networks, including ResNet [24],
DenseNet [25], etc. The DLBAC train ML models using authorization tuples that represent
the existing access control state. The evaluation results suggest that DLBAC can make more
generalized and accurate access decisions than an ABAC system and other ML methods. The
authors also provide two strategies for understanding DLBAC decisions by exploiting deep
learning interpretation techniques.

2.2. Adversarial Attack for Tabular Data

As discussed, the input data in the access control domain is in tabular format—this section
reviews existing adversarial attacks in the tabular data context.

There are tremendous research efforts for the adversarial attacks and defenses in the different
domains, such as image, graph, text, etc. [18, 19, 26]. However, we do not see similar efforts for
the tabular data domain. Ballet et al. [17] propose an imperceptible adversarial attack for the
tabular data domain. The authors manipulate less important features to a greater extent, adding
a minimal perturbation to the more important features to ensure imperceptibility. Cartella
et al. [27] present an adversarial attack for imbalanced tabular data for fraud detection. The
proposed method obtains adversarial examples that are less perceptible when analyzed by
humans. Kumar et al. [28] propose an adversarial attack for a payment system, focusing on
generating adversarial examples on the tabular dataset with limited resources (the least number
of queries used). The authors experiment with a gradient-free approach in black-box settings.
Mathov et al. [29] propose a framework for adversarial examples in heterogeneous tabular data,
including discrete, real-number values, categorical, etc. The proposed framework defines a
distribution-aware constraint and then incorporates them by embedding the heterogeneous
input into a continuous latent space.

3. Adversarial Attack in MLBAC

3.1. Adversarial Attack Problem

This section discusses the MLBAC adversarial attack problem. For any access request to the
MLBAC, the input to the model is both user and resource metadata, and the MLBAC decides
whether the user has access or not. Given the ground truth of an access decision of a request and
respective user/resource metadata, we can express them as a tuple of user metadata, resource
metadata, and an access decision. We refer to such tuple as an authorization tuple. For example,
an authorization tuple ⟨u1, r1, {grant}⟩ indicates that a user u1 has access to the resource r1.
The u1 and r1 also represent the set of their respective metadata and metadata values.

We consider 𝕏 represents a set of authorization tuples where user and resource metadata
are denoted by 𝑥𝑎 with 𝑎∈[1…𝑁] and associated with a binary access decision 𝑦𝑎 representing
either grant (1) or deny (0). Also, 𝑥𝑎 is defined by a ‘vector’ of user and resource metadata values
and expressed as: 𝑥𝑎 = ⟨𝑚𝑢

1 ∶ 𝑣1 , 𝑚𝑢
2 ∶ 𝑣2 , …, 𝑚𝑢

𝑖 ∶ 𝑣𝑖 , 𝑚
𝑟
1 ∶ 𝑣1 , 𝑚𝑟

2 ∶ 𝑣2 , …, 𝑚𝑟
𝑗 ∶ 𝑣𝑗 ⟩. The pair

𝑚𝑢
𝑖 ∶𝑣𝑖 indicates 𝑣𝑖 is the value of 𝑖𝑡ℎ user metadata 𝑚𝑢

𝑖 . Similarly, the pair 𝑚𝑟
𝑗 ∶𝑣𝑗 indicates 𝑣𝑗 is

the value of 𝑗 𝑡ℎ resource metadata 𝑚𝑟
𝑗 .

Also, we consider 𝑓∶𝕏 ⟶ {0, 1 }, a binary classifier mapping to access decisions where the
grant is represented by ‘1’ and deny as ‘0’, which is obtained from comparing the probability of
access at the output of the classifier with a threshold.

For a given user-resource metadata values 𝑥, the access decision 𝑦 = 𝑓 (𝑥), and target access
decision 𝑡 ≠ 𝑦, we aim to generate an optimal perturbation 𝑥𝑝 such that

𝑓 (𝑥) = 𝑦 ≠ 𝑓 (𝑥 + 𝑥𝑝) = 𝑡

Our goal is to generate an adversarial example such that we can minimize the amount of
perturbation (𝑥𝑝) and gain the desired access 𝑡. To accomplish that, we define our objective
function as the accumulation of access change constraint and minimization of 𝑥𝑝:

𝑔(𝑥𝑝) = L(𝑥 + 𝑥𝑝, 𝑡) + 𝜔 ‖ 𝑥𝑝 ‖

Where L(𝑥, 𝑡) is the value of loss of the binary classifier 𝑓 calculated for the input 𝑥 and
target access decision 𝑡. Also, ‖ 𝑥𝑝 ‖ measures the 𝑙𝑝 norm of perturbation and 𝜔>0 is the weight
associated to the amount of perturbation.

3.2. Accessibility Constraint

The objective functionwe discussed above considers that the attacker has the flexibility tomodify
any user/resource metadata to obtain their desired access. In MLBAC, there are metadata with
different levels of restrictions, as discussed in Section 1 and illustrated in Figure 1. Therefore,
an adversary can not access and modify every metadata equally. A sysadmin could explicitly
impose such restrictions, and the adversary could not directly access and modify some of the
metadata. For example, a user’s ‘job_role’ information comes from the system, which is difficult,
if not impossible, to modify and will take more effort. On the other hand, the adversary could
influence some metadata, such as ‘expertise’, and maybe modify it with less effort. Without
loss of generality, we refer to such notion of restrictions and the ability to access them as the
accessibility constraint.
To impose the accessibility constraint while generating perturbation (𝑥𝑝), we extend our

objective function as below:

𝑔(𝑥𝑝) = L(𝑥 + 𝑥𝑝, 𝑡) + 𝜔 ‖ 𝑥𝑝∘𝑐 ‖

Where 𝑐 is the accessibility constraint expressing the magnitude of restrictions with respect to
each metadata, ∘ is the element-wise product operator, and 𝜔>0 is the weight for the penalty of
perturbing metadata with higher accessibility constraint. We hypothesize that exploiting acces-
sibility constraint with the proposed objective function will make the perturbation generation
harder.

3.3. Adversarial Attack Approach

After formulating objective functions, we aim to develop an approach to optimize the objective
function minimization problem and generate perturbed examples. Researchers have proposed
numerous approaches, such as the Fast Gradient Sign Method (FGSM) [30], Projected Gradient
Descent (PGD) [31], Carlini & Wagner Attacks [32], etc., to generate adversarial attacks that can
deceive a trained deep neural network with higher accuracy. However, most of the algorithms
have been proposed for the image domain. Due to the data characteristics in the access control
domain, these algorithms may not readily mislead the ML model in MLBAC. A few works
consider the non-image tabular data domain [17, 27, 33]. These works have demonstrated their
potential in generating adversarial attacks for ML models applied in multiple use-cases such as
financial services [17], fraud detection [27], etc.
Ballet et al. [17] propose the LowProFool algorithm to solve the optimization problem for

the continuous tabular data using a gradient descent approach. As MLBAC input is tabular
data containing both categorical and continuous metadata, and we have a similar optimization
problem, we adopt their algorithm for minimizing our objective function 𝑔. We customize the
algorithm and adjust the parameters such that we can optimize our objective function and
supports continuous and categorical data. We further discuss this in Section 4.5.

4. Methodology

4.1. Determining Accessibility Constraint

In MLBAC system, the access decisions are made based on user/resource metadata. In practice,
this metadata could come from different sources, where some sources are more secured than
others. For example, a highly restricted database may store a user’s sensitive information, such
as ‘job_role.’ In contrast, a less secured database may store less sensitive data such as ‘expertise.’
Also, not every metadata/attributes equally influences the access decisions [14]. Therefore, the
sysadmin may restrict influential and sensitive metadata/attributes with more security. We
utilize the notion of accessibility constraint (as discussed in Section 3.2) to simulate such security
restriction levels for each of the metadata.
Instead of randomly determining some metadata as more restricted and others as less re-

stricted, we measure the correlation for each user and resource metadata for a decision. More
concretely, we calculate the absolute value of Pearson’s [34] correlation coefficient of each
metadata with respect to the access decision. For this purpose, we could utilize other methods
crafted specifically for the access control domain, such as the global interpretation-based method
developed by Nobi et al. [14], where they determine the influence of each metadata for a specific
decision for an ML model. However, we rely on Pearson’s correlation as it can better simulate
human intuition through a linear correlation based on the data [17]. For our proposed objective
function, we generate accessibility constraint values in the range of 0 to 1 for each metadata. A
higher constraint value of metadata indicates the respective metadata is more secured, thereby
less accessible by the adversary while generating perturbation.

4.2. Dataset forMLBAC Adversarial Attack Experimentation

MLBAC makes access control decisions based on user and resource metadata and attributes
values. Before that, MLBAC needs training with available ground truth to decide on subsequent
access control requests. Generally, the ground truth could be access history, existing authoriza-
tion information, etc., communicated through authorization tuples [6, 13, 14]. (We discussed
the authorization tuple in Section 3.1.) We call such a collection of authorization tuples a dataset
that represents the current access control state of a system.
Each dataset represents the metadata information of users and resources and their access

control state. However, metadata values could be a mix of continuous (e.g., ‘age,’ ‘salary’) and
categorical (e.g., ‘security_level,’ ‘designation’) data. We are unaware of any publicly available
access control dataset representing mixed metadata values. There are two access control datasets
fromAmazon [35, 36]. Both of these datasets contain only categorical metadata/attributes values.
As a result, for this work, we experiment with two simulated datasets1, named 𝑢5𝑘-𝑟5𝑘-𝑎𝑢𝑡ℎ12𝑘
and 𝑢5𝑘-𝑟5𝑘-𝑎𝑢𝑡ℎ19𝑘, developed by Nobi et al. [14]. The authors create these datasets using the
data generation method proposed in [37] and introduce different complexities to simulate some
real-world scenario. Each dataset has around five thousand users, five thousand resources, and
four different operations. The 𝑢5𝑘-𝑟5𝑘-𝑎𝑢𝑡ℎ12𝑘 dataset, we refer to as System-1, has around
12K authorization tuples. Each user has eight user metadata (𝑢𝑚𝑒𝑡𝑎0, 𝑢𝑚𝑒𝑡𝑎1, … , 𝑢𝑚𝑒𝑡𝑎7), and
each resource has eight resource metadata (𝑟𝑚𝑒𝑡𝑎0, 𝑟𝑚𝑒𝑡𝑎1, … , 𝑟𝑚𝑒𝑡𝑎7). On the other hand, the
𝑢5𝑘-𝑟5𝑘-𝑎𝑢𝑡ℎ19𝑘 dataset has around 19K authorization tuples, whereas a user has ten metadata
(𝑢𝑚𝑒𝑡𝑎0, 𝑢𝑚𝑒𝑡𝑎1, … , 𝑢𝑚𝑒𝑡𝑎9) and a resource has ten metadata (𝑟𝑚𝑒𝑡𝑎0, 𝑟𝑚𝑒𝑡𝑎1, … , 𝑟𝑚𝑒𝑡𝑎9). We
refer to this dataset as System-2.

However, both datasets contain categorical metadata values, as integers, of which each value
represents a category. In practice, one could anticipate a mix of continuous and categorical
data [29]. To simulate the notion of mixed data, we consider metadata values of both datasets
as mixed data. In particular, we assume that the first half of the user and resource metadata
are continuous and consider an integer a real value. We also consider the rest of the metadata
as nominal categorical data, where each integer represents a category, and the order of the
category does not matter. As the metadata contains mixed data, they need to be processed
efficiently such that the underlying ML model can properly consume the training data [38]. The
following section discusses their preprocessing.

4.3. Data Preprocessing

This section explains the processing of the System-1, which is equally applicable to System-2.
⟨1011|2021|30 49 5 26 63 129 3 42 | 43 49 5 16 63 108 3 3 |⟨1 1 0 1⟩⟩ is a sample authorization
tuple of the System-1 dataset where 1011 and 2021 are the user and resource’s unique numbers.
The next eight elements indicate the metadata values of a user, the following eight elements
represent the resource’s metadata values, and the final four binary digits (1 for grant, 0 for deny)
signify four different operation’s access to the resource.

For our experiment, we consider the first four user metadata (𝑢𝑚𝑒𝑡𝑎0 to 𝑢𝑚𝑒𝑡𝑎3) and the first
four resource metadata (𝑟𝑚𝑒𝑡𝑎0 to 𝑟𝑚𝑒𝑡𝑎3) to be continuous, and the rest of the metadata are

1https://github.com/dlbac/DlbacAlpha/tree/main/dataset/synthetic

https://github.com/dlbac/DlbacAlpha/tree/main/dataset/synthetic

Figure 2: Input Preprocessing in System-1 Dataset.

categorical. Also, we utilize only one operation (out of four operations) that indicates whether
the user has access to the respective resource or not (grant/deny). Figure 2 illustrates the data
preprocessing of System-1 dataset. We normalize continuous data using the MinMaxScaler
approach [39] and apply one-hot encoding [38] for the categorical portion of the metadata. As
shown in the figure, we merge continuous normalized data, a vector, with the one-hot encoded
categorical data matrix. The merged matrix, holding values between 0 and 1, acts as the ML
model’s input.

4.4. Candidate ML Model forMLBAC

A deep neural network has significant benefits for controlling access in dynamic, complex, and
large-scale systems [14]. Considering the scale of our datasets and data characteristics, we utilize
a deep neural network for MLBAC. In particular, we consider ResNet [24] as our candidate
ML model. We note that one could use other deep neural networks, including Xception [40],
DenseNet [25], etc., although we do not anticipate any significant changes in our results.

For System-1 and System-2 datasets, we exploit the ResNet ML models with 8 and 50 residual
layers, respectively, as suggested in [14]. There is a convolution, a batch normalization opera-
tion [41], and a ReLU [42] activation function in each layer. The final activation layer’s output
is flattened and fed into a dense layer with a sigmoid activation function as the MLBAC needs
to make a binary access decision (grant or deny).

4.5. Customization of LowProFool Algorithm

As discussed in Section 3.3, we exploit the LowProFool [17] algorithm for generating adversarial
examples for the MLBAC. We modify the algorithm and parameters to support continuous and
categorical data and help minimize our proposed objective functions discussed in Section 3.1

and 3.2. We replace the objective functionwith our proposed one and take accessibility constraint
(𝑐) as input. We define the loss function L as the binary cross-entropy function. Also, we guide
the perturbation to the positive of the gradient if our target access is a ‘grant (1)’. Otherwise,
we guide to the negative of the gradient. As discussed, our experiment’s preprocessed input
holds values between 0 and 1. Therefore, we modify the 𝑐𝑙𝑖𝑝 (𝑥) function to control the value of
each metadata such that it does not cross the range. We floor the value to 1 if it exceeds one,
and we ceil it to zero if the value becomes negative.
In addition, the algorithm controls the growth of the perturbation using the scaling factor

parameter 𝛼. Also, we need to provide a weight parameter 𝜔 that helps to minimize perturbing
the metadata with higher accessibility constraints. For the System-1, we choose the parameters
𝛼 and 𝜔 as 0.2 and 6, respectively. These values are 0.7 and 5.7 for the System-2. We follow a
trial-and-error process for choosing them. We have created a GitHub repository consisting of
our experimentation’s source code and datasets2.

5. Evaluation

5.1. Evaluation Metrics

The efficiency of an adversarial attack is measured as the ratio of successfully crafted adversarial
examples, and the total number of samples attempted to prepare the adversarial example. This
ratio is known as the Success Rate [17]. Let us consider𝕏 as the number of samples attempted
for the adversarial example creation. We also consider 𝔸 containing every tuple (𝑥, 𝑥𝑎) such
that 𝑥∈𝕏 and 𝑥𝑎 a successfully crafted adversarial examples from 𝑥with 𝑓 (𝑥)≠𝑓 (𝑥𝑎). We define
the Success Rate as follows:

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑒 =
|𝔸|
|𝕏|

5.2. Evaluation Methodology

We propose two different objective functions for the MLBAC system, as discussed in Section 3.1
and 3.2. In one case, we consider that adversary has equal access to every metadata and, thereby,
could change any metadata at any level. In another case, we consider a scenario where each
metadata may have been stored in places with different levels of restrictions (accessibility
constraint). As a result, an adversary could not access and modify every metadata equally. In
such a case, the adversarial example generation would be harder, and we anticipate a lower
Success Rate. We evaluate both cases and refer to the first as the ‘Without Accessibility
Constraint’ and the latter as the ‘With Accessibility Constraint.’
As discussed, we experiment with two datasets System-1 and System-2, having a different

number of samples and data characteristics. We evaluate the performance of both of the datasets.
Also, we create a different subset of samples measured by sample count and eventually determine
the average performance for the respective dataset.

2https://github.com/dlbac/MLBAC-AdversarialAttack

https://github.com/dlbac/MLBAC-AdversarialAttack

(a) Performance Evaluation of System-1. (b) Performance Evaluation of System-2.

Figure 3: MLBAC Adversarial Attack Performance Evaluation.

5.3. Results

Figure 3 illustrates the overall performance of MLBAC adversarial attack simulation. Figure 3a
demonstrates the performance of System-1. As shown in the figure, the success rate of adver-
sarial attacks without imposing any additional constraint is above 95%. However, when we
restrict the system considering accessibility constraint, the success rate reduces to an average
of 75%. We observe a similar result in the System-2 case, as demonstrated in Figure 3b. In this
case, without any constraint, the success rate is above 98%. We observe an identical trend for
the scenario when we apply the constraint. The average success rate goes down to 79%. In both
cases, we observe that the proposed adversarial method could successfully design adversarial
examples at a higher success rate. However, by restricting the flexibility of the adversary by
limiting their access to different metadata at a different level, we see a dramatic reduction in
the performance, justifying our hypothesis made in Section 3.2.

6. Conclusion and Future Work

This paper defines the adversarial attack problem in the MLBAC context where a trained ML
model decides access. We customize objective functions by imposing additional accessibility con-
straint to reflect the access control context. We experiment with adversarial attack cases in the
deep neural network-based MLBAC with two complex, large-scale systems. Also, we consider
systems where underlying user/resource metadata contains both categorical and continuous
data. We thoroughly evaluate the performance of MLBAC adversarial attack experimentation
and demonstrate that it is possible to restrict an adversarial attack to some extent by introducing
a security constraint.
In this work, we measure accessibility constraint using the correlation method. Exploring

other methods to simulate such restrictions and accessibility would be interesting. Also, the
adversarial attack and the proposed objective functions have dependencies on multiple param-
eters. The performance of the attack method has a strong connection with these parameter
values, which we determine using a trial-and-error approach. A further investigation is needed
to minimize dependencies and find their values more systematically. Besides, we consider

the white-box attack scenario, where we assume the adversary has access to the ML model in
MLBAC. It would be interesting to explore a black-box scenario where the adversary cannot
access the MLBAC model. Also, the proposed accessibility constraint exhibits its prospect of
safeguarding against adversarial attacks, which may not be sufficient in some cases. A thorough
investigation is needed to determine defense techniques in the access control context.

Acknowledgments

Wewould like to thank the CREST Center For Security And Privacy Enhanced Cloud Computing
(C-SPECC) through the National Science Foundation (NSF) (Grant Award #1736209) and the NSF
Division of Computer and Network Systems (CNS) (Grant Award #1553696) for their support
and contributions to this research.

References

[1] R. S. Sandhu, et al., Role-based access control models, Computer (1996).
[2] V. C. Hu, D. Ferraiolo, et al., Guide to attribute based access control (abac) definition and

considerations (draft), NIST special publication (2013).
[3] P.W. Fong, I. Siahaan, Relationship-based access control policies and their policy languages,

in: The 16th ACM SACMAT, 2011, pp. 51–60.
[4] L. Karimi, M. Abdelhakim, J. Joshi, Adaptive abac policy learning: A reinforcement learning

approach, arXiv (2021).
[5] N. Baracaldo, J. Joshi, An adaptive risk management and access control framework to

mitigate insider threats, Computers & Security (2013).
[6] L. Cappelletti, et al., On the quality of classification models for inferring abac policies

from access logs, in: IEEE Big Data, 2019.
[7] A. A. Jabal, E. Bertino, et al., Polisma-a framework for learning attribute-based access

control policies, in: ESORICS, 2020.
[8] C. Cotrini, et al., Mining abac rules from sparse logs, in: Euro S&P, IEEE, 2018.
[9] L. Karimi, M. Aldairi, J. Joshi, M. Abdelhakim, An automatic attribute based access control

policy extraction from access logs, IEEE TDSC (2021).
[10] M. Alohaly, H. Takabi, E. Blanco, A deep learning approach for extracting attributes of

abac policies, in: ACM SACMAT, 2018.
[11] Q. Ni, J. Lobo, S. Calo, P. Rohatgi, E. Bertino, Automating role-based provisioning by

learning from examples, in: ACM SACMAT, 2009.
[12] C.-C. Chang, I.-C. Lin, C.-T. Liao, An access control system with time-constraint using

support vector machines., Int. J. Netw. Secur. 2 (2006) 150–159.
[13] A. Liu, X. Du, N. Wang, Efficient access control permission decision engine based on

machine learning, Security & Communication Networks (2021).
[14] M. N. Nobi, et al., Toward deep learning based access control, in: ACM CODASPY, 2022.
[15] K. Srivastava, N. Shekokar, Machine learning based risk-adaptive access control system to

identify genuineness of the requester, in: Modern Approaches in Machine Learning and
Cognitive Science: A Walkthrough, Springer, 2020, pp. 129–143.

[16] M. N. Nobi, M. Gupta, L. Praharaj, M. Abdelsalam, R. Krishnan, R. Sandhu, Machine
learning in access control: A taxonomy and survey, arXiv (2022).

[17] V. Ballet, et al., Imperceptible adversarial attacks on tabular data, arXiv:1911.03274 (2019).
[18] I. J. Goodfellow, et al., Explaining and harnessing adversarial examples, arXiv (2014).
[19] H. Xu, et al., Adversarial attacks and defenses in images, graphs and text: A review,

International Journal of Automation and Computing 17 (2020) 151–178.
[20] S. R. Safavian, D. Landgrebe, A survey of decision tree classifier methodology, IEEE

transactions on systems, man, and cybernetics (1991).
[21] L. Breiman, Random forests, Machine learning (2001).
[22] C. Cortes, V. Vapnik, Support-vector networks, Machine learning (1995).
[23] J. Schmidhuber, Deep learning in neural networks: An overview, Neural networks (2015).
[24] K. He, et al., Deep residual learning for image recognition, in: IEEE CVPR, 2016.
[25] G. Huang, et al., Densely connected convolutional networks, in: IEEE CVPR, 2017.
[26] S. G. Finlayson, et al., Adversarial attacks on medical machine learning, Science (2019).
[27] F. Cartella, et al., Adversarial attacks for tabular data: Application to fraud detection and

imbalanced data, arXiv (2021).
[28] N. Kumar, S. Vimal, K. Kayathwal, G. Dhama, Evolutionary adversarial attacks on payment

systems, in: 2021 20th IEEE ICMLA, IEEE, 2021.
[29] Y. Mathov, E. Levy, Z. Katzir, A. Shabtai, Y. Elovici, Not all datasets are born equal: On

heterogeneous tabular data and adversarial examples, Knowledge-Based Systems (2022).
[30] C. Szegedy, et al., Intriguing properties of neural networks, arXiv (2013).
[31] A. Kurakin, I. Goodfellow, S. Bengio, Adversarial machine learning at scale, arXiv (2016).
[32] N. Carlini, D. Wagner, Towards evaluating the robustness of neural networks, in: S&P,

IEEE, 2017.
[33] R. S. S. Kumar, M. Nyström, J. Lambert, A. Marshall, M. Goertzel, et al., Adversarial

machine learning-industry perspectives, in: 2020 IEEE S&P Workshops (SPW), IEEE, 2020.
[34] J. Benesty, J. Chen, Y. Huang, I. Cohen, Pearson correlation coefficient, in: Noise reduction

in speech processing, Springer, 2009, pp. 1–4.
[35] U. Amazon, Amazon access samples data set, 2011. URL: http://archive.ics.uci.edu/ml/

datasets/Amazon+Access+Samples.
[36] K. Amazon, Amazon employee access challenge in kaggle, 2013. URL: https://www.kaggle.

com/c/amazon-employee-access-challenge/.
[37] Z. Xu, S. D. Stoller, Mining attribute-based access control policies, TDSC (2014).
[38] J. T. Hancock, T. M. Khoshgoftaar, Survey on categorical data for neural networks, Journal

of Big Data 7 (2020) 1–41.
[39] J. Yoon, et al., Anonymization through data synthesis using generative adversarial networks

(ads-gan), Journal of biomedical and health informatics (2020).
[40] F. Chollet, Xception: Deep learning with depthwise separable convolutions, in: IEEE

CVPR, 2017.
[41] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing

internal covariate shift, in: ICML, PMLR, 2015.
[42] V. Nair, G. E. Hinton, Rectified linear units improve restricted boltzmann machines, in:

ICML, 2010.

http://archive.ics.uci.edu/ml/datasets/Amazon+Access+Samples
http://archive.ics.uci.edu/ml/datasets/Amazon+Access+Samples
https://www.kaggle.com/c/amazon-employee-access-challenge/
https://www.kaggle.com/c/amazon-employee-access-challenge/

	1 Introduction
	2 Related Work
	2.1 Machine Learning Based Access Control (MLBAC)
	2.2 Adversarial Attack for Tabular Data

	3 Adversarial Attack in MLBAC
	3.1 Adversarial Attack Problem
	3.2 Accessibility Constraint
	3.3 Adversarial Attack Approach

	4 Methodology
	4.1 Determining Accessibility Constraint
	4.2 Dataset for MLBAC Adversarial Attack Experimentation
	4.3 Data Preprocessing
	4.4 Candidate ML Model for MLBAC
	4.5 Customization of LowProFool Algorithm

	5 Evaluation
	5.1 Evaluation Metrics
	5.2 Evaluation Methodology
	5.3 Results

	6 Conclusion and Future Work

