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Abstract
The importance of an equal treatment of individuals by AI models drastically grows due to the demands of
modern society. The potential discrimination or favoritism of specific groups of individuals is one of the
common perspectives for the evaluation of model behavior. However, most of the available fairness tools
require human intervention in the selection of subgroups of interest and therefore expert knowledge.
In this paper we propose a new tool, the ASDF-Dashboard, which automates the process of subgroup
fairness assessment. It automates the subgroup detection by applying a method based on unsupervised
clustering algorithms and pattern extraction to ease the usage also for non-expert users.
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1. Introduction

The research, that was conducted in the past decades, has enabled a level of AI featuring
complex systems of hundreds of possible applications and an ever growing interest in their
further development. There has been a great effort in improving the developed techniques
and algorithms with the goal of optimizing their performance. The more powerful and faster
technologies available today facilitate the expressiveness and performance of such AI systems
making them omnipresent and essential in the modern world. Machine learning methods already
outperform humans in certain tasks and AI supported decision making is no longer a rarity in
sensitive fields like finance or medicine. However, the consideration of the societal impact of
such potentially life-changing decisions has become an increasingly important objective and,
thus, it needs to be evaluated in a transparent and critical way. More precisely, AI systems must
not only be designed and optimized for performance, accuracy and quality but also reckon with
aspects like transparency, explainability or fairness.

Fair machine learning models have to provide an equal treatment to different individuals
regardless of their sensitive characteristics, e.g., their genders, races or ethnics. It is crucial
to ensure that no individual experiences discrimination or favoritism by the model choices
as a consequence of their membership in a certain population. Nevertheless, it is challenging
to test the behavior of a model for fairness against subgroups when considering the intersec-
tions of (sensitive) characteristics as this causes an exponentially large number of potentially
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discriminated or favored subgroups to test. Furthermore, it is not obvious, in general, which
characteristics of a dataset or which intersections induce subgroups suffering discrimination by
the model, and it usually is infeasible to test each possible intersectional subgroup for a fair
treatment. Hence, an automated suggestion of subgroups for the fairness testing is desirable.

In this work we propose the ASDF-Dashboard tool for the automated subgroup fairness
analysis of binary classification models. It implements the previously contributed method-
ology of automatic subgroup detection using an unsupervised clustering and a subsequent
entropy-based pattern extraction [1] in a user-friendly, web-based interface. The results of
the subgroup fairness assessment are visualized in different charts in our dashboard to give
the user deep insights into the behavior of the tested binary classification model regarding
the detected subgroups. In the following, we outline related work on (automated) subgroup
fairness evaluation tools and frameworks in Section 2. Section 3 then presents the definitions of
subgroup fairness metrics based on pattern-induced subgroups (Section 3.1) and the previously
developed methodology of entropy-based pattern extraction (Section 3.2). We introduce our
ASDF-Dashboard and describe its functionality in Section 4. Section 5 briefly refers to our
experimental results [1] and discusses the implementation of the ASDF-Dashboard. Finally, a
conclusion and potential directions for future work are given in Section 6.

2. Related Work

There exist quite some machine learning tools to support AI developers, data scientists and also
end users to realized and understand a model’s behavior when presented the data. Such tools
enable the enhancement of the model in the development process, deep analyses of AI systems
under various criteria and features, and transparency to end users, that can get an idea on the
processing of their data out of it. In particular, the latter point is increasingly interesting as our
modern society demands for more transparency in AI and an equal treatment of individuals
regardless of their gender or ethnics, for example. This directly leads to the concept of AI
fairness, which can be tested and visualized using diverse tools. A common drawback of such
supporting tools is that they are not designed for non-expert user lacking deeper knowledge
and, thus, cannot perform the required interaction with the tool appropriately.

The Boxer [2] tool provides the functionality to analyze and compare models for their
behavior on the same task in an interactive fashion. It is able to identify intersectional bias
in the predictions of the models for subgroups of interest as specified by the tool user. This
functionality is also offered by the Fairkit-learn [3] toolkit in a similar way to monitor the
performance and fairness of potentially discriminating models. Models for graph mining tasks
can be investigated with a tool called FairRankVis [4], which allows to explore visualizations
of the model fairness wrt. individuals and subgroups. Another approach is provided by the
What-if tool [5] that performs a subgroup fairness analysis and automatically optimizes the
classification threshold of the considered model based on the results of the fairness analysis.
Morina et al. [6] developed a framework that delivers multiple intersectional fairness metrics
and estimators. However, none of the previously mentioned tools or frameworks is able to
perform a subgroup fairness analysis of a given model automatically as they all require human
intervention when it comes to detecting the intersectional bias. In each of these tools, the user



has to specify the subgroups of interest manually before a subgroup fairness metric is applied.
Our approach, in contrast, facilitates the subgroup fairness analysis by an automated detection
of subgroups for the assessment of the classifier’s fairness.

The FairVis tool [7] suggests subgroups to the user, that were detected automatically by
clustering the data with the k-means clustering algorithm and extracting patterns of instance
prototypes. The prototypes describe the makeup of the clusters and the corresponding patterns
are obtained from the dominant features matching most of the subgroup members. This means
that the aggregation into a cluster made most of the individuals of this subgroup having a
uniform value for the dominant attribute, which is then extracted as pattern to match data
in the whole dataset. Our ASDF-Dashboard extends the approach behind FairVis by offering
also different clustering algorithms for the initial subgroup detection and refining the pattern
extraction by a more intuitive method to quantify the uniformity of a certain feature. Instead of
ranking the features by their cluster feature entropy, we apply a configurable, global threshold
to identify dominant features independent of the feature domains.

Another approach to automatically detect subgroups uses frequent-pattern mining on the
dataset. The Divexplorer [8] tool searches possible patterns to evaluate differences in the
model’s behavior between subgroups and the whole population in the dataset. The search space
of possible patterns is explored exhaustively while considering only patterns with a specific
degree of support and dropping less supported patterns. The model fairness regarding the
subgroups is then evaluated as the difference in the probability for prediction using FPR or FNR.
Similarly, the DENOUNCER [9] tool generates possible patterns by traversing the pattern graph
and searches for the most general patterns which have support above a given threshold and
define subgroups where the model performs poorly (low accuracy). As the space of patterns
grows exponentially with the number of features and highly depends on the complexity of the
domains of the features, the detection of subgroups and the assessment of the model fairness
wrt. to the detected subgroups can be very time consuming. Hence, the support thresholds
need to be defined very carefully to prune the search space appropriately while also generating
patterns inducing meaningful subgroups.

3. Automated Subgroup Fairness

The ASDF-Dashboard automatically assesses the subgroup fairness of a binary classifier on a
given dataset. To this end, the system detects subgroups in the data by computing a clustering
of the data. The found clusters are then treated as subgroups themselves while alternatively
general patterns are derived from the clusters. The obtained patterns also induce subgroups for
an evaluation of the classifier’s fairness. This procedure facilitates the assessment as no set of
protected attributes has to be predefined and the intersections of multiple protected attributes
are covered implicitly.

3.1. Subgroup Fairness Metrics

Formally, we denote a dataset as 𝒟 = {𝑥1, . . . , 𝑥𝑛} of 𝑛 instances over a set of attributes
𝒜 = {𝐴1, . . . , 𝐴𝑝} with the possible values 𝑣 ∈ 𝐷𝑜𝑚(𝐴𝑗) for 𝐴𝑗 ∈ 𝐴. Given a dataset 𝒟 and
a subset of protected attributes {𝐴1, . . . , 𝐴𝑞} ⊆ 𝒜, we define a pattern 𝑃 = (𝑎1, . . . , 𝑎𝑞) ∈



𝐷𝑜𝑚(𝐴1) × · · · ×𝐷𝑜𝑚(𝐴𝑞) over 𝒟 such that an instance 𝑥 = (𝑣1, . . . , 𝑣𝑝) satisfies 𝑃 if its
attribute values match the pattern values (𝑣𝑖 = 𝑎𝑖 for 𝑖 ∈ {1, ..., 𝑞}). Then, 𝑃 partitions 𝒟 into a
protected subgroup 𝒟𝑃 = {𝑥 ∈ 𝒟 | 𝑥 ⊨ 𝑃} and an unprotected subgroup 𝒟𝑃 = {𝑥 ∈ 𝒟 | 𝑥 ⊭
𝑃} = 𝒟 ∖ 𝒟𝑃 [1]. With this notion of patterns, that induce subgroups, a binary classification
model �̂� , that was trained on a dataset 𝒟 to predict the class 𝑦 = �̂�(𝑥) ∈ {0, 1} of an input
instance 𝑥, can be evaluated for its fairness wrt. the performance on the subgroups. The
probabilities under which a model �̂� predicts the positive/negative class label for an instance
𝑥 are denoted as P(𝑦 = 1) and P(𝑦 = 0), respectively. The classifier �̂� predicts the class label
𝑐 ∈ {0, 1} for the protected subgroup with probability P(𝑦 = 𝑐 | 𝑥 ∈ 𝒟𝑃 ) and correct or
wrong predictions given the real label 𝑔 ∈ {0, 1} are expressed as P(𝑦 = 𝑐 | 𝑦 = 𝑔, 𝑥 ∈ 𝒟𝑃 ).
The probabilities for the unprotected group 𝒟𝑃 are expressed analogously.

Many subgroup fairness metrics quantify the model fairness by using the values derived
from confusion matrices [10, 11] such as the positive predictive value (PPV) or the true positive
rate (TPR). Barocas et al. [12] further categorize subgroup fairness metrics by the three criteria
“independence”, “separation” and “sufficiency” which relate to most of the proposed fairness defi-
nitions. Regarding independence, a fair classifier satisfies non-discrimination if the classification
is statistically independent from the membership in the protected or unprotected subgroup. The
rate of acceptance (or denial), i.e., P(𝑦 = 1 | 𝑥 ∈ 𝒟𝑃 ) (or 𝑦 = 0), is then equal between the two
subgroups. Separation extends this category by also considering a potential correlation between
the subgroup membership and the ground-truth class such that the protected and unprotected
subgroup should experience equal TPRs and FPRs. Finally, sufficiency requires an independence
of the probability for the ground-truth class given a positive or negative prediction. This results
in the same positive/negative predictive values for the protected and unprotected subgroup.
The ASDF-Dashboard computes three different subgroup fairness metrics for a broader analysis
and investigation of the classification model, namely, statistical parity, equal opportunity and
equalized odds. In the following, the formulas of these criteria are given in the context of our
notion of patterns and the induced protected and unprotected subgroups as introduced in [1].

Statistical parity (Eq. 1) is satisfied if the protected subgroup 𝒟𝑃 has the same chance for the
prediction of a positive outcome (𝑦 = 1) as the unprotected subgroup 𝒟𝑃 [11]:

P(𝑦 = 1 | 𝑥 ∈ 𝒟𝑃 ) = P(𝑦 = 1 | 𝑥 ∈ 𝒟𝑃 ) (1)

This definition requires that a fair classifier predicts the favorable label (𝑦 = 1) with a
probability independently of the protected attribute values. The same is also implied for the
unfavorable label (𝑦 = 0) due to the complementary probability. However, if instances fall into
multiple of the protected groups, statistical parity tends to magnify the bias of the classifier
against them [13].

Equal opportunity (Eq. 2) judges a classifier based on the probability of giving instances 𝑥 of
the favorable class (𝑦 = 1) a correct prediction, i.e., 𝑥 is assigned the favorable class label by
classifier �̂� . Formally, it is fulfilled if

P(𝑦 = 1 | 𝑦 = 1, 𝑥 ∈ 𝒟𝑃 ) = P(𝑦 = 1 | 𝑦 = 1, 𝑥 ∈ 𝒟𝑃 ). (2)

Assuming equal opportunity, the TPRs for instances regardless of their subgroup membership
have to coincide. From Equation 2 also follows that the probability of a false prediction of the



unfavorable class given 𝑥 actually is a member of the favorable class has to be equal between
the subgroups (FNR) as P(𝑦 = 0 | 𝑦 = 1, 𝑥 ∈ 𝒟𝑃 ) = 1− P(𝑦 = 1 | 𝑦 = 1, 𝑥 ∈ 𝒟𝑃 ).

The equalized odds subgroup fairness metric extends the equal opportunity definition by
additionally forcing the equality of the subgroup’s FPRs:

P(𝑦 = 1 | 𝑦 = 0, 𝑥 ∈ 𝒟𝑃 ) = P(𝑦 = 1 | 𝑦 = 0, 𝑥 ∈ 𝒟𝑃 ) (3)

Thus, equalized odds is satisfied if the probabilities of correct positive predictions (Eq. 2) and
incorrect positive predictions (Eq. 3) are the same for the protected and unprotected subgroup.

The previously defined fairness criteria can be used to derive metrics that quantify the
subgroup fairness of the binary classifier instead of enforcing the strict equality only. Hence, the
model can then considered fair if the probabilities for an equal treatment are similar and unfair
if they are not close. The ASDF-Dashboard relaxes the three fairness criteria as shown in Table 1.
For 𝐹𝑠𝑝𝑑 and 𝐹𝑒𝑜𝑑 the probability for an instance of the protected subgroup 𝒟𝑃 is subtracted
from the probability for an instance of the unprotected subgroup 𝒟𝑃 . The equalized odds metric
𝐹𝑎𝑜𝑑 is computed as the average of the equal opportunity metric and the difference between
the probability for an incorrect positive prediction by the classifier on the unprotected and
protected subgroup. These relaxations of the three fairness criteria are implemented as fairness
metrics in the “AI Fairness 360” toolkit [14]. Alternatively, ratios of the subgroup probabilities
can be computed, e.g., as applied in the 𝜖-differential fairness definitions [6, 15] of statistical
parity, equal opportunity or equalized odds.

Table 1
Fairness metrics for pattern-induced subgroups

Definition Fairness Metric

Statistical parity 𝐹𝑠𝑝𝑑(𝑃 ) = P(𝑦 = 1 | 𝑥 ∈ 𝒟�̄� )− P(𝑦 = 1 | 𝑥 ∈ 𝒟𝑃 )

Eq. opportunity 𝐹𝑒𝑜𝑑(𝑃 ) = P(𝑦 = 1 | 𝑦 = 1, 𝑥 ∈ 𝒟�̄� )− P(𝑦 = 1 | 𝑦 = 1, 𝑥 ∈ 𝒟𝑃 )

Equalized odds 𝐹𝑎𝑜𝑑(𝑃 ) =
1

2

[︀
P(𝑦 = 1 | 𝑦 = 0, 𝑥 ∈ 𝒟�̄� )− P(𝑦 = 1 | 𝑦 = 0, 𝑥 ∈ 𝒟𝑃 )

+ P(𝑦 = 1 | 𝑦 = 1, 𝑥 ∈ 𝒟�̄� )− P(𝑦 = 1 | 𝑦 = 1, 𝑥 ∈ 𝒟𝑃 )
]︀

Whenever one of these fairness metrics given a pattern 𝑃 over dataset 𝒟 is close to zero, it
means that the classifier produces fair results on individuals from the subgroup 𝒟𝑃 as they are
treated similar to the rest of the population. Fairness metric values less than zero indicate a
favoritism of the individuals from 𝒟𝑃 over the rest of the population due to a higher probability
for a positive prediction. If the fairness metrics, in contrast, yield a value greater than zero, the
classifier discriminates against individuals from the protected subgroup 𝒟𝑃 according to the
underlying fairness definition.

3.2. Pattern Extraction for Subgroup Detection

The unsupervised task of detecting meaningful groups in a dataset 𝒟 can be performed by
computing a clustering 𝒞 = {𝐶1, . . . , 𝐶𝑘} that divides 𝒟 into such groups of similar instances.
The groups are so-called clusters and a pair of instances 𝑥1 and 𝑥2, that belong to the same



cluster, shares some similarity. The cluster structure and degree of similarity between the
individuals in the same group depend on the clustering type, distance measure and parameter
selection. Our ASDF-Dashboard computes such a clustering either in an automated fashion or
controlled by the parameters the user specified. After the clusters are found, we employ out
notion of the previously defined patterns and the induced protected and unprotected subgroups
to assess the classifiers fairness.

Based on the clustering 𝒞, a pattern can be extracted that partitions the dataset 𝒟 into
protected and unprotected subgroups according to the clusters. To this end, a clustering-based
pattern [1] 𝑃 𝒞

𝑖 = (𝑖) is defined over the artificial cluster label attribute 𝐴𝒞 for each cluster
𝐶𝑖 ∈ 𝒞. These patterns map the instances 𝑥 ∈ 𝐶𝑖 to protected subgroups 𝒟𝑃𝒞

𝑖
and the subgroup

fairness of �̂� is then calculated for a fairness metric 𝐹 by averaging over all clusters:

�̄� (𝑃 𝒞) =
1

𝑘
·

𝑘∑︁
𝑖=1

|𝐹 (𝑃 𝒞
𝑖 )| for 𝐹 ∈ {𝐹𝑠𝑝𝑑, 𝐹𝑒𝑜𝑑, 𝐹𝑎𝑜𝑑} (4)

As an alternative method we refined the clustering-based subgroup detection by deriving
more sophisticated patterns from the clusters [1]. These patterns describe the makeup of the
found clusters and map instances from 𝒟 to the protected subgroups. The patterns are therefore
derived from the most meaningful attributes that dominate a cluster 𝐶𝑖 ∈ 𝒞, i.e., the majority
of instances 𝑥 ∈ 𝐶𝑖 have the same value 𝑣𝑗 ∈ 𝐷𝑜𝑚(𝐴𝑗) for the dominant attribute 𝐴𝑗 ∈ 𝒜.
The dominant features are determined by calculating the normalized cluster feature entropy [1]

𝐻𝑖,𝑗 = − 1

log2 |𝐷𝑜𝑚(𝐴𝑗)|
·

∑︁
𝑣∈𝐷𝑜𝑚(𝐴𝑗)

𝑁𝑖,𝑗,𝑣

𝑁𝑖
· log2

(︂
𝑁𝑖,𝑗,𝑣

𝑁𝑖

)︂
(5)

where 𝑁𝑖 is the size of 𝐶𝑖 and 𝑁𝑖,𝑗,𝑣 denotes the number of instances 𝑥 ∈ 𝐶𝑖 that have
value 𝑣 for attribute 𝐴𝑗 . The closer 𝐻𝑖,𝑗 is to zero, the more instances with the same value for
feature 𝐴𝑗 are contained in the cluster 𝐶𝑖 and a single value for 𝐴𝑗 is found at all instances
if the 𝐻𝑖,𝑗 = 0. If 𝐻𝑖,𝑗 is close to 1, this indicates more variation in the feature values across
the instances in the cluster 𝐶𝑖. The set of dominant features of a cluster 𝐶𝑖 is determined as
𝐴𝑖 = {𝐴𝑗 ∈ 𝒜 | 𝐻𝑖,𝑗 ≤ 𝑡} for some threshold 0 ≤ 𝑡 ≤ 1. An entropy-based pattern

𝑃 𝑡
𝑖 = (𝑎1, . . . , 𝑎𝑞) ∈ 𝐷𝑜𝑚(𝐴1)× · · · ×𝐷𝑜𝑚(𝐴𝑞)

is then obtained for each cluster 𝐶𝑖 ∈ 𝒞 by extracting the most frequent values of each of
the dominant features 𝐴𝑗 ∈ 𝐴𝑖. These patterns 𝑃 𝑡

𝑖 map all instances 𝑥 ∈ 𝒟 to the protected
subgroup 𝒟𝑃 𝑡

𝑖
that exactly match the most frequent values of the dominant features of cluster

𝐶𝑖. However, if all candidate features exceed the threshold 𝑡, i.e., 𝐴𝑖 = ∅, no pattern can
be extracted. In contrast to the clustering-based patterns, the protected subgroup does not
exclusively contain individuals from 𝐶𝑖 but also other individuals from other clusters that match
the dominant attributes’ values. Here, the normalization of the feature entropy ensures that
an appropriate global threshold can be set ignoring differing sizes of the active domains of the
attributes throughout the dataset [1]. In the following, we also refer to the subgroups induced
by clustering-based patterns as clusters or clustering-based subgroups and to the subgroups
induced by entropy-based patterns as entropy-based subgroups.



Consider a clustering-based pattern 𝑃 𝒞
𝑖 and an entropy-based pattern 𝑃 𝑡

𝑖 extracted from the
same cluster 𝐶𝑖 ∈ 𝒞 of dataset 𝒟. The two patterns induce the different protected subgroups
𝒟𝑃𝒞

𝑖
and 𝒟𝑃 𝑡

𝑖
, respectively. Generally, there might be instances 𝑥 ∈ 𝐶𝑖 with 𝑥 ⊭ 𝑃 𝑡

𝑖 such that
𝑥 ∈ 𝒟𝑃𝒞

𝑖
but 𝑥 /∈ 𝒟𝑃 𝑡

𝑖
. On the contrary side, there might be also individuals 𝑥 ∈ 𝒟𝑃 𝑡

𝑖
from

other clusters 𝐶𝑗 , 𝑗 ̸= 𝑖 that satisfy 𝑥 ⊨ 𝑃 𝑡
𝑖 and, thus, are member of the protected subgroup

𝒟𝑃 𝑡
𝑖

but not of 𝒟𝑃𝒞
𝑖

. However, the protected subgroups of two entropy-based patterns 𝑃 𝑡
𝑖 and

𝑃 𝑡
𝑗 might share some individuals or even coincide due to the same dominant features and most

frequent values in both 𝐶𝑖 and 𝐶𝑗 . This is not possible for the protected subgroups of two
clustering-based patterns 𝑃 𝒞

𝑖 and 𝑃 𝒞
𝑗 as we assume a hard partitional clustering with disjoint

clusters, i.e., 𝒟𝑃𝒞
𝑖
∩ 𝒟𝑃𝒞

𝑗
= ∅. Two entropy-based patterns, in contrast, might be identical

(𝑃 𝑡
𝑖 = 𝑃 𝑡

𝑗 ) which causes an induction of the same subgroup 𝒟𝑃 𝑡
𝑖
= 𝒟𝑃 𝑡

𝑗
.

4. ASDF-Dashboard

Our ASDF-Dashboard1 implements the subgroup fairness analysis based on the proposed
methodology of clustering- and entropy-based subgroups. It is hosted as a publicly accessible
web application that supports an automatic, user-friendly subgroup fairness analysis and
provides a broad visualization of the subgroup fairness results. Registered users can upload
their datasets, that contain also the ground-truth labels as well as the labels obtained as the
predictions of their binary classifier, to the system. The ASDF-Dashboard further provides
a tabular view of each of the uploaded dataset that can be used to interactively browse the
uploaded data using sorting and column filters to get a better insight into the structure of the
data. Figure 1 shows an exemplary table for the COMPAS [16] dataset, which is provided in the
FairVis [7] repository incl. the predicted labels but without the clustering labels. Each of the
table rows corresponds to one defendant whose recidivism for a period of 2 years was predicted
by a binary classifier.

To perform the subgroup fairness analysis, at least a dataset 𝒟, the positive (favorable) class
label (0 or 1) and the entropy threshold (0 ≤ 𝑡 ≤ 1) for the pattern extraction have to specified
in the control tile, which is depicted at the top of Figure 2). Then, the ASDF-Dashboard can
already compute the subgroup fairness of the given classfier automatically. Optionally, the user
can also specify the categorical columns by selection, which need to be one-hot encoded for
the computation of the clustering as the distances measures most commonly require vectors of
numeric data as input. If no categorical attributes are selected, the system automatically detects
them to apply the one-hot encoding. Furthermore, the fully numeric features of the selected
dataset are then also scaled using the min-max normalization before computing the clustering.
However, clustering a mixture of numeric and categorical attributes is very sensitive to the
choice of algorithm and distance metric as there is no consensus on the optimal technique [17].
Therefore, we decided for the usual processing involving encoding and scaling. In addition to the
automatic subgroup fairness calculation, the classifier’s fairness can also be evaluated manually
by choosing a clustering algorithm and specifying its parameters. In case of the automatic
fairness assessment, the SLINK clustering algorithm is applied to dataset 𝒟 = {𝑥1, . . . , 𝑥𝑛}

1https://github.com/jeschaef/ASDF-Dashboard

https://github.com/jeschaef/ASDF-Dashboard


Figure 1: Dataset inspection. View for the inspection of an uploaded dataset in the ASDF-Dashboard.
As an example, the COMPAS [16] dataset including the predicted class (column “out”) and ground-truth
class (column “class”) is shown here.

with the desired number of clusters 2 ≤ 𝑘 ≤ ⌊
√︀

𝑛
2 ⌋, which we estimate before by using the

x-means clustering algorithm.
Figure 2 shows the subgroup fairness analysis on the COMPAS dataset with entropy threshold

𝑡 = 0.65, favorable class label 0 (not recidivism in two years) and the three categorical columns
“c_charge_degree” (felony or misdemeanor), “race” (african-american, caucasian, asian, hispanic
or other) and “sex” (female or male) using the SLINK clustering algorithm (agglomerative
clustering with single linkage) with 𝑘 = 30. The average absolute values of statistical parity,
equal opportunity, equalized odds, accuracy and difference between the subgroup and global
accuracy (accuracy error) over both the clustering- (red) and entropy-based subgroups (blue)
are shown by the radar chart in the left tile of the dashboard (Figure 2). The average absolute
values give a good insight over violations of any of the fairness definitions by discrimination
or favoritism throughout all the detected subgroups. The tile next to it displays the sizes of
the clusters and entropy-based subgroups by bars. Here, it can be clearly seen that the both
types of subgroups do not coincide in general as the sizes differ. Especially, the cluster 𝐶14 is
much smaller than the entropy-based subgroup 𝒟𝑃 𝑡

14
, for instance, as 𝑃 𝑡

14 = (“Felony”, “African-
American”, “Male”) is a common attribute pattern in the dataset matching 1836 individuals.

To get an overview over the subgroups, the extracted entropy-based patterns are displayed
in a table (Figure 3). Each row in the table corresponds to one entropy-based pattern 𝑃 𝑡

𝑖

extracted from cluster 𝐶𝑖 ∈ 𝒞. The columns of the table represent all the features 𝐴𝑗 ∈ 𝐴𝑖

of the dataset 𝒟 that were found to be dominant in at least one of the clusters 𝐶𝑖 ∈ 𝒞, i.e.,
𝐻𝑖,𝑗 ≤ 0.65 for some 𝑖 ∈ {1, ..., 𝑘}.The remaining features are not relevant for the entropy-
based patterns and, thus, not listed in the table. The column “id” identifies cluster 𝐶𝑖 and the
corresponding entropy-based pattern 𝑃 𝑡

𝑖 . For example, the entropy-based subgroup 8 in Figure 3
is defined by 𝑃 𝑡

8 = (“Felony”, “Caucasian”, “Female”, −1) for the set of dominant attributes



Figure 2: Subgroup fairness analysis. The upper tile initiates the fairness analysis of a classifier
by selecting a dataset (incl. predictions) and setting the positive (favorable) class label, the entropy
threshold 𝑡, the categorical features to one-hot encode and optionally the clustering algorithm with
parameters. The radar chart (bottom left) displays global fairness metrics for both clustering- and
entropy-based subgroups and the bar chart (bottom right) visualizes the detected subgroup sizes.

Figure 3: Pattern information. The extracted entropy-based patterns are listed as rows in a table. The
table columns represent the features found to be dominant in at least one cluster. The minus symbol
(“-”) indicates that a feature does not occur in a pattern due to its high normalized entropy.

𝐴8 = {“c_charge_degree”, “race”,“sex”,“days_b_screening_arest”}. Each table row can also be
expanded to show an embedded table listing the individual fairness metrics.

These fairness metrics can also be investigated for each cluster and entropy-based subgroup
in the chart displayed in the left tile of Figure 4 individually. The individual fairness metrics are
visualized on click on one of the subtables in the pattern table or on one of the cluster-/entropy-
based subgroup size bars. Here, the selected cluster and entropy-based subgroup are 𝒟𝑃𝒞

0
and

𝒟𝑃 𝑡
0
, respectively. The bars reveal that they share a similar accuracy score of ≈ 65%. However,

the tested classifier slightly discriminates the protected instances 𝑥 ∈ 𝒟𝑃 𝑡
0

as compared to
the unprotected instances according to the three subgroup fairness metrics whereas it treats



Figure 4: Individual subgroup metrics. The subgroup fairness metric values are shown by the bar
plots (left) for an individual cluster and subgroup induced by the extracted entropy-based pattern (here:
cluster/subgroup 0). The dropdown menu enables the selection of statistical parity, equal opportunity,
equalized odds or prediction accuracy to visualized the top five clusters or entropy-based subgroups
regarding the selected criterion, e.g., the five clusters with the lowest statistical parity values are shown.

the protected instances wrt. the clustering-based subgroup 𝒟𝑃𝒞
0

equally to the unprotected
individuals. The five most discriminated or favored subgroups by subgroup fairness metric can
be quickly found by the ranking chart in the right tile (Figure 4). Sorting the individual subgroup
fairness values in ascending order yields the top five favored subgroups and the descending
sorting order yields the most discriminated ones. Next to the three subgroup fairness metrics
also the cluster or entropy-based subgroup accuracy values can be ranked in the same manner.

5. Evaluation

In our experiments [1] we tested our system using the COMPAS 2 dataset version from FairVis [7]
(𝑛 = 6172, 𝑝 = 7), an updated version of the Statlog German Credit 3 dataset (𝑛 = 1000, 𝑝 = 20)
and the Medical Expenditure Panel Survey (MEPS) 4 dataset from panel 19 of 2015 (𝑛 = 15830,
𝑝 = 40). For each of the datasets we compared multiple clustering algorithms for the automated
subgroup detection, namely, k-Means, DBSCAN, OPTICS, Spectral Clustering, SLINK, Ward,
BIRCH, SSC-BP, SSC-OMP, and EnSC. Based on the dataset, small sets of individual parameter
values (usually the number of clusters and the main parameters (e.g., 𝜖 at DBSCAN)) were tested
in a grid search fashion for the detection of subgroups. We chose to report the subgroup fairness
results for each parameter setting only for the run that had maximal clustering performance
and showed the highest fairness violation. To this end, we measured the silhouette score 𝑆𝒞 of
clustering 𝒞 and the mean absolute error between the prediction accuracy of classifier �̂� on
the clustering-based subgroups in comparison to the global accuracy (Eq. 7 [1]).

As our previous experiments [1] have shown, our proposed subgroup detection methods
are applicable for the automated subgroup fairness analysis of a binary classifier. The applied
clustering algorithms showed a varying performance as measured by mean absolute error in
prediction accuracy on the clusters and sometimes multiple algorithms provided an equally

2https://github.com/poloclub/FairVis/blob/master/models/processed/compas_out.csv
3https://archive.ics.uci.edu/ml/datasets/South+German+Credit+%28UPDATE%29
4https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-183

https://github.com/poloclub/FairVis/blob/master/models/processed/compas_out.csv
https://archive.ics.uci.edu/ml/datasets/South+German+Credit+%28UPDATE%29
https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-183


good performance in different settings. The SLINK clustering algorithm yielded a strong overall
performance at detecting unfairly treated subgroups. In fact, it outperformed the other clustering
algorithms in many of the experimental settings including different datasets and subgroup
fairness metrics. Due to the outstanding results, we implemented it for the fully automated
subgroup fairness analysis in our tool. Additionally, the ASDF-Dashboard offers users the
opportunity to select and configure any of the clustering algorithms for the subgroup detection.

The visualizations of the fairness analysis results support the comprehension of the classifi-
cation model’s behavior when presented individuals of different subgroups in the data. The
ASDF-Dashboard presents various charts with the fairness metric values for a broad coverage
of diverse aspects. The users can investigate the characteristics of the found subgroups, i.e.,
the sizes of the clustering- and entropy-based subgroups and the extracted patterns for each
cluster, as well as the subgroup fairness metrics as measured for each subgroup individually.
The rankings of the clusters or entropy-based subgroups allow for a direct access to the most
discriminated or favored subgroups assuming a certain subgroup fairness metric. Additionally,
the global fairness values are displayed to the user as an overall judgement of the classifier’s
fairness. However, our tool is limited to fairness assessment for the task of binary classification
and can not be applied to multi-class settings which require different subgroup fairness defini-
tions and metrics. Another limitation is that datasets and models are not uploaded separately
for modular compositions of dataset and model but just the dataset containing the predictions.

6. Conclusion

In this work we presented the ASDF-Dashboard for carrying out a subgroup fairness analysis
of a binary classifier. Our tool is able to detect meaningful subgroups being treated unfairly
by the classification model as measured by three common subgroup fairness metrics. The
detection of the discriminated or favored subgroup uses an unsupervised clustering and an
entropy-based pattern approach to automatically identify subgroups of similar instances with
as little user interaction as possible. After the subgroup fairness assessment, users can explore
the visualizations of the analysis results in various ways including global and local fairness
measurements. In future research one could revise and further improve the subgroup detection
methods by testing more clustering algorithms and datasets to get more insights into the
performance and robustness of the proposed methods in various scenarios. Another future
direction could be a qualitative comparison between the clustering-based and other approaches
like frequent pattern mining approaches. In particular, an investigation on the properties of the
extracted patterns could yield valuable information. Furthermore, it might also be beneficial to
derive a cluster validation index based on some subgroup fairness criterion that allows to select
the best out of multiple clustering models for the subgroup detection.
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