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Abstract
Developments in Machine Learning and more specifically Deep Learning have boosted the analysis of
large-scale datasets. These methods for automated learning are particularly useful for complex data
originating from sensors, i. e., multivariate time series data. In this work, we present an adaptive residual
CNN (ARes-CNN) that is able to process such multivariate time series data. The model utilizes an adaptive
input layer that separately processes every time series (e. g., channels or sensors), learning their key
individual characteristics. Furthermore, the model applies stacked residual learning throughout each
layer. We compare ARes-CNN with traditional Machine Learning applications, as well as a CNN and
LSTM developed for the task at hand. The models’ performance are compared on two datasets retrieved
from sensors in a network of seismic stations located in Italy. Across all experiments, ARes-CNN reports
a performance increase of 17% (MSE) on average compared to the best performing baseline. Therefore,
processing the channels independently (by employing adaptive input layers), together with residual
learning are fit for multivariate time series regression, e. g., for analysis of seismic sensor data.
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1. Introduction

Advances in Deep Learning (DL) have revolutionized data processing due to their ability to
deal with raw data, automatically learn its structure and recognize patterns [1, 2, 3], e. g., for
multivariate time series analysis. Thus, many researchers used DL techniques to analyze time
series data in a variety of tasks such as anomaly detection and forecasting. A less common
approach in time series analysis is Time Series Extrinsic Regression (TSER) [4, 5, 6]. Here, the
predicted or target value relies on the whole time series, instead of the last few observations.

In this paper, we focus on a TSER problem using DL methods, and more specifically Con-
volutional Neural Networks (CNN) to improve model performance. Our proposed model is
tested on two seismic datasets, both recorded in regions of Italy [7, 8]. We attempt to predict
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maximum ground-shaking, expressed as intensity measurements (IMs), which can be described
as a multivariate time series regression problem, similar to TSER-oriented approaches [5, 9]. The
data is particularly interesting for applying neural networks due to its high-frequency sampling
rate, high-dimensionality and the multiple regression outputs that need to be generated. We
combine the strength of one-dimensional (1D) CNNs for learning feature representations of the
raw time series, followed by residual stacks that are used to create a deeper neural network
architecture that is able to learn more complex structures of the raw data. In addition, we utilize
an adaptive input layer that separates the time series based on its dimensionality (e. g., channels
or sensors). Thus, the model can be scaled depending on the number of time series variables
available. Our contributions are summarized as follows:

1. We propose a method to perform multivariate regression on time series originating from
seismic sensor data. For this, we present a new model called ARes-CNN that utilizes
convolutional layers with residual stacks (both one-dimensional and two-dimensional).

2. We implement adaptive convolutional layers that are able to separate the multivariate
time series data in distinct input layers – therefore learning unique characteristics for
each individual time series (e. g., channels or sensors).

3. Finally, we evaluate our model thoroughly on two seismological datasets that differ
significantly from one another, evidencing the generality and potential of the proposed
model. We discuss our results in detail and perform a comparison against the baseline
model proposed in [5], an LSTM model and traditional Machine Learning (ML) methods
with rich feature engineering.

The rest of the paper is structured as follows: in Section 2, we discuss related work on DL
for time series data and also summarize the necessary background on Convolutional Neural
Networks and Residual Networks. Next, we introduce our proposed model in Section 3, where
we also describe the baseline models, a description of the problem setting and the data. After
that, Section 4 presents and discusses the results from our experiments. Finally, Section 5
concludes with a summary and outlines interesting directions for future research.

2. Related Work and Background

This section covers relevant work relating to Deep Learning in general and specifically for
time series, focusing on the use of Convolutional Neural Networks and Residual Networks. In
addition, this section also covers the implementation of Deep Learning for seismic analysis.

2.1. Deep Learning

With the advances in computational power and hardware, traditional Machine Learning (ML)
approaches make way for more automated learning techniques, i. e., Deep Learning (DL). A
reason for this transition is that ML requires considerable efforts to acquire representative
features, which is typically time-intensive and can potentially be a rather error-prone task. For
this, DL provides an alternative solution, relying on “built-in” feature construction: it is able to
automatically extract features from raw data using multiple layers that can utilise nonlinear
processing, which is a powerful approach on complex data such as multivariate time series.



At first, a multi-layer perceptron (MLP) was introduced by [1]. Here, layers are fully linked
to one another, which is computationally expensive, in particular for large models with much
training data. Therefore, in recent years more advanced methods have been developed such as
the Convolutional Neural Network (CNN) [2] or Recurrent Neural Networks (RNN). Especially
RNNs seemed to be well-suited for time series data since they memorize long-term dependencies.
Nonetheless, storing time-related dependencies requires vast amounts of memory, resulting in
long training times. Therefore, RNNs are less applicable on large-scale time series retrieved
from sensors.

2.1.1. Convolutional Neural Networks

Generally speaking, CNNs are regularized MLPs that are designed to process two-dimensional
(2D) data. They were first proposed by LeCun in 1989 [2] and are frequently used in Computer
Vision and Image Recognition, processing images with multiple color channels [2, 10]. Compared
to an MLP, the main advantages of a CNN are the use of weight-sharing, sub-sampling and
local receptive fields. Sharing weights in particular lowers the memory requirements, boosting
algorithmic efficiency [11]. A convolutional layer typically includes three stages. Convolutions
are performed in the first layer, then an activation function is initialized in the second layer to
account for nonlinear relationships. Following that, pooling is applied [11].

However, in the domain of time series, and more specifically signal data from sensors, CNNs
were less often employed than classic ML techniques, due to their 2D nature. Initially, to use
one-dimensional (1D) data for CNNs, one had to reshape the data into a matrix using signal
processing techniques. These 2D CNNs combined with conversion of the 1D data increases
computational complexity drastically, which requires dedicated hardware for training. Then,
[12] developed a 1D CNN that is able to directly process raw signal data.

After that, the popularity of CNNs for time series significantly increased in various fields
such as biomedical analysis [12] and fault diagnosis [3, 13, 14]. These 1D models are less
computationally intensive than their 2D counterparts and are suitable for high-frequency and
noisy time series data [13]. Hence, 1D CNNs are increasingly applied on time series data.

To create output features, a convolutional layer convolves the input using filter kernels
followed by an activation function. Through weight-sharing, each of these filters extracts local
attributes from the input local region. These outputs are then fed to the activation unit that
produces the final output features. The convolution operation is defined as:

𝑦𝑙+1
𝑖 (𝑗) = 𝑘𝑙𝑖 *𝑀 𝑙(𝑗) + 𝑏𝑙𝑖. (1)

Here, 𝑀 𝑙(𝑗) defines the 𝑗-th local region in layer 𝑙. 𝑏𝑙𝑖 denotes the bias and 𝑘𝑙𝑖 denotes the
weights of the 𝑖-th filter kernel in layer 𝑙. In the convolution operation, * signifies the dot
product of the kernel and the local regions and 𝑦𝑙+1

𝑖 (𝑗) represents the input of the 𝑗-th neuron
for feature map 𝑖 of layer 𝑙 + 1.



2.1.2. Residual Networks

Generally, the more layers added to a neural network, the better its potential performance [10, 15].
However, models with a deeper structure take longer to train, meaning more computational
resources are needed when increasing model size. Next to that, [16] showed that when adding
more layers to the network, it becomes more difficult for the layers to propagate information
from earlier layers, which is often called the degradation problem.

As a result, deeper models tend to have a saturation point for their performance, and af-
terwards rapidly decrease in performance when adding more layers. To tackle this problem,
[16] developed a deep residual learning framework to ease the process of training for deeper
networks. With this method, neural networks are able to scale up with hundreds of layers.

𝑋

𝑁 Layers𝐹 (𝑥) Identity

+𝐹 (𝑥) + 𝑥

Figure 1: Example of a residual block.

A residual network (ResNet), see Figure 1, incorpo-
rates a ’shortcut’ or ’skip connection’ between layers.
In other words, the outcome of the previous neuron
(identity) is directly added to the corresponding neuron
of a follow-up layer. Between these layers, intermedi-
ate layers (residuals), which can be all kinds of layers
(CNN, RNN, LSTM...), learn only changes from their
input 𝑋 . Afterwards, these residuals are added to the
original identity and act as input for the follow-up layer.
This provides an alternative shortcut for the gradients
to pass through. As a result, one can make a building
block for residual learning, visualized in Figure 1, which can be denoted as;

𝑌 (𝑥) = 𝑅(𝑥,𝑊 𝑖) + 𝑥 (2)

𝑥 represents the input from the original layer, that is the ’skip connection’, and 𝑅(𝑥,𝑊 𝑖)
represents the residual part to be learned. Combining both parts results in the output vector
𝑌 (𝑥) that is used for the follow-up layer. The benefit of including skip connections is that if
any layer degrades the model’s performance, it will be skipped.

2.2. Deep Learning for Seismic Analysis

With developments in data gathering and storage in the last decades, the seismic community
collected enormous amounts of sensor data [17, 18]. The availability of these vast collections of
time series data piqued the interest for seismologists towards ML and DL applications throughout
the last years [19]. The data, representing waveform signals, are frequently used for earthquake
detection [20], predicting maximum ground-shaking [5] or magnitude estimation [21].

In addition, [22] analyzed waveforms from multiple seismic stations, i. e., multivariate time
series, for earthquake location estimation. In this paper, we propose a technique that applies 1D
and 2D CNNs combined with residual stacks to perform multivariate time series regression. We
show how to improve performance of an existing CNN model for seismic data proposed by [5],
while significantly adapting their architecture.



3. Method

This section starts with a description of the problem setting and introduces the used datasets.
Afterwards, we present our ARes-CNN model. There, we separate between the construc-
tion of the residual stack and the overall architecture of the model. At last, we describe
model training, our baseline models for comparison, and describe the software and com-
putational resources that we utilized. The code for the models can be accessed on Github:
https://github.com/JvdHoogen/ARes-CNN.

3.1. Problem Setting

We perform regression on two seismic datasets recorded in Italy [7, 8]. The datasets consist of
sensor readings retrieved from seismometers or accelerometers that are installed on seismic
stations across Italy. During earthquake events, these sensors continually recorded the amplitude
of seismic waves along three dimensions of ground motion, i. e., north-south, east-west and
up-down. These recordings help seismologists to better understand the behavior of earthquakes.

Due to the fast transmission of information through telecommunication, seismologists were
able to develop algorithms to predict the maximum intensity measurement (IM) of ground-
shaking before the actual seismic wave arrives. This can be achieved by analyzing the data
transmitted from stations that recorded the earthquake first, e. g., stations close to the epicen-
ter/hypocenter. Within the seismological community this is called "Earthquake Early Warning"
(EEW), which is important for the evacuation of residents affected by an earthquake. These
IMs are divided into five separate metrics; peak ground velocity (PGV), peak ground acceleration
(PGA) and spectral acceleration (SA) at 0.3, 1 and 3 second periods. The actual values of these
metrics are used as target values for every earthquake.

Hence, every earthquake recording contains three waveforms from the seismic stations
surrounding the epicenter of the geographical location. We used data with a length of 10
seconds sampled at 100 Hz for every recording related to the origin of the earthquake. Based on
this information, we predict the five IMs for all stations in the geographical region represented in
the dataset. Depending on the location of the earthquake recording, certain stations nearby will
reveal more information related to the earthquake than stations far away. However, it is worth
mentioning that for many earthquakes, most stations have not yet recorded the earthquake
related ground-shaking within this 10-second period. In Figure 2, we visualize the task of our
experiments based on an example.

3.2. The Data

Concerning the two datasets, the first dataset (CW) consists of three-component waveforms
of 266 earthquakes recorded on 39 seismic stations in Central-Western Italy. The earthquake
epicenters and station locations are within the coordinates [41.13°, 46.13°] (latitude) and [8.5°,
13.1°] (longitude), with recordings started from 1-1-2013 and 20-11-2017. The earthquakes’
magnitudes vary between 2.9 < M ≤ 5.1, with crustal depth ranging between 3.3 km and 64.7 km.
Therefore, the dataset characterizes itself as having the earthquake recordings scattered across
a large geographical region.

https://github.com/JvdHoogen/ARes-CNN
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Figure 2: An example earthquake is shown on the left as a red star, with its P- and S-wave, green and
orange respectively, cf. [4]. We predict the 𝑌 values that characterize the earthquake for each seismic
station (with 3 channels of time series data) using the input 𝑋 (10 seconds).

The second dataset (CI) has more recorded earthquakes (915) on a set of 39 stations containing
three-component waveforms in Central Italy. The coordinates of the earthquake epicenters and
station locations are within [42°, 42.75°] (latitude) and [12.3°, 14°] (longitude), with recordings
starting from the 01-01-2016 until 29-11-2016. The crustal depth ranges between 1.6 km ≤
z ≤ 28.9 km with magnitudes varying between 2.9 < M ≤ 6.5. The earthquakes are more
concentrated than the earthquakes measured in the CW dataset, and are spread across a smaller
geographical region. Thus, with the many more samples, we hypothesize that the performance
on the CI dataset will be better than on the CW dataset since the task is expected to be less
complex. Both datasets are normalized using the input maximum, i. e., the highest amplitude
detected across multiple stations during the occurrence of an earthquake [5].

3.3. Residual Stack

Within the architecture of our proposed model, we implement residual stacks between the
convolutional layers. For this, we developed two types of residual stacks, a 1D and 2D version.
Generally, a residual unit consists of one or multiple layers with similar dimensionality as its
input data, i. e., same amount of filters with kernel size and stride both set to 1. However, based
on experimentation, we customized a residual stack (multiple units) to yield better performance.

Our residual stack includes two residual units. The first residual unit consists of two convolu-
tional layers with ReLU and Tanh activation, processing the output from the past layer. Next,
the residual output and the identity are combined by addition, as shown in Figure 3. Then, the
new representation is used for the second residual unit, with the same settings as the first one.
However, the second residual unit is learning the residuals of the identity plus residuals from
the previous unit. Therefore, we call it a residual stack.

After processing, the residuals of the second unit are added to the next identity, which already
contains a certain amount of residual learning from the previous unit. The final output is then
fed to the follow-up layer in the model. Figure 3 visualizes the architecture of our residual stack,
also showing the skip connections from its input to the output.



3.4. ARes-CNN Architecture
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Figure 3: Residual stack architecture: Both resid-
ual units have a skip connection with
identity 𝑋 and ReLU/Tanh activation.
The amount of filters for each residual
layer is the same as for its input 𝑋 .

Our model is inspired by [5], which we also ap-
ply as a baseline for comparison. We exploit an
adaptive input layer that processes multivari-
ate time series in a univariate way, learning the
characteristics of each time series individually
(e. g., channels or sensors), which has proven to
enhance model performance in [3, 14]. Hence,
the amount of input layers needs to be adapted
towards the amount of variables available which
are processed in a univariate way. It can then
be scaled towards use-cases containing more
channels or sensors by adding the respective
1D adaptive layers (see Figure 4).

Thereby, the first part of the CNN architec-
ture consists of three separate 1D convolutional
layers with 10 filters each parallel processing
the first 10 seconds of the three channels from
the seismic waveform data, followed by a 1D
residual stack and max pooling. After that, the
outputs of the separate layers are concatenated.
Next, a second 1D convolutional layer with 64
filters is utilized to further process the outputs
of the separate layers, again followed by a 1D
residual stack and max pooling. These convo-
lutional layers specifically function as feature
extractors to learn the underlying temporal pat-
terns of every station. Both convolutional layers
use wide kernels combined with small strides
and increasing filters, which has proven to be
effective for signal data [3, 5, 14]. After the temporal patterns are extracted, a 2D convolutional
layer with 64 filters is initialized to capture the inter-station relationship [5]. Then, also a 2D
residual stack is utilized, followed by a flatten layer and dropout (0.4) [11]. Empirical testing
showed that the respective residual stacks between the convolutional layers improved model
performance. However, adding more residual stacks here did not improve performance further.
This provides for some indication of a potential saturation point for residual learning within
the existing architecture.

In the last stage of the model, we concatenate the flattened output with a metadata vector
consisting of latitude and longitude information of every station which has been proven to be
valuable in [9]. Afterwards, a fully connected (FC) layer processes the previous outputs with
128 filters, followed by 5 fully connected regression layers representing the five distinct IMs.
The output of the five regression layers represent the IMs for every of the 39 station in the
sensor network for every earthquake. Figure 4 shows a full overview of our proposed model.
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Figure 4: Architecture of the ARes-CNN model with adaptive input layers for each channel, residual
stacks and pooling. The model utilizes 1D convolutional layers to learn time series features and a 2D
convolutional layer to learn inter-station relationships.

3.5. Model Training

We follow a standard train, validation and test split of the dataset. First, we split the full dataset
into 80% train and 20% test data. Next, the train set is divided into 80% train and 20% validation
data. We apply five-fold cross-validation, where we predicted on the unseen test set for every
fold/split. In total, we repeated the process five times with different random splits for the initial
train/test set. We report the averaged value across all predictions on the test set.



To rule out early cutoff between training of the models, no early stopping was used in the
experiments. We used MSE as loss function, RMSprop for optimization and a batch size of 20
with 100 epochs for training.

3.6. Baseline Models

Our ARes-CNN model is compared with traditional ML algorithms such as K-Nearest Neighbors
(K-NN), Random Forest (RF), XGBoost and Support Vector Machine (SVM). These models do not
lend themselves for processing raw multidimensional signals. Therefore, the data is preprocessed
into a set of features in both the frequency and time domain, inspired by feature-sets described
in [23, 24]. Features in the frequency-domain are calculated after transforming the time series
to the frequency spectrum using the FFT algorithm that computes the one-dimensional discrete
Fourier transform (DFT). In the frequency domain, Signal Energy; E =

∑︀
(FFT𝑥𝑖)

2 and
Signal Power; P =

∑︀ (FFT𝑥𝑖)
2∑︀𝑡

𝑖

were computed. In the time domain, mean, median, maximum,

minimum, range (difference between maximum and minimum), variance and standard deviation
were computed. The features were calculated for every station and earthquake. In total, the
feature set consists of 9 features.

We used grid search optimization with five-fold cross-validation for all ML models to assess
the best performing parameter setting. The parameter settings of the best performing model
vary throughout the different experiments and between the two datasets. The properties of
the grid search optimization are described in Table 1. Our model is also compared with the
CNN developed by [5], which functions as a starting point for the development of our model.
Furthermore, we compare our model with a shallow LSTM model, replacing the convolutional
layers with two LSTM layers (containing 100 units), that directly process the time series data.
Empirical testing showed no significant performance increase when adding more LSTM layers
or increase the amount of units. For all DL models, we added the metadata vector containing
latitude and longitude coordinates of every station.

3.7. Software and Resources Table 1: Parameter settings used for grid search op-
timization per ML model.

Model Parameter Grid Search Range

K-NN 𝐾 1-20
Weight Options Distance / Uniform

SVM 𝐶 25, 30, 40
Kernel Linear / RBF
Gamma 0.0001, 0.001

RF Nr. of Estimators 800, 900, 1000
Feature Estimation Log2 / Square Root

XGBoost Nr. of Estimators 800, 900, 1000
Max Depth 5, 10, 15

Gamma 0.0-0.4 (0.1 per step)

We used Python with Tensorflow and Keras
to develop the models. All other algo-
rithms, such as the ML models, are derived
from the Sklearn package, also including
Numpy/Pandas. The models were trained on
a dedicated server with two Intel Xeon CPUs
(3.2 GHz), 256 GB RAM and an Nvidia Quadro
RTX 6000 (24 GB) GPU.

4. Results

Table 2 shows the averaged results across the five IM prediction values for every model. We
observe a substantial gap between the algorithmic performance on the CI and the CW dataset.
This behavior was expected since the CI dataset contains more earthquakes than the CW



dataset, i. e., 915 against 266. Also, the earthquakes recorded in the CW dataset outline a larger
geographical surface with greater distances between the seismological stations. Furthermore,
the earthquakes in the CW dataset have a broader crustal depth range of the hypocenters.

Table 2: Result metrics for IM prediction for every
model on the CW and CI datasets.

Dataset Model MSE RMSE MAE

CW LSTM 0.61 0.76 0.61
K-NN 0.50 0.71 0.55
SVM 0.49 0.70 0.54

XGBoost 0.47 0.69 0.53
RF 0.46 0.68 0.52

CNN [5] 0.35 0.57 0.44
ARes-CNN 0.29 0.53 0.40

CI LSTM 0.41 0.63 0.46
SVM 0.39 0.63 0.45
K-NN 0.36 0.60 0.43

XGBoost 0.31 0.56 0.40
RF 0.31 0.56 0.40

CNN [5] 0.22 0.46 0.33
ARes-CNN 0.18 0.41 0.30

In Table 2, we observe, that the CNNs
clearly outperform the other models on the de-
scribed metrics, displaying the value of CNNs
in multivariate time series regression tasks.
However, the LSTM model performs worse
than any other model, indicating that RNNs
do not lend themselves for directly process-
ing high-frequency time series data as in our
application context.

Overall, our proposed ARes-CNN improves
performance by a large margin, suggesting
that processing time series separately, using
adaptive input layers, combined with residual
layers beneficially influences model perfor-
mance. We see that the average performance
of the ARes-CNN compared with the second
best performing model (CNN by [5]) is 17% on MSE, 9% on RMSE and 8% on MAE while only
increasing the amount of trainable parameters with ≈ 4%, from 1.364.291 (CNN [5]) to 1.421.271
(ARes-CNN) parameters.

Another interesting observation from the results described in Table 2 is the high deviation
between model performance within the Machine Learning algorithms. We see that the ensemble
methods, e. g., RF and XGBoost perform significantly better than the SVM (which shows low
performance on both datasets). Therefore, it seems that tree-based methods are quite capable in
processing multivariate time series provided that the data is sufficiently preprocessed into a
rich feature set.

5. Conclusion

This work proposes a Deep Learning (DL) model for multivariate time series regression in the
context of seismic maximum ground-shaking prediction. Our model processes multivariate time
series (e. g., channels or sensors) in a univariate way, using adaptive input layers, combined
with residual learning. The experiments are conducted on two seismic datasets with varying
characteristics. Here, our proposed model is compared to traditional Machine Learning (ML)
applications, a shallow LSTM model and a Convolutional Neural Network (CNN) specifically
designed for the task, developed by [5], which functions as a starting point for our model.

As the results in Table 2 indicate, the CNN applications outperform the other models, em-
phasizing the capabilities of CNNs for such complex and high-frequency time series data. In
contrast, we also observe a relatively poor performance of the LSTM model, suggesting that a
shallow LSTM model is not well suited for such contexts. Overall, our model improves perfor-
mance with 17% (MSE) compared to the best performing baseline. This indicates that combining



adaptive input layers with residual learning to the existing CNN architecture proposed by [5] is
a valuable addition for multivariate time series regression tasks.

For future work, we plan to execute additional experimentation on large-scale multivariate
time series datasets in various fields and deviating tasks, i. e., weather predictions and traffic
forecasting. In addition, we will investigate the scalability of ARes-CNN when increasing the
amount of time series channels, and thus more separate input layers. Furthermore, we aim to
develop new methods of processing sensor data from multiple stations, e. g., using ideas from
graph signal processing [25, 26] and by combining residual stacks with a Graph Neural Network
structure proposed by [4], to improve model performance.
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