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Abstract
Interpolating sea surface height satellite measurements is a challenging inverse problem as altimeter
observation can be very sparse in space and time. Operational methods rely on second-order statistics
of ocean evolution which are difficult to estimate due to the high dimensionality of the studied system.
In this work, we investigate a statistics-free and unlearned variational method using a deep spatio-
temporal prior, a neural network optimized on only one observational window. Results are aligned with
state-of-the-art operational methods.
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1. Introduction

Monitoring and modeling the ocean is a constant scientific preoccupation whether for global
climate understanding or numerical weather prediction. To do so, information from various
sensors is processed in order to estimate the state of the ocean. Surface circulation is usually a
variable of great interest as it explains the transport of numerous quantities. It can partially be
derived from sea surface heights which are observed thanks to altimeter satellites [1, 2].

However such data are very sparse in space and time so that interpolating them leads to
challenging inverse problems. Even though classical least square methods relying on second-
order statistics data [3, 4] have a strong operational record and are still getting better thanks to
the growing number of available observations [5], deep learning techniques have revolutionized
inverse problems solving [6]. But in the Earth science context, ground truth is not available, so
that a supervised learning setup is not realistic.

In this work we investigated the deep prior method [7], optimizing a neural architecture on
only one spatio-temporal observation of sea surface heights. We show that the designed deep
prior provides efficient regularization. The code is available at GitHub1.

MACLEAN: MAChine Learning for EArth ObservatioN Workshop 2022, in conjunction with ECML/PKDD (European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
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2. Optimal interpolation of sea surface height

2.1. Observing System Simulation Experiment

The used dataset and the simulation experiment framework have been introduced in [8] and we
use the pre-processing of [9]. The interest here is to estimate the full space-time trajectory of
the sea surface height (SSH) variable. The considered ground truth is the result of NATL60 high-
resolution ocean simulation [10] re-scaled at (1/20)∘. We denote the 3D-volume of dimensions
(𝑇, 𝑛𝑥, 𝑛𝑦) representing a ground truth space-time trajectory X, an example is displayed in
Fig. 1.
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Figure 1: Example of reference sea surface height trajectory

The observation operator used to create the dataset aims at simulating two satellite sources.
The first is a constellation of 4 nadir altimeters [1] with small spatio-temporal coverage. The
second is from a wide-swath altimeter, replication the Surface Water and Ocean Topography
(SWOT) upcoming mission, and made possible thanks to the observation simulator introduced
in [2]. Observation Y denoted available at regular time-steps, per daily interval and obey the
following observation equation Y = HX + 𝜀, where H is a linear projector associated with
satellite tracks and 𝜀 a measurement noise. An example is displayed in Fig. 2, pointing to a
significant sparsity in space.
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Figure 2: Example of sea surface height satellite observation along a trajectory

2.2. DUACS analysis

The Data Unification and Altimeter Combination System (DUACS) [5] analysis is a result of a
best linear unbiased estimation (BLUE) [4]. This estimation relies on the knowledge of second-
order statistics, covariance matrices of state, and noise that we denote B and R, respectively.
Such statistics are usually hard to estimate for a high dimensional system like the Ocean, but
DUACS leverage 25 years of reprocessed sea level altimetry so that this estimation is a strong
baseline. The produced estimation X̂𝑏𝑙𝑢𝑒 = BH𝑇 (HBH𝑇 +R)−1 can be achieved equivalently
in a variational manner [11], minimizing the energy function detailed in Eq. 1 and condensed



using the Mahalanobis distance in Eq. 2. This can be seen as a least-square regression with a
Tikhonov regularizer promoting prior knowledge in the estimation.

𝒥 (X) = (Y −HX)𝑇R−1(Y −HX) +X𝑇B−1X (1)

= ‖Y −HX‖2R + ‖X‖2B (2)

2.3. Deep spatio-temporal prior

The idea behind deep prior [7] is that using a well-suited neural network to generate the solution
of a variational problem can act as a handcrafted regularization, leveraging spatial and spectral
bias induced by the architecture [12, 13]. This means that the control parameters are shifted
from the system state space to the neural network parameters space. From a practical standpoint,
a generator network 𝑔𝜃 outputs the solution from a latent state 𝑧 such that 𝑔𝜃(𝑧) = X̂. In our
case, we ask the network to output the spatio-temporal system state trajectory on a specified
window.

𝒥 (𝜃) = ‖Y −H ∘ 𝑔𝜃(𝑧)‖2R (3)

2.3.1. Architecture

The global design of the used deep prior is largely inspired by generative convolutional architec-
tures introduced in [14]. To avoid checkerboard artifacts, we replaced deconvolution operations
as described in [15]. Finally, to ensure spatio-temporal coherence of the generated solution we
used (2+1)D convolution [16], which is an alternative to 3D convolutions being less expensive
computationally. A schematic view of the architecture is provided in Fig. 3.
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Figure 3: Schematic view of the deep spatio-temporal prior architecture



3. Experimental results

3.1. Observational window

We tested the method on 32-day windows with 128× 128 sized observation. While optimizing
deep priors, we observed that reached optimum was significantly different depending on the
weights initialization of the generator network. To overcome this issue, we trained multiple deep
generators with different initialization and averaged their results, constituting an ensemble.
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Figure 4: RMSE comparison of optimal interpolation from DUACS and deep spatio-temporal prior on a
single 32-day observational window example

In Fig. 4, estimation from DUACS and deep priors are compared using the root mean square
errors (RMSE) metric. We observe that the ensemble is indeed beneficial and performs slightly
better than DUACS interpolation. We also notice border effects, such that deep prior estimation
deteriorates at the beginning and at the end of the temporal window. Logically, the DUACS
optimal interpolation does not suffer from border effects as considered estimation where window-
centered.
Looking at the error maps displayed in Fig. 5 we see that both methods have very similar
spatial structures. We also notice that error maps for the DUACS optimal interpolation present
checkered numerical artifacts while the deep prior ones are smoother. Our interpretation is
that various biases induced by the chosen deep architecture emphasize low-frequency patterns
avoiding high-frequency artifacts introduced by numerical optimization directly at the pixel
level.

3.2. Year-long analysis

We also compared both methods on a year-long analysis. But training an ensemble of deep
prior at each window can be computationally cumbersome. To overcome this issue but still
benefit from ensemble performances, we adopted a sliding window along the year and averaged
estimation from different windows excluding border estimation. Results are displayed in Fig. 6.
As for the single window experiment, RMSE scores are in the same range and slightly better
with an ensemble of deep prior.



Figure 5: Error maps of DUACS and deep prior estimation at various times in the same observational
window
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Figure 6: RMSE comparison of optimal interpolation from DUACS and sliding-averaged deep spatio-
temporal prior on a year-long period

3.3. Conv(2+1)D ablation

To justify the use of (2+1)D convolutions, we performed a similar experiment using only 2D
convolutions and considering the time as channels. Results displayed in Fig. 7 show that
such prior lacks temporal coherence and degrades performances, particularly at times where
observations are very sparse.

4. Perspectives

We extrapolated an idea from the image processing community to interpolate sea surface height
observation from altimeter data. We highlighted in a preliminary experiment that a well-suited
deep architecture has a strong regularizing effect and can substitute prior knowledge, in our
case statistics of high-dimensional physical state. Finally, we give exploratory perspectives.
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Figure 7: RMSE comparison of optimal interpolation from DUACS and deep prior with vanilla convolu-
tional architecture, on a single 32-day observational window example

4.0.1. Automate convergence criteria.

Automating the convergence when using deep prior is still an active research field, whether
using an early stopping approach [17] or specific architectures [18]. If ground truth is needed
to find such criteria, the method loses its appeal.

4.0.2. Retro-engineered the prior.

As a deep prior seems to be able to replace second-order statistics, we would be interested in
retrieving such statistics from a trained architecture. At the moment we did not succeed in
doing so.

4.0.3. Refine the loss function.

Observational noise statistics are usually known from measurement devices. We could use
such statistics to weigh deep prior costs in a variational data assimilation fashion, for example
knowing that nadir and SWOT measurement come with different noises.
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