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Abstract
A rise in ecological anomalous events will be observed due to climate change. One such event is the
harmful algal bloom which occurs due to an increase in nutrients from anthropogenic activities and has
economic and ecological effects. Algae thrive in warmer temperatures which will lead to an increase
in the frequency of harmful algal blooms. To overcome this increasing frequency, early detection tools
are essential. Deep learning and frequent monitoring have been used to detect this phenomenon with a
focus on unimodal approaches. In this work, we propose using multiple sources of satellite and in-situ
data for detecting algal blooms with a joint multimodal learning approach, focusing on the North Sea
and the Irish Sea. This work will aid domain experts to monitor potential changes to the ecosystem done
by human interference and to take action when necessary.
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1. Introduction

Harmful algal blooms (HABs) occur due to nutrient overloading causing the phytoplankton
population to rise rapidly, affecting the environment, and resulting in issues such as oxygen
depletion and sunlight blocking [1]. The occurrence of algal blooms will increase in currently
observed locations and will start to occur in new locations due to the rising temperatures [2].
HABs have severe negative impacts as they reduce the income from fisheries and touristic
activities and increase the cost of presentation of biodiversity [3]. These blooms lower the
income from tourism and fisheries [4, 5]. Machine learning could be utilized to detect and
prevent the occurrence of HABs using the data gathered from various collection programmes.

Different forms of data could be used for detection; In-situ data such as buoys or water samples
analysed in labs or satellite data such as Moderate Resolution Imaging Spectroradiometer
(MODIS) for detecting colour or nutrient changes from various bands. The in-situ data is
collected frequently but only covers a small area whereas the satellite data covers a larger area
with infrequent data. Both data sources might have lower data quality due to Q&A processes or
external factors such as cloud cover or biofouling. The data sources can be combined to partially
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alleviate these problems. In the current approaches, each modality is analysed separately
and independently from each other to detect blooms. To improve the detection process, the
information from different data modalities could be analysed together. In this work, we propose
a multimodal fusion approach where each type of data is analysed simultaneously to detect
HABs, one to seven days before they occur.

2. Current Approaches

There are two approaches for detecting algal blooms: thresholding [6, 7], which divides data into
predetermined categories and predicts future HAB occurrences or regression, which directly
predicts the continuous value. The variable to be predicted is either dissolved oxygen or
chlorophyll-a (chl-a), both of which rise during higher photosynthetic activity from algae, as
chl-a captures sunlight to perform photosynthesis and produce glucose and oxygen. These
changes could also be observed using satellite imagery such as color changes in RGB format or
an increase in the intensity of chl-a measurements during a bloom.
The current approaches use each data modality separately. [8] use MODIS data to predict

three variables related to HABs: chl-a, sea surface temperature and fluorescence line-height with
SARIMA, regression and ANNs. [9] classify HAB events using twelve different MODIS channels
with CNN, LSTM and ML methods. [10] combine Medium Resolution Imaging Spectrometer
(MERIS), MODIS and in-situ data before training a genetic programming model to measure
phycocyanin. [11] use XGBoost to predict chl-a levels in several lakes in China and uses in-situ
data for validation. [12] use sensory data to forecast the chl-a concentration one day and four
days ahead in Geum River, South Korea with stacked LSTMs. [13] use attention LSTMs to
forecast the chl-a values half a day ahead in Fujian, China. [14] use in-situ data to predict the
chl-a values 1 to 3 days ahead, with an ensemble of ANNs and Discrete Wavelet Transform. [7]
utilize AdaBoost for SVM and RF to predict HABs using sensory data in Yuyuantan Lake, China.
[15] forecast chl-a values one week or two weeks ahead in Tolo Harbour, Hong Kong using
ANN, generalized regression network and SVMs.

It can be noticed that for this task either satellite data or sensory data is used for analysis
but not both. In some cases where satellite data is used, in-situ data is used for verification
purposes. Using only satellite data reduces the temporal prediction capabilities of models as the
data is infrequent. Using only in-situ data reduces the spatial extendibility of the predictions
as the observations are location specific. The span of data used for early HAB detection is
usually shorter than a year, reducing the generalisability of the model [16]. The study locations
are mostly focused on China, the Great Lakes, the Gulf of Florida, the Baltic Sea and the
Mediterranean [16].

In this study, we focus on the North Sea and the Irish Sea. The dataset we used encompasses
10 years; between 2009-2019. The modelling is done using different modes of data; with two
different satellite imagery sources and in-situ data, aiming to predict 1 to 7 days ahead, only
using data from a single day of observation. Detecting only a single variable such as chl-a
or dissolved oxygen has no applicability for the end-user and other contextual information
is needed. The proposed model predicts additional variables, temperature and salinity which
affect the maximum amount of oxygen the water can contain. Using the predicted variables,



the oxygen saturation at time 𝑡 is calculated, providing more information to the end-users.

3. Methodology

3.1. Data

In-situ Data: The data for this work was collected by ESM2 and ESMx data loggers at four
different moorings depicted in Figure 1. The data was collected as a part of The National Marine
Monitoring Programme (NMMP) to monitor eutrophication regarding The Convention for
the Protection of the Marine Environment of the North-East Atlantic (OSPAR) and Marine
Strategy Framework Directive (MSFD) assessments. The whole dataset was partitioned into
four fractions based on location. Each of the locations has different characteristics such that the
Liverpool buoy is near a maritime route, the WestGab buoy is near a wind farm, the TH1 buoy
is near the delta of the River Thames and the Dowsing buoy is in the open sea. It is known that
the chl-a concentration has been decreasing in certain hot spots in the Southern North Sea [17].
The periodicity and the relationship between the variables were analysed by [18, 19, 20]

with varying date ranges and locations by performing wavelet analysis. The periodicities of
variables depend on the season and range between 6 hours to 24 hours. The data consists of
eight features; chl fluorescence (fluors), turbidity (ftu), dissolved oxygen concentration (o2conc),
salinity (sal), temperature (temp) and photosynthetically active radiation (PAR) at depths 0, 1
and 2 meters (depth_0, depth_1, depth_2). The data was collected at 20-30 minute intervals at
each station. The data used spans the range between Jan 2009 and Dec 2019. Before being given
as input, the data was normalized with z-score normalization.

Figure 1: Locations of moorings

MODIS: MODIS satellites, Terra and Aqua, gather data using 36 different bands. Various bands



can be used for detecting changes in water/soil. RGB bands 1, 4 and 3 could be used for these
purposes. During algal blooms, the water colour changes to a different colour based on the
species. Therefore color changes could be observed and analysed using these groups of bands.
The data collected by these sensors have to go through extensive preprocessing since there will
be many issues regarding cloud cover, aerosol loading etc. resulting in low quality and less
frequent data.
Copernicus Marine Service (CMS): Additional satellite data was obtained via the CMS. The
information includes variables such as chlorophyll, nitrate and phosphate in seawater around
the observation sites. The source of the data will depend on the dataset used. Data sources
include a mixture of MODIS, Visible Infrared Imaging Radiometer Suite (VIIRS), Sea-Viewing
Wide Field-of-View Sensor (SeaWiFS) etc. Different levels of processed data are supplied by
CMS ranging from raw data (L1) to cloud-free (L4) data.
Both types of satellite data were collected as a daily mean with a resolution of 1 km. A

region of 6x6 km is gathered around each monitoring site, upsampled to 256x256 with bicubic
interpolation. MODIS data contains the best information from a 16-day period depending on
several factors such as observation coverage, cloud coverage, view angles etc for each pixel.
The CMS data used is OCEANCOLOUR_ATL_CHL_L4_REP_OBSERVATIONS_009_0981 which is
gathered by several satellites. The data gathered is Level 4 which went through the process
of interpolation. Each pixel contains the daily mean value for chl-a. Both modalities’ data is
upsampled due to the used CNN models, as they are designed to receive 256x256 images as
input. A single image was used for each observation day.

3.2. Proposed Approach

he first proposed approach uses CNNs to analyse the RGB bands from MODIS and chlorophyll
data from Copernicus Marine Service (CMS) separately. Transformer networks were used to
analyse the time series data from the in-situ buoys. Figure 2 visualizes the proposed architecture
for algal bloom detection. The proposed approach makes use of joint representations combined
with data fusion using each modality’s representation to alleviate each modality’s disadvantages
such as differences in data collection frequencies and data sampling disruptions. Unlike [10], our
approach does not concatenate multiple data sources before learning rather it will use middle
or late fusion of modality representations. With the use of middle fusion, the model will be able
to learn the relationship between modalities, resulting in a better model. Due to the different
characteristics of data sources, early fusion cannot be applied and alternate approaches, i.e,
intermediate or late fusion can be used. After fusing the intermediate hidden states, a linear
layer is used to obtain the predictions. Each component of the model is trained simultaneously.
The pseudocode is presented in Algorithm 1.

The linear layer is also replaced with an XGBoost model. The input to the XGBoost is
supplied by concatenating the output of each modality, transferring the learned individual
representations to a different model. Each output variable will have a separate XGBoost model
since XGBoost models cannot be used for multi-value regression.
The variables are used to calculate the predicted oxygen saturation and the real oxygen

saturation using Equation 1, where 𝐴0, ..., 𝐴5, 𝐵0, ..., 𝐵3 and 𝐶 are coefficients of the equation
1now renamed OCEANCOLOUR_ATL_BGC_L4_MY_009_118



Algorithm 1Multimodal approach forward propagation (single batch)
Ensure: 𝑋𝑠𝑟𝑐 = tensor of (seq_len,batch_size,num_features)
Ensure: 𝑋𝑡𝑔𝑡 = tensor of (seq_len,batch_size,num_features - 1)
Ensure: 𝑋𝑚𝑜𝑑𝑖𝑠 = tensor of (batch_size,in_channels = 3,height=256,width=256)
Ensure: 𝑋𝑐𝑚𝑠 = tensor of (batch_size,in_channels = 2,height=256,width=256)
𝑋𝑠𝑟𝑐 ← 𝑡𝑖𝑚𝑒2𝑣𝑒𝑐(𝑋𝑠𝑟𝑐)
𝑋𝑡𝑔𝑡 ← 𝑡𝑖𝑚𝑒2𝑣𝑒𝑐(𝑋𝑡𝑔𝑡)
𝑋𝑠𝑟𝑐 ← 𝑡𝑟𝑎𝑛𝑠𝑓 𝑜𝑟𝑚𝑒𝑟_𝑒𝑛𝑐𝑜𝑑𝑒(𝑋𝑠𝑟𝑐)
𝑋𝑠𝑟𝑐 ← 𝑡𝑟𝑎𝑛𝑠𝑓 𝑜𝑟𝑚𝑒𝑟_𝑑𝑒𝑐𝑜𝑑𝑒(𝑋𝑠𝑟𝑐, 𝑋𝑡𝑔𝑡, 𝑚𝑎𝑠𝑘𝑠)
𝑋𝑠𝑟𝑐 ← 𝑎𝑣𝑔_𝑝𝑜𝑜𝑙(𝐺𝑒𝐿𝑈 (𝑐𝑜𝑛𝑣_1𝑑(𝑋𝑠𝑟𝑐)))
𝑋𝑚𝑜𝑑𝑖𝑠 ← 𝑚𝑜𝑑𝑖𝑠_𝑐𝑛𝑛(𝑋𝑚𝑜𝑑𝑖𝑠)
𝑋𝑐𝑚𝑠 ← 𝑐𝑚𝑠_𝑐𝑛𝑛(𝑋𝑐𝑚𝑠)
𝑋 ← 𝑡𝑜𝑟𝑐ℎ.𝑐𝑜𝑛𝑐𝑎𝑡(𝑋𝑠𝑟𝑐, 𝑋𝑚𝑜𝑑𝑖𝑠, 𝑋𝑐𝑚𝑠)
if 𝑙𝑎𝑠𝑡_𝑙𝑎𝑦𝑒𝑟 == 𝑙 𝑖𝑛𝑒𝑎𝑟 then

𝑌 ← 𝑙𝑖𝑛𝑒𝑎𝑟(𝑋)
else

for 𝑛 in 𝑜𝑢𝑡𝑝𝑢𝑡_𝑣𝑎𝑟 𝑖𝑎𝑏𝑙𝑒𝑠 do
𝑌𝑛 ← 𝑋𝐺𝐵𝑜𝑜𝑠𝑡𝑛(𝑋)

end for
end if

given in Table 1, 𝑆 is the salinity and 𝑇 is 𝐼 𝑛[(298.15 − 𝑇𝑂)(273.15 + 𝑇𝑂)−1] where 𝑇𝑂 is the
observed temperature value at time 𝑡 [21]. Mean Absolute Error (MAE) is used to compare the
saturation percentages. This method is followed to give insight into the results of the predictions
for domain experts.

𝐷𝑂 = 𝐼𝑛(𝐴0 + 𝐴1𝑇+𝐴2𝑇 2 + 𝐴3𝑇 2+
𝐴3𝑇 3 + 𝐴4𝑇 4 + 𝐴5𝑇 5+

𝑆(𝐵0 + 𝐵1𝑇 + 𝐵2𝑇 2 + 𝐵3𝑇 3) + 𝐶𝑆2)
(1)

Coefficient Value
𝐴0 2.00907
𝐴1 3.22014
𝐴2 4.05010
𝐴3 4.944457
𝐴4 −2.56847 ∗ 10−1
𝐴5 3.887674
𝐵0 −6.24523 ∗ 10−3
𝐵1 −7.37614 ∗ 10−3
𝐵2 −1.03410 ∗ 10−2
𝐵3 −8.17083 ∗ 10−3
𝐶 −4.88682 ∗ 10−7

Table 1
Coefficients for Equation 1
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Figure 2: Proposed Multimodal Fusion Approach

4. Results & Discussion

The predictions are done between one day to one week into the future given the observation
at day 𝑛. 70% of TH1 buoy data was used for training, and 30% for validation. This location
was chosen due to nutrient flow as it is located near the delta of the River Thames. The reason
behind the location choice is to create a more generalized model using the nutrient flows. We
used a single location to observe if the model would be able to perform satisfactorily for other
locations with different properties, therefore testing the generalisability of the model. The other
three sites are used for testing. The baseline models are: Support Vector Regression (SVR),
K-Neighbours Regression (KNR), Multilayer Perceptron (MLP) and Luong attention model
[22, 23, 24]. The baseline models were chosen due to their frequent use for this task. The input
into the baselines models is the in-situ data. The models are trained using Mean Square Error
(MSE) as the loss function.

Figure 3 illustrates the MSE values for each model based on the number of days into the
future and Figure 4 illustrates the MSE values for each site based on the number of days into the
future. For all models, a hyperparameter search was done based on the prediction day. For the
SVR model, a model was created for each predicted variable. For deep learning models, an Adam
optimizer was used for this task with 200 epochs and earlystopping with a patience of 15 epochs
[25]. The model in [26] is used for the in-situ data. The CNN models tested for MODIS and
CMS data are: ResNet18, ResNet152, MobileNet_v2, VGG19, VGG19_bn, and AlexNet. These
architectures were chosen due to their frequent and off-the-shelf use. Two comparisons are
made one with MSE for the three predicted variables and one with MAE to compare oxygen
saturation percentages.
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Day Model Type MODIS CNN Model CMS CNN Model MAE
1 Luong - - 5.182
2 KNR - - 7.954
3 KNR - - 7.952
4 XGB-Late ResNet152 MobileNet_v2 8.41
5 Fusion-Late VGG19_bn MobileNet_v2 7.855
6 XGB-Late VGG19 VGG19 8.300
7 XGB-Late VGG19 VGG19 8.115

Table 2
MAE results for each day with the best performing model

From Figure 3, it can be deduced that the Luong attention model is suitable for predicting the
next day and k-nn is suitable for predicting two and three days ahead. For the rest of the days,
the most suitable model is one of the multimodal approaches we have proposed, either using the
late fusion approach or transferring the learned representations from the late fusion approach
and using XGBoost as the final classifier. Table 2 indicates an error rate between 7.855- 8.3% for
multimodal approaches for prediction days 4-7 which is on par with unimodal approaches for
days 2 & 3. The models for calculating MAE were chosen based on the best performing model
for each day (i.e. with lowest MSE). It can be deduced that using only in-situ data for predicting
the near future is suitable whereas additional modalities are needed to predict further future
days. From Figure 4, it can be deduced that the baseline algorithms only perform adequately in
the training site. For applicability, generalisability is required. The proposed approaches are
able to generalize using multiple modalities, resulting in better performing models.
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5. Future Work

Due to increasing temperatures, algae will have favourable conditions to reproduce resulting in a
higher frequency of algal blooms for at-risk areas and will occur in new locations. These blooms
will have negative ecological and economic impacts. To combat the effect of this phenomenon,
early detection tools are essential. In this work, we propose a new approach to early algal
bloom detection that uses various modalities of data. The proposed model uses in-situ data and
various satellite data to predict algal blooms before they occur for a predefined time range. The
aim is to use each modality to extract essential information to make a more reliable model. The
area of focus was around the North Sea and the Irish Sea which are less studied areas. Different
types of multimodal learning techniques could be experimented in further iterations. Other
than prediction, model explainability and interpretability could be explored in the future.
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