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Abstract
This paper studies the anomaly detection problem of multivariate time series data. Previous methods
may rely on determining positive anomalies by calculating the differences in reconstructed or forecasted
results. The challenges include recognition rate, scalability, and lacks of anomaly labels. We propose
a self-supervised model that treats the data dependencies of multiple time series as a graph, applies
a modified Transformer encoder with graph attention to learn features, and adopts a GRU to predict
future data. In addition, a data selection policy with data offsetting and data dropping is designed
to filter out outlier data in a self-supervised way, helping to retrieve useful features and avoid data
imbalance. The model is validated on two real-world datasets and demonstrates better performance over
the state-of-the-art models by about 1.0 in F1-score.
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1. Introduction

The rise of IoT and metaverse is a major driving force of sensor applications. Sensors can be
installed on industrial motors to collect velocity and torque values and on human bodies to
collect electrocardiogram data. Sensor data typically presents in forms of multivariate time
series. Among all purposes, anomaly detection is a critical issue, whose goal is to determine
whether there is any abnormality, such as heartbeat problems, in a given piece of data.

A major challenge in the anomaly detection task is lack of precise labels. While continuously
collecting sensor data is feasible, there is no good basis for judging whether a segment of data
is normal or abnormal. Therefore, it is typically assumed that most of the data collected in
a normal environment are normal. Then, the characteristics of these data are used to train a
model in an unsupervised way for judging abnormality. Another challenge is the scalability
issue. When data dimension increases, it becomes more difficult to get an insight into the
characteristics of abnormalities. Therefore, a data-driven approach is desired.
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Unsupervised anomaly detection solutions can be categorized as reconstruction-based [1,
2, 3, 4] and forecasting-based [5, 6]. Reconstruction-based models regenerate original data to
judge abnormality. Forecasting-based models predict future data to judge abnormality. Due
to the success of Graph Convolution Network and Graph Attention Network, they have been
applied to time-series anomaly detection [7, 8]. More recent papers also apply graph neural
networks to learn the correlations between features [7, 8].
Transformer [9] was first proposed in the field of natural language processing for learning

the context of words. Recently, it has also been proved useful in the task of time series fore-
casting [10]. It has been shown in [11] that the transformer can learn long-term dependencies
through the attention mechanism, which is suitable for use in time series anomaly detection
problems.
In the collection of time series data, the problem of data imbalance sometimes occurs. For

example, assuming that most of the data we collect between 0 and 100, a model may be able to
detect positive anomaly when data falls in this interval pretty well. However, if time series data
is not in this interval, misjudgment may occur. In order to solve this phenomenon, we propose
a data offsetting mechanism to handle this issue.

The work [12] adopts the encoder of Transformer [9] and obtains the state-of-the-art scores
in Soil Moisture Active Passive satellite (SMAP) [13] and Mars Science Laboratory rover (MSL)
dataset. In this work, following the success path of utilizing the Transformer-based architecture,
we propose a new graph attention-based Transformer model for anomaly detection. We first
design a selection process, whose goal is to reduce data bias and filter out these hidden (unlabeled)
abnormal data segments during the training process. We thenmodify the encoder of Transformer
by plugging in a graph attention network. Following the forecasting approach, our model uses
a GRU [14] to predict future data. The model is validated on SMAP and MSL, and it outperforms
the state-of-the-art [12] in the F1-score by 0.94% and 0.24%, respectively.

The rest of this paper is organized as follows. Section 2 reviews some related works. Section
3 presents our model. Experiment results are in Section 4. Conclusions are drawn in Section 5.

2. Related Work

Machine learning methods. Time series data could be univariate or multivariate. Manually
labeling positive abnormality is usually infeasible. Therefore, machine learning methods such
as KNN [15] and OC-SVM [16] have been proposed. The KNN [15] method tries to find a
suitable decision boundary based on categories (normal and abnormal) of those labeled data.
The purpose of OC-SVM [16] is similar to KNN. They are all to find the best decision boundary
on categories. Difference between KNN is that OC-SVM only needs one category (normal) of
data during training. After training, it can be judged whether the testing data and the training
data belong to the same category, to achieve the purpose of distinguishing normal and abnormal.
Deep learning methods. There are two types of solutions. The first type is based on re-
construction [1, 3]. InterFusion [1] used a hierarchical variational autoencoder as backbone
to model the interdependence, and interdependence among multiple series simultaneously.
Omnianomaly [3] stochastic recurrent neural network such as LSTM-VAE [4], extend it with a
normalizing flow to generate reconstruction data. This approach uses the Peak-Over-Threshold



Figure 1: Overall architecture.

to automatically select the threshold. The second type is based on forecasting the future
data [5, 6, 8], according to the predicted results as the standard for judging positive and abnor-
mal. LSTM-NDT [5] using LSTM to forecast the data with an input time-series, determine if
the data is abnormal by setting the threshold. The disadvantage of this method is it ignored
the intermetric correlations. DAGMM [6] uses deep autoencoder Gaussian mixture models
for reducing the dimension in feature space. This work predicts the next data point through
a mixture of Gaussians. The input of this approach isn’t a temporal sequence, it uses the
multivariate variables. GDN [8] used Graph Attention Network to learn the relationship in each
features and update the graph’s adjacency matrix from each features, and forecasting is used
to judge positive anomalies. GDN also can judge which feature data is abnormal [8]. These
goals are difficult to achieve using machine learning methods. Their also have model using both
reconstruction and forecast to detect anomaly. MTAD-GAT [7] used Graph Attention Network
to learn the relationship between the time series data in feature direction and the time direction,
used GRU to forecasting data, and used variational autoencoder with GRU to reconstructing
data. This method uses Peak-Over-Threshold to automatically select the threshold for judging
positive anomalies.

3. Method

We consider data in the form of multivariate time series. Each data is represented by 𝑆 =
(𝑆1, 𝑆2, … , 𝑆𝑁), where 𝑁 is the length and each 𝑆𝑖 ∈ 𝑅𝐾, 𝑖 = 1…𝑁, is of dimension 𝐾. So 𝑆 is a
𝐾 × 𝑁 array. The original dataset may be a long time series. All 𝑆𝑖 are cut from the dataset in
the way of a fixed-length sliding window, and the step size of sliding window is 1. Training
data are all unlabeled, and only testing data are labeled as 1 (abnormal) or 0 (normal). Note that
the training data may contain mostly normal, but very sparse and unknown abnormal data.
Our goal is to develop a model that can learn the characteristics of training data and judge

the abnormality of test data. The proposed architecture is shown in Fig. 1, which contains three
modules:

1. Data selection: This step is to purify training data by removing those potentially abnormal
data. It has two steps: data offsetting and data dropping.

2. GAT-Transformer: This is a combination of Graph Attention Network and the encoder of
Transformer [9] for learning the characteristics of data.

3. Forecaster: Similar to [10], we apply GRU-forecasting to predict the next data as a way
of judging anomalies.



3.1. Data Selection

Data offsetting. This is to reduce the data imbalance problem as time series data are prone
to have higher variation. The problem of data imbalance will occur in the case of uneven
distribution of data (such as the level of data values), and this phenomenon will cause the
model can’t learn and judge the characteristics of the data well, this phenomenon can’t solve by
normalize (such as minmaxscaler or standardscaler).
We first preprocess data by offsetting each 𝑆𝑖.

̂𝑆𝑖 = {
0, if 𝑖 = 1
𝑆𝑖 − 𝑆1, otherwise.

(1)

Then each 𝑆𝑖 is replaced by ̂𝑆𝑖. After data offsetting, all data will be moved to the same level,
solving the problem from data imbalance.

Data dropping. To filter out outliers, we apply an unsupervised approach during training by
using a batch loss threshold. The training steps are as follows:

1. After training loss does not continue to decline, use training loss as a judgment criteria.
A threshold 𝑇 = 𝑞75 + 1.5(𝑞75 − 𝑞25) is calculated from all batches, where 𝑞75 (resp. 𝑞25) is
the data point covering 75% (resp. 25%) of batch losses.

2. Each batch with a loss higher than 𝑇 is considered abnormal and is discarded in next
epoch.

3. The above two steps are repeated for all future epochs.

Similar techniques have been applied in [17, 18] by dropping a piece of training data if its loss
is too high in a batch. We adopt a per-batch dropping strategy, in hope of preserving more
variants in the training data.

3.2. GAT-Transformer

Fig. 2 shows the architecture of GAT-Transformer, which uses a graph attention network to
learn the characteristics of multivariate time series data. After a convolution operation, we
treat each 𝑆𝑖 as a node 𝑣𝑖, 𝑖 = 1…𝑁, and these N nodes are fully connected. The input to a graph
attention layer is a sequence of vectors [ℎ1, ℎ2, … , ℎ𝑁], ℎ𝑖 ∈ 𝑅𝐾, 𝑖 = 1…𝑁. For the first layer,
ℎ𝑖 = 𝑆𝑖.
Following the message-passing model, the hidden state ℎ𝑖 of node 𝑣𝑖 after a graph attention

layer is

ℎ𝑖 = 𝜎(
𝑁
∑
𝑗=1

𝛼𝑖𝑗𝑣𝑗), (2)

where 𝜎 is a sigmoid activation function, and 𝛼𝑖𝑗 is the attention score between 𝑣𝑖 and node 𝑣𝑗,

𝛼𝑖𝑗 =
𝑒𝑥𝑝(𝑒𝑖𝑗)

∑𝑁
𝑙=1 𝑒𝑥𝑝(𝑒𝑖𝑙)

, (3)



Figure 2: Comparison on the encoders of (a) GAT-Transformer and (b) Transformer.

where
𝑒𝑖𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑤𝑇 ⋅ (𝑣𝑖 ⊕ 𝑣𝑗)). (4)

Here, ⊕ represents concatenation, and 𝑤 is a learnable column vector ∈ 𝑅2𝐾. The original Trans-
former is designed for natural language processing. We adopt the encoder of Transformer [9]
and apply graph attention and residual calculation on it. There are three modifications in
GAT-Transformer, as shown in Fig. 2. Here, we set 𝑝 = 6 as in Transformer.

1. Conv1D: Because our data is numerical without semantic meanings, we apply Conv1D
which also can solve the position information in position embedding. Using Conv1D for
data embedding rather than input embedding and position embedding. data.

2. GAT: The multi-head attention is replaced by graph attention because sensor data has no
semantic relation and graph attention can better learn the characteristics of time series
data of similar signals.

3. Multiply & Add: Instead of directly adding attention to the original data, this operator
multiplies the hidden states of nodes to the original values of 𝑆 in an element-wise way
and then adds 𝑆 to the former result, i.e.,

̂𝑆𝑖 = 𝑆𝑖 + 𝑆𝑖 × ℎ𝑖, (5)

where 𝑖 = 1…𝑁. This is because the final results of GAT-Transformer is compressed to
[0,1] by Sigmoid, the level of original data 𝑆 and attention data ℎ are not equal, compared
to directly adding the two vectors in Transformer, this would maintain the outcomes of
attention better (refer to Ablation study).

3.3. Forecaster

The forecaster’s architecture is shown in Fig. 3. The output [ℎ1, ℎ2, … , ℎ𝑁] of GAT-Transformer
is sent to a GRU unit to learn their relationship. Then the final hidden state of GRU will go
through a normalization layer and three fully connected layers to predict the data after 𝑆𝑁,
denoted as ̃𝑆𝑁+1.



Figure 3: The forecaster.

Table 1
Dataset descriptions.

SMAP MSL

Number of features (K) 25 55
Training set size 135,183 58,317
Testing set size 427,617 73,729

Anomaly rate in testing set 13.13% 10.27%

During training, the loss function is defined as:

𝐿𝑜𝑠𝑠 = √|𝑆𝑁+1 − ̃𝑆𝑁+1|2. (6)

In addition, during deployment, the loss is to be compared to a threshold 𝛿 to judge abnormality.

4. Experiment Results

Datasets. We consider SMAP and MSL datasets provided by NASA [13], which are real
spacecraft telemetry data from the SMAP satellite and the Curiosity rover, respectively. Both
SMAP and MSL datasets are telemetried by different channels. All channel IDs are anonymized
and codenamed with a letter, and all telemetry values are scaled by their max/min values. All
data are multivariate time series. More information are shown in Table 1.

Metrics. We consider three performance metrics: precision, recall and F1-score. Note that
F1-score is more important because abnormal data is sparse, accuracy will make all models have
high scores, making it harder to distinguish the discriminant rate of each model. We follow the
evaluation strategy in [3]: in a sequence of continuous abnormal observations, if any anomaly
is successfully detected, the whole continuous abnormal sub-sequence is considered detected.
In Fig. 4, the ground truth contains two anomaly sub-sequences. The prediction contains one
anomaly detected. So the evaluation will regard the first sub-sequence as detected. Anomaly



Figure 4: The evaluation strategy. There are 12 contiguous points, first row represents ground truth;
the second row represents the predictions after model; and the third line represents the calculated
evaluation.

Figure 5: F1-scores under different settings of 𝑟.

threshold 𝛿 is selected as follows. We assume that there is a certain ratio 𝑟 of anomaly data in
the validation dataset, where 𝑟 ∈{0.1%, 0.15%, 0.2%, 0.25%, 0.3%, 0.35%, 0.4%, 0.45%, 0.5%, 0.55%,
0.6%, 0.65%, 0.7%, 0.75%, 0.8%, 0.85%, 0.9%, 0.95%, 1%}. Since validation data are also not labeled,
given 𝑟, we set 𝛿(𝑟) to the value such that ratio 𝑟 of data are of loss ≥ 𝛿(𝑟).
Setup. Models are developed in PyTorch 1.7.0 with CUDA 11.0, and are trained on a server with
Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz and NVIDIA GeForce RTX 3080 graphics cards. We



Table 2
Comparison results.

Dataset SMAP MSL
Method Precision Recall F1-score Precision Recall F1-score

Clustering-based model
ITAD 82.42 66.89 73.85 69.44 84.09 76.07
THOC 92.06 89.34 90.68 88.45 90.97 89.69

Deep-SVDD 89.93 56.02 69.04 91.92 76.63 83.58
Reconstruction-based model

InterFusion 89.77 88.52 89.14 81.28 92.70 86.62
BeatGAN 92.38 55.85 69.91 89.75 85.42 87.53

OmniAnomaly 92.49 81.99 86.92 89.02 86.37 87.67
LSTM-VAE 92.20 67.75 78.10 85.49 79.94 82.62

Anomaly-Transformer 94.13 99.40 96.69 92.09 95.15 93.59
Forecasting-based model

LSTM-NDT 89.65 88.46 89.05 59.34 53.74 56.40
DAGMM 86.45 56.73 68.51 89.60 63.93 74.62
ours 95.93 99.41 97.63 92.38 95.32 93.83

Reconstruction & Forecasting-based model
MTAD-GAT 89.06 91.23 90.13 87.54 94.40 90.84

adopt the Adam optimizer with learning rate=0.0001 and batch size=256. We set the window
size as 25 and the kernel size=7 for Conv1D, for GRU unit, we set the hidden size=25 and set the
dropout=0.3. Models are trained for up to 300 epochs. The ratio of training to validation data is
set to 9:1.

4.1. Comparisons

First, we use different threshold 𝛿(𝑟) with the above stated values of 𝑟 to identify anomaly in the
testing data of SMAP and MSL. The F1-scores are shown in Fig. 5. As can be seen, the choices
of 𝛿(𝑟) lead to different outcomes. Below, we choose the best 𝑟 = 0.45% and 0.2% for SMAP and
MSL, respectively, to make further comparisons. In Table 2, we compare our model against
several other models, including the current state-of-the-art Anomaly-Transformer [12].
For clustering-based models, we choose ITAD [19], THOC [20] and Deep-SVDD [21]. For

reconstruction-based models, we choose InterFusion [1], BeatGAN [2], OmniAnomaly [3] and
LSTM-VAE [4]. For forecasting-based models, we choose LSTM-NDT [5] and DAGMM [6]. The
design of MTAD-GAT [7] includes both reconstruction and forecasting. Our GAT-transformer
has the highest F1-score in both datasets, improving over Anomaly-Transformer by 0.94 and
0.24 on SMAP and MSL, respectively. GAT-Transformer also outperforms Anomaly Transformer
in precision by 1.80 and 0.20 on SMAP and MSL, respectively, and in recall by 0.01 and 0.17 on
SMAP and MSL, respectively.



Table 3
Ablation study.

Model SMAP MSL
ours 97.63 93.83

w/o data offsetting 85.55 92.89
w/o data dropping 96.46 92.00

with multi-head attention 96.65 92.81
with residual 96.57 90.32

4.2. Ablation Study

Our model contains four main designs: data offsetting, data dropping, graph attention, and
multiply-and-add of attention. To understand how each design impacts performance, we conduct
four ablation studies as shown in Table 3. We make observations as follows:

• The impact of data offsetting is the largest. It drops down 12.08 in F1-score for SMAP
when data offestting is removed. This is because the problem of data imbalance occurs in
SMAP dataset, data offsetting proves that the problem of data imbalance can be solved,
the reason that is less obvious in the MSL dataset is because the data’s level of different
channels are relatively similar, data imbalance not phenomenon.

• The impact of data dropping is 1.17 and 1.83 for SMAP and MSL, respectively. Though
the inprove isn’t large, this method also proves that removing data with high loss can
improve the accuracy of the model.

• The third study is to replace graph attention by the typical multi-head attention. We
see that using graph attention improves F1-score by 0.98 and 1.02 on SMAP and MSL,
respectively.

• The fourth study is to replace the multiply & add operator (Eq. 5) by a residual operator
(i.e., ̂𝑆𝑖 = 𝑆𝑖 + ℎ𝑖). The improvements on F1-score are 1.17 and 1.83 on SMAP and MSL,
respectively, validating the effectiveness of our design. As mentioned in the method, the
data’s value between [-1, 1], but the data calculated by graph attention is a value between
[0, 1], in the case of different data levels, used multiply method can better than use the
efficiency of graph attention.

5. Conclusions

This paper proposes an unsupervised anomaly detection model for multivariate time series
data. An unsupervised data selection is first applied to purify training data. This enhances the
model’s capability in forecasting future data. Then we apply graph attention on Transformer
with several enhancements for multivariate time series data. Our validations on two real-world
datasets justify these enhancement’s effectiveness.
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