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Abstract
Air pollution is detrimental to the environment and contributes to the global burden of disease. Accurate
prediction of surface concentrations of atmospheric pollutants, including fine particulate matter (𝑃𝑀2.5)
and gaseous 𝑁𝑂2, is key to mitigating these harmful effects. However, most forecasts produced by
state-of-the-art models exhibit biases and limitations due to low-resolution (typically ∼ 40 𝑘𝑚) and
intense computational requirements. While deep learning-based approaches promise cheap inference,
and can inherently scale and assimilate large amounts of data, ground truth measurements are obtained
by station networks that are costly and sparsely distributed spatially - making the training of data-hungry
deep learning methods tedious. In this context, we propose a novel deep learning framework that can
accurately downscale the resolution of surface concentrations down to 1 × 1 km by leveraging additional
data sources of static and time-varying nature (such as elevation and land use type). To do so, we carefully
design a tailored data alignment and sampling process that balances the distribution across land use type,
enhancing model generalization. To handle ground truth sparsity, we propose a tailored loss function that
leads the network to model correlations across data sources close to ground station, while encouraging it
to approximate model-based outputs elsewhere. With a set of qualitative and quantitative experiments,
we demonstrate that the proposed method outperforms all compared modeling- and learning-based
approaches, in both the aerosol and gaseous phase, with a significant increase in accuracy (up to 19% for
𝑁𝑂2 and 13% for 𝑃𝑀2.5) - while generalizing the improvement across the various land use types.
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1. Introduction

Air pollution is detrimental to human health and its contribution to the global burden of disease
is now well known [1]. Regulated components of atmospheric pollution, including particulate
matter 𝑃𝑀2.5 and gaseous 𝑁𝑂2, are known to cause morbidity and premature mortality in
human populations [2]. Accurate prediction of the local surface concentrations of atmospheric
pollutants is key to mitigating these harmful effects on human health and the environment.
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While air pollution models play a pivotal role in this direction, it is well accepted that
machine learning approaches can provide further insights, identifying underlying patterns,
trends and relationships between parameters and data sources [3] - such as remote sensing
atmospheric composition retrievals from satellite platforms, augmented by in situ ground station
measurements [4].
Improvements in prediction accuracy require advances in assimilation, encompassing both

observing systems as well as models [3]. Methods to assimilate data in order to improve air
quality predictions based on machine learning, or autoregressive models have been developed,
targeting a more realistic representation of air quality in inhabited areas [5, 6]. Air quality
sensor network data were assimilated in numerical simulation using neural networks, but
limited to a single urban area, without incorporating auxiliary sources of information [7, 8]. At
the same time, while model-based approaches can provide regional to global coverage, they
are computationally expensive and limited in terms of resolution. Furthermore, ground-based
stations have very high acquisition, installation and operation costs. This limits the density of
stations in order to monitor pollution accurately over large areas of interest.

Motivated by the above challenges, in this paper we present a deep learning framework that
leverages publicly available data sources in order to improve downscaling accuracy of atmo-
spheric pollutants. We leverage properties of convolutional networks, that learn hierarchical,
non-linear representations of high-dimensional multimodal data, along with additional publicly
available data sources - including in situ measurements, elevation maps, and aerosol optical
depth columns. To address the issue of ground station sparsity, we design a custom loss function
that heavily penalizes ground station errors, while encouraging the network to fit model-based
predictions in case ground stations are not available. Furthermore, to avoid modelling spurious
correlations between land use and measurements, we design a novel tile sampling approach
that balances the land use type tiles per batch - while keeping the standard deviation over class
membership as stable as possible.

The proposed framework improves the predictive performance of CAMS by alleviating biases,
downscaling to 1×1 km spatial resolution. Our experiments demonstrate the intrinsic value of
additional data sources such as the CORINE Land Cover (CLC) and Digital Elevation Models
(DEM) in improving accuracy and successfully increasing product resolution. Additionally,
in contrast to related work we show that the proposed method is generalizable to multiple
pollutant species in both the aerosol and gaseous phases. This enables detailed studies of the
impacts of pollution to drive science and policy making - in contrast to the relatively coarse
resolution of model-based approaches. The contributions of this work are summarized below:

• We propose a novel deep learning framework for downscaling atmospheric pollutants in
both the aerosol and gaseous phase, that can readily leverage additional data sources of
different resolution and coordinate reference systems.

• We design a custom loss function that leads to state-of-the-art results using only a handful
of ground truth station measurements. Significance weighting is introduced for model-
based forecasts and ground-station based measurements, while network is encouraged to
learn correlations between supplementary data types and ground station measurement
distribution.

• We design a novel tile sampling algorithm that creates a diverse and balanced dataset per



batch. This avoids modelling spurious correlations between land use and measurements,
and enhances model generalization.

• By a set of quantitative and qualitative experiments, we showcase the generality and
accuracy of the proposed method against both model-based and deep-learning based ap-
proaches. Also, we provide insights regarding the data sources utilized for each pollutant
that can aid future research.

2. Related Work

Historically, statistical methods [9] as well as artificial neural networks (ANN) have been used to
study atmospheric effects [10], from air quality and pollution to weather patterns [11]. One such
statistical method utilizing both ground station as well as satellite data is [12], using regression
techniques. Spatial interpolation methods [13] like spatial averaging, nearest neighbor, inverse
distance weighting and kriging have also been prevalent. The limitation with these methods
however, is that they usually predict the mean (or weighted average) and miss tail events such as
low or high pollutant concentrations [14]. Recently, deep learning models have been utilized for
increasing the spatio-temporal resolution of EO data, e.g. [15]. Due to the time series component
and the temporal relationship that air quality data possess, an appropriate network suited to
this kind of data is often employed: the long short-term memory (LSTM) model which has been
shown to capture well this kind of spatial-temporal correlation features [16]. In addition to an
LSTM in this case, a convolutional neural network (CNN) can be utilized in unison. The CNN
is used to capture spatial correlations and the combination of these architectures shows good
accuracy results. Another example of DL methods used in this context is a Super Resolution
Deep Residual Network (SRDRN) that work on daily precipitation and temperature downscaling
[17] or a Deep Belief Network (DBN) for soil moisture downscaling [18]. Within methods such
as these we can also find proof that data fusion enhances results, such as LSTMs with multimodal
data [19], or an attention-based, deep convolutional neural network (AU-Net) with multimodal
data [20] that downscale projected precipitation. As can be seen, the majority of related work
in terms of atmospheric pollutants deals mostly with one species, without leveraging the vast
amounts of additional data sources available - and is applied only in a limited spectrum of land
use types.

3. Methodology

In this section, we describe the proposed methodology. It comprises of data preprocessing and
harmonization of all publicly available data sources utilized (Section 3.1, Table 1), a sampling
module that aims to balance the representation of land cover classes in the dataset, as well
as the final deep learning architecture, trained on a custom loss function (Sections 3.3 and 3.4)
that heavily penalizes ground stations measurements in comparison to CAMS. By leveraging
properties of deep networks and convolutional kernels, this enables leveraging correlations with
globally available side-information to mitigate the scarsity of ground stations. An overview of
the proposed method is presented in Fig. 1.
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Figure 1: An overview of our method. From left to right; Static and temporal data sources are initially
presented. Subsequently, all data sources are preprocessed and harmonized (coordinate system match,
resolution match, normalization). The resulting data tensor is fed into the model, along with the ground
truth that results from augmenting CAMS with ground station measurements. Finally, our model is
trained by uniformly sampling tiles with and without ground stations, using a custom loss function that
heavily penalizes errors in terms of ground station tiles.

3.1. Preprocessing

The data used to train the model originate from a 500 × 500 km region over the north of Italy
and consist of several views, each coming with its own coordinate system and resolution.
This necessitates preprocessing and harmonization of the data in order to leverage and fuse
multiple data sources of heterogeneous nature. We re-project (using Nearest Neighbours) all
input data to the coordinate system and resolution of CORINE Land Cover (CLC), which is
the highest resolution product along with DEM. It is our hypothesis that land use would factor
greatly in the inference of the requested metrics (𝑃𝑀2.5 and in particular 𝑁𝑂2 concentrations)
[21]. The products are aligned at the intersection of their bounding boxes, normalized to [0,1]
and then stacked in a composite raster. As not all of the 44 different land cover classes are
equally represented in our area of interest, with some classes not appearing at all, we group
semantically similar classes together, and subsequently extract 15 binary masks, one for each
composite CLC class. Details about this categorisation can be found in Appendix E.

3.2. Tile Sampling and Extraction

We adopt a training process that utilizes 64 × 64 input tiles extracted from the re-projected
composite raster as input, with each of the tiles corresponding to one pixel in the output. We
extend the tiles beyond the actual area that would correspond to one pixel in the output, as our
working hypothesis is that pollutant concentrations in any spatial location would be influenced
by conditions in the surrounding area.
To train the model, we extract an equal number of tiles with and without ground stations.

However, since the land use type classes where ground stations appear are not balanced across
the dataset, we design a novel sampling process that aims to flatten the joint distribution of land



Table 1
Data Sources and their utilization in the proposed framework

Data Source Description

EMEP Ground station daily measurements of 𝑁𝑂2 and 𝑃𝑀2.5 surface-level concentrations
in Area of Interest (AoI). Used to augment ground truth during training.

CAMS Copernicus Atmospheric Monitoring Service hourly forecasts of anthropogenic and
natural pollutants. Single-channel raster for each pollutant, res: 10 km. 𝑁𝑂2 and
𝑃𝑀2.5 surface concentrations used as input to the model and as ground truth for tiles not
containing a station.

CLC CORINE LandCover characterisation of land use type, grouped according to Appendix
E: Table 4. Single-channel raster with discrete values, res: 100 m. Used as reference for
model input resolution.

Sentinel 5 Sentinel-5P Satellite retrievals of the daily 𝑁𝑂2 tropospheric column densities. Two-
channel raster with measurements and QA score, res: 7 km. Used in the training and
inferences of the 𝑁𝑂2 predicting model.

DEM Copernicus’ Digital Elevation Model (EU-DEM 1.1) provides a high resolution eleva-
tion map of the AoI. Single-channel raster, res: 25m.

ERA5 The ECMWF ERA5 reanalysis provides hourly estimates of meteorological variables.
Single-channel rasters, one for each wind direction, res: 30 km. Used horizontal wind
vector components (𝑢, 𝑣) as input source.

MODIS Aerosol Optical Depth (AOD) acquired by the Moderate Resolution Imaging Spectro-
radiometer on board the Aqua and Terra satellite mission. Two 4-to-6-channel rasters,
one with themeasurements and one with the QA score, res: 1 km. Used as input source.

use classes in the sampled tiles. This is achieved by iteratively choosing the tile, whose addition
to the already sampled set minimizes the standard deviation of the CLC class histogram. More
details are available in Appendix B.

3.3. Network Architecture and Implementation Details

As mentioned in Section 3.1, our dataset consists of high-res data, made up by CLC and DEM,
and low-res data that for the most part have only one value per input of 10 × 10 (or even 64 × 64)
tile. In order to reduce the dimensionality of the high-res data, we use a deep CNN to bring
everything to a uni-dimensional latent space, out of which one single value can be extracted as
our prediction with the use of a fully connected layer.

The model used in our experiments is based on the EfficientNet architecture family, utilizing
a pre-trained EfficientNet B0 encoder1, followed by a linear layer. The first layer of the model is
dynamically resized to match the number of products selected at each experiment, while the
last layer was resized to one (regression). Both layers were randomly initialized.

1https://github.com/rwightman/pytorch-image-models



3.4. Loss Function

The model is trained using root mean-squared error (RMSE) as loss function. The error is
calculated as the difference between the generated prediction for each tile (𝑜𝑢𝑡) and the ground
station value (𝑔𝑠𝑖). For the tiles that do not contain a ground station, the prediction is instead
compared to CAMS (𝐶𝐴𝑀𝑆𝑖).

ℒ =
√

1
𝑁𝑡 𝑖𝑙𝑒𝑠

𝑁𝑡 𝑖𝑙𝑒𝑠

∑
𝑖
𝜆𝑔𝑠𝑝𝑖(𝑜𝑢𝑡 − 𝑔𝑠𝑖)2 + 𝜆𝐶𝐴𝑀𝑆(1 − 𝑝𝑖)(𝑜𝑢𝑡 − 𝐶𝐴𝑀𝑆𝑖)2

where 𝑝𝑖 = {
1, if tile 𝑖 has ground station

0, otherwise
(1)

The hyperparameters 𝜆𝑔𝑠 and 𝜆𝐶𝐴𝑀𝑆 control the relative importance of ground station and
CAMS measurements. To reflect the sparsity of ground stations, as well as the high precision of
their measurements, we highly penalize errors on tiles with ground stations. Experimentally, we
have determined that 𝜆𝑔𝑠 = 10 and 𝜆𝐶𝐴𝑀𝑆 = 1 yielded the best results. Intuitively, the proposed
loss function forces the model to make predictions approximating the CAMS product when
dealing with areas dominated by CLC classes of which ground station measurements are not
available during training. By heavily penalizing errors on ground stations, we encourage the
network to learn correlations between supplementary data types and the accurate distribution
of ground station measurements. This enables generalization to neighbouring regions or regions
with similar representations in the embedding space.

4. Experiments and Results

In this section, we present extensive experiments to evaluate the efficacy of the proposed
data fusion framework for downscaling. This includes (i) comparisons to traditionally used
modelling-based approaches (CAMS), as well as bilinear interpolation, (ii) comparisons with
deep learning architectures without any data fusion, and (iii) various combinations of static and
temporal data sources to enhance accuracy (Table 1), and highlight the value of discovering
spatial correlations both within and between data sources.

4.1. Experimental Setting and Description

The input data sources are harmonized as described in Section 3.1. Subsequently, following the
tile extraction process described in Section 3.2, two datasets are created; one for training using
tiles extracted from days 0-61 (70% of all data) and one for testing using tiles extracted from
days 62-87 (30% of all data). Furthermore, because of the availability of each type of data, the
datasets are trimmed to create intersection sets with no missing data. We use retrievals with
>70% Sentinel 5 quality assurance (QA) score.

As can be seen from Table 1 and Fig. 1, a set of static and time-varying data sources are
employed for downscaling the concentrations of air pollutants. Concretely, the static data



includes the 15 stacked CLC masks and DEM. We also stack two more layers depth-wise
for ERA5 (one for each wind direction), and one layer for CAMS - all taken at the time of
station measurement (denoted as 𝑇0). Time-varying layers for ERA5 and CAMS are added -
corresponding to snapshots before and after the ground station measurement - namely, snapshots
from -8h:8h of each day in two-hour increments (𝑇𝑚𝑢𝑙𝑡𝑖). The above static and temporal data
define the full stack experiments, including static data, multiple temporal snapshots for CAMS
and ERA, as well as Sentinel and MODIS data.
Besides experiments using only CAMS and bilinear interpolation, we also provide exper-

iments using different subsets of the data sources. In more detail, in the no fusion scenario,
we utilize the EfficientNET using only CAMS at 𝑇0 - i.e. ground station measurement time.
We then extend the no fusion scenario to include CLC and DEM, which are static data, leading
to the static + CAMS@𝑇0 experiment. The final experiment includes adding further snapshots
of CAMS at several times of the day (static + CAMS@𝑇𝑚𝑢𝑙𝑡𝑖). For 𝑁𝑂2 downscaling, we also
provide experiments that utilize the full stack excluding Sentinel 5. In all experiments, models
were trained for a total of 60 epochs.

4.2. Results and Discussion

Our experiments involve testing against known ground station measurements of pollutant
concentrations. Results are presented in Table 2, covering all experiment scenarios discussed
in Section 4.1. Overall, it is evident that even using a deep network with no additional data
(no fusion) slightly improves the results over CAMS and bilinear interpolation. Overall, one
can easily see that the proposed framework, utilizing the full stack of data, leads to significant
improvements in accuracy. Namely, for 𝑁𝑂2, RMSE is reduced by 15% and MAE by 19%
compared to CAMS and its bilinear interpolation to the target resolution. Similarly, we observe
a reduction of 11% for RMSE and 13% for MAE for 𝑃𝑀2.5. Furthermore, the reduction in 𝜎AE
allows for more confidence in our predictions - and leads to more stable models which in turn
enhance model generalization. Finally, our predictions remove the inherent bias in CAMS, in
particular for the case of 𝑃𝑀2.5, where we achieve a reduction of 37% in the MBE.

Experiments utilizing subsets of data sources (c.f., Section 4.1) lead to conclusions that slightly
deviate depending on the product to be predicted. In particular, it is clear from Table 2 that data
fusion is necessary to provide a significant leap in downscaling accuracy. Unexpectedly at a first
glance, we can also see that the addition of multiple snapshots of CAMS alone slightly reduce
accuracy in comparison to using only one CAMS snapshot at 𝑇0. Adding the corresponding
snapshots of the ERA5 product alleviates this, and in the case of 𝑃𝑀2.5 we obtain the best
performing model. This seems to, at least for 𝑃𝑀2.5, validate our assumptions about possible
interactions between the various snapshots of CAMS and ERA5 that result in better predictive
capabilities. This does not seem to be the case for 𝑁𝑂2 - something which could be attributed
to the pollutant’s short atmospheric lifetime (a few hours) - which necessitates higher temporal
resolution to capture long term dependencies between pollutant concentration (from CAMS)
and wind conditions (ERA5). Regardless, adding the full stack leads to less standard deviation
and hence more stable - and generalizable models. The best combination of data sources can
always be determined via cross-validation.

It is also important to highlight that the proposed method is successful in terms of generalizing



Table 2
Results comparing the proposed framework and variants (denoted with †) to CAMS and bilinear
interpolation for downscaling: root mean square error (RMSE), mean absolute error (MAE), standard
deviation of the absolute errors 𝜎AE, mean bias error (MBE). Static refers to CLC and DEM products and
T𝑚𝑢𝑙𝑡𝑖 refers to -8h:+8h snapshots taken in two-hour increments around ground station measurement.

Species Experiment RMSE MAE 𝜎AE MBE

CAMS 33.9 30.0 15.7 29.9
bilinear 33.6 29.9 15.5 29.8
no fusion 32.0 27.6 16.2 26.9

𝑁𝑂2
†static + CAMS@T0 28.1 23.5 15.3 22.5

†static + CAMS@T𝑚𝑢𝑙𝑡𝑖 29.4 25.0 15.5 23.8
†full stack \ {SEN5} 28.5 24.2 15.3 23.2

†full stack 28.4 24.1 15.0 23.4

CAMS 26.3 20.3 16.7 20.1
bilinear 26.2 20.3 16.6 20.1
no fusion 26.2 20.1 16.7 18.5

𝑃𝑀2.5
†static + CAMS@T0 24.0 18.2 15.6 13.6

†static + CAMS@T𝑚𝑢𝑙𝑡𝑖 24.5 18.5 16.0 14.7
†full stack 23.3 17.7 15.1 12.6

performance improvement across land use types. Concretely, our method achieves an average
improvement of 12.06% (𝜎 = 6.24) for 𝑁𝑂2 and 13.45% (𝜎 = 9.41) for 𝑃𝑀2.5. Results per land
use type are shown in Appendix D Table 3 - our method improves results for each and every
land use type in all but one case - where results are similar. Fig. 2a shows the underestimation
by CAMS of pollutant concentrations in urban and industrial areas (land cover classes 5, 8, 9),
while our model predicts values much closer to the measurements at the ground stations.

5. Conclusion

We presented a novel deep learning framework that is able to model correlations between and
within multiple data sources in order to improve downscaling accuracy - leading to a wide
spectrum of downstream applications that carry significant impact to public health and policy.
A detailed sampling and normalization process is employed, feeding into a deep network
that trained with a tailored loss function to address the sparse availability of ground truth
station measurements. Our model outperforms all compared methods in downscaling 𝑁𝑂2
and 𝑃𝑀2.5 concentrations to 1 km resolution with improved accuracy. We also provide rigorous
experiments that crystallize the contribution of additional data sources in this problem - which,
as demonstrated, can significantly increase accuracy and stability of models. The improved
performance in both pollutant concentrations evinces of the generality of the proposed method,
while relying on the properties of depth-wise convolutional kernels avoids introducing costly
and data-hungry temporal models (such as recurrent neural networks). This reduces both the
training-time, as well as the need for site- and time- specific data sources [22].



Figure 2: (top) Prediction of the concentration of NO2 from our model compared to CAMS, and land
use cases. Ground-truth station measurements are overlaid in circles using the same colormap legend
as the predictions. (bottom) Area finer detail (zoom for clarity).
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A. Introduction

In the Appendix, we present additional information regarding the proposed method, along with
more experiments and results. In more detail, in Appendix B we present algorithms and detailed
descriptions of our sampling process. In Appendix D, additional results are presented - including
quantitative results per land use type, as well as visualizations of results and comparisons with
othermethods. In Appendix C, we include a visualization of the EfficientNet encoder architecture
that is utilized. Finally, in Appendix E, we show the land use characterization grouping that is
employed in our work.

B. Tile Sampling and Extraction

In this section, we provide some more details on the tile extraction and sampling process used
for training introduced in Section 3.2. The goal of this process is to extract CLC class balanced
set of 𝑋1 tiles that contain a ground station and another 𝑋1 tiles that don’t. In our experiments
we set 𝑋1 = 200.

Creation of tile set basis. We loop over all the stations for 𝑋2 times and choose a random
10 × 10 CLC tile that includes the station (we chose 𝑋2 = 2). This is done to create a basis
onto which we base our sampling. We then calculate the CLC class histogram of the
sampled tiles and its standard deviation, as we will need then in the next step. For more
details see Algorithm 1.

Sampling of ground station tiles. We then, again, loop over the stations, choosing random
tiles around them as before. Out of the new sampled tiles, we select the one that minimizes
the standard deviation of the recalculated histogram. We repeat the same process until
we have 𝑋1 sampled tiles. To add some randomness, instead of the best performing tile
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Figure 3: 64 × 64 tile to pixel correspondence. The 64 × 64 tile from the input stack is used as context to
improve the final prediction, while the 10 × 10 inner ’generator’ tile marked in red covers the extent
used to generate 1 pixel in the prediction.

at each step, we can randomly select one out of the 𝑋3 best performing tiles (in our
experiments this was set to 𝑋3 = 5). For more details see Algorithm 2.

Sampling of non ground station tiles. We proceed with a similar process as in the previous
step. This time, instead of using ground stations as the seed for the tile, we choose pixels
of the least represented CLC class. More specifically, 𝑋4 pixels (in our experiments
𝑋4 = 1000) of the least represented class are randomly selected. Following the same steps
as before we randomly choose one of the 𝑋5 best performing tiles in reducing the standard
deviation of the CLC class histogram to add to the sampled set we chose 𝑋5 = 50). Again,
we repeat until we have the required 𝑋1 tiles. For more details see Algorithm 3.

Finally, the tiles for the full stack experiments are extracted following Algorithm 4.

Algorithm 1 Creation of tile set basis
1: procedure GenBasis(𝐶𝐿𝐶, 𝑆𝑡, 𝑋2)
2: for 𝑋2 times do
3: for each station pixel 𝑆𝑡𝑖 do
4: Choose random 10 × 10 sample 𝑇𝑖 from 𝐶𝐿𝐶 with 𝑆𝑡𝑖 ∈ 𝑇𝑖
5: Add tile 𝑇𝑖 to 𝑇 𝑖𝑙𝑒𝑠
6: end for
7: end for
8: return 𝑇 𝑖𝑙𝑒𝑠
9: end procedure



Algorithm 2 Sampling of ground station tiles
1: procedure SampleStations(𝐶𝐿𝐶, 𝑆𝑡, 𝑇 𝑖𝑙𝑒𝑠, 𝑋1, 𝑋3)
2: 𝐻𝑇 𝑖𝑙𝑒𝑠 ← 𝐻𝐼𝑆𝑇𝑂𝐺𝑅𝐴𝑀(𝑇 𝑖𝑙𝑒𝑠)
3: 𝑆𝑡𝑑 ← 𝜎(𝐻𝑇 𝑖𝑙𝑒𝑠)
4: while 𝑁𝑢𝑚(𝑇 𝑖𝑙𝑒𝑠) < 𝑋1 do
5: for each station pixel 𝑆𝑡𝑖 do
6: Choose random 10 × 10 tile 𝑇𝑖 from CLC with 𝑆𝑡𝑖 ∈ 𝑇𝑖
7: 𝐻𝑇 𝑖𝑙𝑒𝑠+𝑇𝑖 ← 𝐻𝐼𝑆𝑇𝑂𝐺𝑅𝐴𝑀(𝑇 𝑖𝑙𝑒𝑠 + 𝑇𝑖)
8: 𝑆𝑡𝑑𝑖 ← 𝜎(𝐻𝑇 𝑖𝑙𝑒𝑠+𝑇𝑖)
9: 𝐷𝑖 ← 𝑆𝑡𝑑𝑖 − 𝑆𝑡𝑑
10: end for
11: Choose randomly 𝑇𝑠𝑒𝑙 from the 𝑋3 𝑇𝑖𝑠 with the lowest 𝐷𝑖
12: Add 𝑇𝑠𝑒𝑙 to 𝑇 𝑖𝑙𝑒𝑠
13: 𝐻𝑇 𝑖𝑙𝑒𝑠 ← 𝐻𝐼𝑆𝑇𝑂𝐺𝑅𝐴𝑀(𝑇 𝑖𝑙𝑒𝑠)
14: end while
15: return 𝑇 𝑖𝑙𝑒𝑠
16: end procedure

Algorithm 3 Sampling of tiles without ground stations
1: procedure SampleNoStations(𝐶𝐿𝐶, 𝑇 𝑖𝑙𝑒𝑠, 𝑋1, 𝑋4, 𝑋5)
2: while 𝑁𝑢𝑚(𝑇 𝑖𝑙𝑒𝑠) < 2 × 𝑋2 do
3: Find least represented class 𝐶𝑖
4: Choose randomly 𝑋4 pixels 𝑃 of class 𝐶𝑖
5: for each pixel 𝑃𝑖 of 𝑃 do
6: Choose random 10 × 10 tile 𝑇𝑖 from CLC with 𝑃𝑖 ∈ 𝑇𝑖
7: 𝐻𝑇 𝑖𝑙𝑒𝑠+𝑇𝑖 ← 𝐻𝐼𝑆𝑇𝑂𝐺𝑅𝐴𝑀(𝑇 𝑖𝑙𝑒𝑠 + 𝑇𝑖)
8: 𝑆𝑡𝑑𝑖 ← 𝜎(𝐻𝑇 𝑖𝑙𝑒𝑠+𝑇𝑖)
9: 𝐷𝑖 ← 𝑆𝑡𝑑𝑖 − 𝑆𝑡𝑑
10: end for
11: Choose randomly 𝑇𝑠𝑒𝑙 from the 𝑋5 𝑇𝑖𝑠 with the lowest 𝐷𝑖
12: Add 𝑇𝑠𝑒𝑙 to 𝑇 𝑖𝑙𝑒𝑠
13: 𝐻𝑇 𝑖𝑙𝑒𝑠 ← 𝐻𝐼𝑆𝑇𝑂𝐺𝑅𝐴𝑀(𝑇 𝑖𝑙𝑒𝑠)
14: end while
15: return 𝑇 𝑖𝑙𝑒𝑠
16: end procedure



Algorithm 4 Extract full-stack tiles
1: procedure ExtractTiles(𝑇 𝑖𝑙𝑒𝑠, 𝑑𝑎𝑦𝑠, 𝑠𝑡𝑎𝑐𝑘𝑒𝑑𝑅𝑎𝑠𝑡𝑒𝑟)
2: for Every day 𝑑𝑖 in 𝑑𝑎𝑦𝑠 do
3: Update 𝑠𝑡𝑎𝑐𝑘𝑒𝑑𝑅𝑎𝑠𝑡𝑒𝑟 for day 𝑑𝑖
4: for every tile 𝑇𝑖 in 𝑇 𝑖𝑙𝑒𝑠 do
5: Find the 64 × 64 tile 𝑇 ′𝑖 with 𝑇𝑖 in its center
6: Extract and save 𝑇 ′𝑖 from 𝑠𝑡𝑎𝑐𝑘𝑒𝑑𝑅𝑎𝑠𝑡𝑒𝑟
7: end for
8: end for
9: end procedure



C. Network architecture visualization
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(a) EfficientNet encoder architecture.
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(b) Block architecture.

Figure 4: Model architecture overview. In (a) the block architecture is simplified as an abstraction and
further defined in (b).

D. Additional Results

Table 3
Per land cover class performance and improvement.

Class Stations CAMS Ours Improv.
𝜇/𝑚3 𝜇/𝑚3 %

1 19 36.6 29.5 19.4
2 10 38.2 31.4 17.8
3 29 29.2 24.6 15.9
5 11 36.2 30.6 15.4
7 1 25.8 23.4 9.4
8 2 45.2 45.9 -1.4
9 9 32.4 28.4 12.4
10 4 28.7 24.0 16.2
13 1 26.3 25.3 3.6
14 2 34.4 30.3 12.0

(a) RMSE per land cover class for 𝑁𝑂2.

Class Stations CAMS Ours Improv.
𝜇/𝑚3 𝜇/𝑚3 %

1 8 20.0 17.2 14.4
2 5 20.9 15.3 26.6
3 16 29.5 26.8 9.2
5 7 23.8 21.0 11.5
7 1 27.0 25.6 5.2
8 1 21.8 18.4 15.7
9 4 29.9 24.2 18.9
10 2 27.2 26.3 3.4
13 1 42.1 42.4 -0.7
14 1 20.9 14.5 30.4

(b) RMSE for each of the land cover classes for 𝑃𝑀2.5.



Figure 5: Additional results and comparisons.



E. Land use type grouping in CLC

Table 4
Land use characterization grouping in CLC.

Characterization Label New Category New Label
Vineyards 15

Agriculture 1

Fruit trees and berry plantations 16
Olive groves 17
Annual crops associated with
permanent crops 19

Complex cultivation patterns 20
Principally agriculture land with
significant areas of natural vegetation 21

Agro-forestry areas 22

Forests 2
Broad-leaved forest 23
Coniferous forest 24
Mixed forest 25
Non-irrigated arable land 12

Meadows 3

Permanently irrigated land 13
Rice fields 14
Pastures 18
Natural grasslands 26
Moors and heathland 27
Sclerophyllous vegetation 28
Transitional woodland-shrub 29
Beaches dunes sands 30

Beaches 4
Bare rocks 31
Sparsely vegetated areas 32
Intertidal flats 39
Discontinuous urban fabric 2 Discontinuous urban fabric 5
Construction sites 9 Construction sites 6
Mineral extraction sites 7

Mines 7
Dump sites 8
Continuous urban fabric 1

City 8
Sport and leisure facilities 11
Industrial or commercial units 3 Industrial or commercial units 9
Road and rail networks
and associated land 4

Traffic 10Port areas 5
Airports 6
Burnt areas 33 Burnt areas 11
Glaciers and perpetual snow 34 Glaciers and perpetual snow 12
Inland marshes 35

Inland water 13

Peat bogs 36
Salt marshes 37
Salines 38
Water courses 40
Water bodies 41
Coastal lagoons 42
Estuaries 43
Green urban areas 10 Green urban areas 14
Sea and ocean 44 Sea and ocean 15
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