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Abstract  
Accurate prediction of mobile traffic can help operators plan network resources in advance 
and strengthen the management of network resources. Accuracy of mobile traffic prediction 
is affected by such spatio-temporal factors as the change of pedestrian flow and historical 
flow in surrounding areas. In this paper, we propose a Prediction Model for Spatio-Temporal 
Feature of mobile traffic (STFP) based on Residual Network (ResNet) and Long Short-Term 
Memory Network (LSTM). By analyzing the Pearson Correlation Coefficient (PCC) of mo-
bile traffic data, we determined that proximity data and periodic data were selected as inputs 
to the STFP model. To avoid gradient explosion, the STFP model uses ResNet as spatial fea-
ture extraction network. We assign different weights to the outputs of the two branches for 
dynamic fusion according to the degree of influence of different input, and then use LSTM to 
extract the temporal features of the two inputs, and finally realize the prediction of mobile 
traffic. We select four deep learning models as baselines. The experimental results show that 
compared with the baseline models, the STFP model has better prediction accuracy and better 
indicators of RMSE, MAPE and R2. 
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1. Introduction  

With the vigorous development and popularization of mobile smart phones, the scale of the mobile 
Internet market continues to expand, which is closely related to learning, work, entertainment, and 
other aspects of daily life. The arrival of the 5G era provides a foundation for big data, artificial intel-
ligence, and the Internet of Things [1-3]. The growing network demand makes the resource allocation 
and reasonable allocation of mobile traffic particularly important. Accurate prediction of mobile traf-
fic is the basis for intelligent management of mobile network resource allocation [4]. 

To achieve accurate prediction of mobile traffic, it is necessary to analyze the temporal and spatial 
correlation of mobile traffic and build a mobile traffic prediction model with the ability to extract spa-
tio-temporal feature and high prediction accuracy. The research work mainly includes: 

We propose mobile traffic prediction model STFP (Spatio-temporal Feature Prediction) based on 
ResNet and LSTM. The model uses ResNet to extract the spatial feature information of the input data 
while avoiding gradient explosion, and then uses LSTM to extract the temporal features of the data.  

To capture proximity and periodicity of mobile traffic data, we analyze the PCC of mobile traffic 
data, select proximity data and periodic data as the input of the model.  

To dynamically fuse the two inputs, the model uses different parameter matrices and learns weight 
values from historical data to fuse the two outputs in a weighted manner without losing the important 
information of the two characteristics.  
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2. Related work 

In the field of mobile communication, many scholars had carried out related research on the pre-
diction of mobile traffic, which proved that mobile traffic has time correlation, and adopted the time 
series analysis method. Literature [5] used Autoregressive Integrated Moving Average model (ARI-
MA) to predict mobile traffic, but ARIMA model requires time series data to be stable, which may 
lead to model prediction accuracy decline. Other typical machine learning mobile traffic prediction 
methods also has limitations, such as: Support Vector Machine (SVM) [6], K-Nearest Neighbor 
(KNN) [7], etc. Compared with time series analysis methods, these methods can learn data regularity. 
However, the prediction accuracy will decrease when dealing with complex high-dimensional data. 

Deep learning methods that can process high-dimensional data and extract nonlinear data features 
have a better ability to capture the characteristics of mobile data than typical machine learning meth-
ods. However, the models proposed in literature [8-10] such as LSTM and Deep Belief Network 
(DBN) only focus on the temporal feature of mobile traffic data, without considering the spatial fea-
ture of the data. Literature [11] analyzed the mobile base station data and found that adding adjacent 
mobile base station mobile traffic data for prediction can improve the prediction accuracy. Literature 
[12] proposed a combined model that used Convolutional Neural Network (CNN) to extract spatial 
features and LSTM to extract temporal features to predict mobile traffic data, which improved the 
prediction accuracy. In literature [13], Generative Adversary Networks (GAN) and transfer learning 
strategies were used to address data scarcity and improve prediction performance. Literature [14] pro-
posed a model based on Graph Convolutional Network (GCN) and Gated Linear Units (GLU) to pre-
dict mobile traffic consumption at different time horizons by simulating the mobility of mobile net-
works and crowds. 

3. Prediction model  
3.1. Problem definition 

The prediction of mobile traffic is to predict the mobile traffic usage of this area at the next mo-
ment through the historical mobile traffic usage of an area. In this paper, by dividing the prediction 
area into M×N squares, each square represents the mobile traffic generated in this area at time t, and 
then constructs the mobile traffic spatio-temporal matrix Xt of the entire prediction area at time t. The 
problem is to predict the mobile traffic spatio-temporal matrix Xt+1 at the next moment through the 
historical mobile traffic spatio-temporal matrix Xt. 

3.2. STFP model structure 

To capture the temporal and spatial correlation of mobile traffic and achieve accurate mobile traf-
fic prediction, we propose a mobile traffic prediction model STFP based on ResNet and LSTM. The 
model structure is shown in Figure 1. We determine proximity sequences and periodic sequences ac-
cording to the characteristics of mobile traffic. The STFP model extracts the spatial characteristics of 
mobile traffic of different sequences through two-dimensional convolution and residual blocks, and 
then weights the two outputs and fuses them. The fusion matrix is input to the LSTM to extract tem-
poral features. Finally, a fully connected layer is used to fuse the spatial and temporal features to ob-
tain the result. 

47



 
 

Figure 1 STFP model 

3.3. Input sequence 

Through correlation analysis of the PCC of mobile traffic, the proximity sequence and the periodic 
sequence are determined.  

(1) proximity sequence Xc: It is composed of the mobile traffic spatio-temporal matrix at the previ-
ous time t adjacent to the predicted time t+1 of the predicted day T.   

1{ , ... }T T T
c t t t cX X X X− −=  

(2) periodic sequence Xp: It is composed of the mobile traffic spatio-temporal matrix at time t+1 of 
historical day T-1.  

1 1 1
1{ , ... }T T T

p t t t qX X X X− − −
+ −=  

3.4. Convolution module  

The predicted area in the mobile traffic space-time matrix has spatial correlation with adjacent are-
as. Using two-dimensional convolutional layers to process images can extract image features without 
losing spatial information and can extract high-dimensional complex features from simple features. 
The two-dimensional convolution is shown in Figure 2. In the STFP model, the spatio-temporal ma-
trix of mobile traffic at time t in Xc and Xp is processed by two-dimensional convolution. The matrix is 
regarded as a single-channel image data and sent to the convolutional layer to extract the spatial fea-
tures. 

3.5. Residual module 

Adding residual units to convolutional layers can effectively solve the gradient explosion problem. 
The residual unit directly adds the unit's input to the unit's output through residual connection before 
activating. Batch normalization is added to the residual unit to alleviate the gradient vanishing of the 
deep network and make the training of the deep network model more stable. To avoid network degra-
dation caused by stacking convolutional layers, residual units are stacked after the convolutional lay-
ers, and the spatio-temporal matrices of mobile traffic of different sequences processed by two-
dimensional convolution are input into the residual module. 

3.6. Weighted fusion module  

The outputs of the two branches are Xc
out and Xp

out respectively and have different weights. To dy-
namically fuse the outputs of the two branches, two trainable weight matrices are used to learn weight 
values from historical data, and the outputs are weighted and fused. Finally, the fusion output is ob-
tained through the activation function. The weighted fusion is defined as: 

( )F C out P out
c pX f W X W X= +  (1) 

among them, Wc and Wp are the trainable weight matrices of different branches, f is the activation 
function, and XF is the output after weighted fusion. 
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3.7. LSTM module 

To capture long-term temporal features of mobile traffic data, the STFP model uses LSTM to pro-
cess the data. LSTM processes data through three gating units. Flatten the spatio-temporal matrix ob-
tained after weighting fusion into a one-dimensional vector and input it into LSTM. The input gate 
extracts the input on demand, retains important information, the forget gate selectively discards the 
information of the previous time step, and obtains the output value through the output gate. 

4. Experiment  
4.1. Dataset 
4.1.1. Mobile traffic dataset source 

The experimental data in this paper comes from the open mobile traffic data set of Milan in the 
"Telecom Italia Big Data Challenge"[15].  

4.1.2. Data visualization and analysis 

Figure 2 shows the change curve of mobile traffic in the area (44, 59) from 0:00 on November 4, 
2013, to 24:00 on November 10, 2013. As shown in Figure 2, mobile traffic demand on weekdays is 
significantly higher than that on weekends, and the mobile traffic demand during the day is greater 
than that at night. Some sudden activities will lead to a surge in mobile traffic, such as the 135th to 
140th hours in Figure 2. 

 
Figure 2 The mobile traffic curve of the area (44, 59) 

 
Figure 3 shows the mobile traffic usage in Milan at 10:20 am on November 21, 2013. The demand 

for mobile traffic in the urban center is significantly higher than that in the surrounding areas because 
the urban population is mainly concentrated in the urban center and its adjacent areas, and the mobile 
traffic demand in the central area is higher than that in the less populated urban areas. The demand for 
mobile traffic in residential areas is lower than that of commercial areas in the city center, but still 
higher than that in the surrounding areas. 

 
Figure 3 3D schematic diagram of mobile traffic 
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4.2. Evaluation metric 

We choose to use Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Coefficient 
of Determination (R2) as model evaluation metrics to evaluate the performance of the model. 

4.3. Experimental setup 

The model training method is as follows: The optimization function is the Adam optimizer. The 
learning rate is 0.001, the batch size is 64, and the number of iterations is 500. The loss function is 
mean squared error (MSE). To eliminate the influence of dimension, the input data are min-max nor-
malized before training.  

4.4. Experimental results and analysis 

To verify the performance of the STFP model, LSTM [8], GRU [16], 3DCNN [17] and CNN-
LSTM [12] are selected for comparison. The results are shown in Table 1. 

 
Table 1 Comparison of evaluation metrics of each model 

Model RMSE MAE R2 

LSTM 9.867 5.278 0.792 
GRU 9.235 5.013 0.814 
3DCNN 8.265 4.597 0.857 
CNN-LSTM 7.052 3.861 0.881 
STFP 6.436 3.494 0.905 

 
The experimental results in Table 1 shows that LSTM and GRU are models for predicting mobile 

traffic based on time series, and the ability to extract spatial characteristics of mobile traffic is insuffi-
cient. 3DCNN is a prediction model with the ability to extract spatiotemporal features. The prediction 
effect is better than that of LSTM and GRU, but it is insufficient for long-term temporal feature ex-
traction. CNN-RNN is a combined prediction model, which extracts spatial features and long-term 
temporal features through CNN and LSTM respectively, so the prediction error is low, but the perio-
dicity of the data is not considered. The STFP model considers the proximity and periodicity of mo-
bile traffic in the time dimension, and extracts the feature of the spatial dimension, and the prediction 
performance is better. 

 
Figure 4 Comparison of model prediction results 
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As shown in Fig.4, LSTM and GRU learn the changing laws of mobile traffic, but they are less ef-
fective in predicting mobile traffic during peak periods. 3DCNN learned change law of mobile traffic 
peak period, but the error between the predicted value and the actual value is large. The curve fitting 
effect of CNN-RNN is stronger than that of LSTM and GRU, but the periodicity of mobile traffic is 
not considered, so the prediction accuracy is not as good as that of STFP model. The STFP model 
considers the proximity and periodicity of mobile traffic, so the prediction accuracy is better. 

5. Conclusion and future work 

Aiming at the spatio-temporal features of mobile traffic, we propose a mobile traffic prediction 
model STFP based on ResNet and LSTM. 

To capture proximity and periodicity of mobile traffic data, the model determined the proximity 
sequence and periodic sequence by analyzing the PCC of the data. Convolution module and residual 
unit module are used to extract spatial features while avoiding gradient explosion. Learn two branch 
weights from historical data and dynamically fuse the inputs of the two branches. The model extracts 
long-term temporal features of mobile traffic data by using LSTM. Experiments show that the predic-
tion effect of the STFP model is better than the baseline models. 

However, since the STFP model does not introduce external factors (such as weather, holidays, 
large-scale events, etc.), this will affect the accuracy of predicting mobile traffic. Based on the STFP 
model, we will design an external factor module to introduce the feature information of external fea-
tures, to improve the robustness of the model and make the model have better predictive ability in 
complex situations. 
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