
High-concurrency Solution for Intelligent Connected Vehicle
Race Based on Cloud Computing 1

Shiman Liu, Ziyi Liu, Shuai Zhao, Xin Hu*, Bolin Zhou, Chen Chen, Lingxiang Zhang,

Xiaoting Li

Automotive Data of China (Tianjin) Co., Ltd., Tianjin, China

Abstract
Based on the existing high-concurrency solutions, this paper studies the high-concurrency so-

lutions for intelligent connected vehicle race based on cloud computing, and verifies the ef-

fectiveness of the scheme by designing the scheduling method of the intelligent networked

car race platform and high-concurrency tests. The experimental results show that the de-

signed scheduling method of the intelligent networked car event platform can meet the high

concurrency requirements of the event, especially when international communication is af-

fected by the epidemic, ensuring the participation of domestic and foreign teams in the com-

petition and effective technical exchanges. It has a relatively broad application prospect.

Keywords
Cloud computing, intelligent connected automobile events, high concurrency demand, cloud

simulation platform

1. Introduction

As a new generation of information technology and transportation integrated development product,

intelligent network vehicle is an important content of Chinese scientific and technological innovation

support to accelerate the construction of transportation power. At present, virtual simulation is an in-

dispensable link in automobile research and development[1], and its status is constantly improving in

the industry background of accelerating the development of autonomous driving [2]. In addition, virtu-

al simulation testing is characterized by high efficiency, strong test repeatability, safety, reliability and

low cost, which is the direction and trend of future autonomous vehicle testing[3]. Therefore, based on

cloud computing[4], the intelligent driving simulation competition is held, and the intelligent connect-

ed vehicle simulation development and verification are taken as the entry point, and the scientific re-

search and research of intelligent connected vehicle are combined with the industrial competition to

escort the technological development of intelligent connected vehicle virtual simulation.

Held at present, the related intelligent driving simulation cases are less, part of the event to take the

form of the client game, is bad for the contestants from different regions are more, not all teams play-

ing online at the same time, also can't see the real time teams scores ranking situation, there is no

guarantee that the game fair, fair and open, Especially when international exchanges are affected by

the epidemic, it is not conducive for international teams to participate in competitions and technical

exchanges. In addition, they lack experience in dealing with a large number of participants accessing

the interface of the competition platform and high concurrency requests. Once there is a high concur-

rent demand[5], the website may be paralyzed due to the heavy traffic[6], which further leads to the

failure of the competition.

In the intelligent connected vehicle event based on cloud computing, due to the large number of

participating teams and competition items, it is difficult to meet the high concurrency requirements of

multiple teams in the same practice period, especially during the official competition, when all partic-

ipating teams go online at the same time and run the competition questions at the same time. In addi-

ICCEIC2022@3rd International Conference on Computer Engineering and Intelligent Control

EMAIL: *Xin Hu@catarc.ac.cn (Xin Hu)

©️ 2022 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

90

tion, in order to meet the fairness, fairness and openness of the competition, it is necessary to ensure

that the competition environment of the participants is consistent.Therefore, it is necessary to invent a

high concurrency solution of intelligent connected auto race based on cloud computing.This can en-

sure the success of the intelligent connected car event, promote the technical exchanges among the

participating teams, and help the implementation of domestic intelligent connected technology.

Based on the existing high-concurrency solutions, this paper studies the high-concurrency solu-

tions of intelligent connected auto races based on cloud computing. By designing the scheduling

method of the intelligent connected vehicle event platform[7] and verifying the effectiveness and relia-

bility of the scheme through highly concurrent testing, it provides a reference for the intelligent con-

nected vehicle event based on cloud computing in the industry.

2. The experiment design

2.1. Design of scheduling method for intelligent Connected car race platform

In this experimental design, teams need to enter the corresponding contest interface by using their

account and password on the competition login interface. After confirming the information on the

question interface, manually start the question. In this case, the contest server automatically queries

the current K8s cluster resource usage and determines whether there are idle resources available. If it

determines that there are no idle resources available, the server directly enters the queuing mechanism.

If it is determined that there are idle resources available, the server directly starts the virtual engine

(UE4 is used in this experiment) and determines whether UE4 is successfully started. If the startup

fails, the monitoring page is displayed. If the startup is successful, the server accounts for a period of

time and checks whether an algorithm is connected within this period. If no algorithm is added, the

server automatically stops the UE4 running process. If an algorithm is connected, the server will di-

rectly run the questions until the end of the questions and calculate the results.(see Figure 1).

 Figure 1 Design of scheduling method for intelligent Connected car race platform

91

2.1.1. Queuing mechanism design

In this experiment, the queuing mechanism is applied to the case that the server used in the contest

determines that there is no idle resource available after automatically querying the current K8s cluster

resource usage.

When the server automatically checks and determines that no idle resources are available, the cur-

rent team will directly enter the queue, and the number of people in the queue will be increased by

one. The current queue number is displayed. After that, it is up to the teams to choose whether to wait.

If the team chooses not to wait, it will exit the queue directly, and the number of people in the queue

will be increased or decreased by one. If you choose to continue waiting, the interface updates the

number of people in line in real time.

When the server automatically queries that there are idle resources in the current K8s cluster re-

sources, the team can choose whether to start the contest. If a team fails to manually click the start

button in time within the time specified by the system, the team will directly exit the queue, lose the

qualification and need to queue up again. If the team manually clicks the start button in time within

the time specified by the system, the server will directly start UE4, and the current queue of the team

will end (Figure 2).

 Figure 2 Queuing mechanism design

2.1.2 Design of K8s deployment scheme

This experiment adopts the container arrangement scheme of Kubernetes(K8s)[8]. The minimum

number of program units can be infinitely extended by K8s technology. If the number of access

reaches the load value, the hardware is configured as a new Node by kubectl (command), which can

be put into use immediately after the startup, reducing the time of configuring the running

environment(Figure 3).

92

 Figure 3 Design of K8s deployment scheme

In addition, K8s could manage multiple management nodes [9], reducing the access load of a single

management node. It also greatly reduces the possibility of system outages. In addition, it facilitates

node scaling and expansion management, achieves high concurrency, all containers, supports Web in-

terface access, and automatically adjusts hardware resources based on requirements. Each task runs in

Docker container, isolated from each other, and does not affect each other to maximize the use of

physical hardware resources. At the same time, it ensures the convenience of deployment and expan-

sion, and ensures the requirement of high concurrency for hundreds of people to go online simultane-

ously.

2.1.3. Design of algorithm access scheme

In this experiment, the algorithm access scheme design is applicable to the server accounting time

for a period of time after UE4 is successfully started. And judge whether there is an algorithm access

in this period of time.

In this experiment, the algorithm invokes the login interface for authentication. At the same time,

verify that the user name and password are valid, and verify that the user has a running question. If the

preceding authentication fails, the interface returns the failure cause, and the algorithm connection

process ends. If the above verification is successful, the algorithm will call the Web interface to obtain

the access key and the communication address. Then, the Web interface is called to obtain the instal-

lation sensor information of the main vehicle. Next, the algorithm invokes the UE4 interface with the

secret key to send the start instruction. Next, the algorithm calls UE4 interface to obtain sensor data

and master vehicle data, makes decisions, and sends control instructions according to the decisions.

Finally, after running the questions, the questions are finished and the scores are calculated(Figure 4) .

93

 Figure 4 Design of algorithm access scheme

2.2. Test concurrency experimental design

In this experiment, after completing the design of the scheduling method for the intelligent con-

nected car race platform, it is necessary to carry out a high concurrency test on this method, so as to

verify that this experiment can finally solve the high concurrency requirements of intelligent connect-

ed car race based on cloud computing. Therefore, the high concurrency test is carried out from the fol-

lowing two aspects[10].

2.2.1. Experimental design of single server concurrency test

This experiment first needs to test how many UE4 can run on a single server. According to the re-

quirements of this experimental competition, different kinds of sensors are installed for different kinds

of questions. For example, only millimeter wave radar is installed in the decision control class, and

only camera is installed in the perception class. Therefore, in this experiment, the decision control and

perception questions are respectively run on the same K8s server, and the running conditions of the

two different questions are represented by the number of UE4 runs. (as shown in Table 1)

94

Table 1 K8s server parameters in this experiment

Server model p2v.2xlarge.8

vCPUs|internal storage 64vCPUs | 64GB

CPU Intel SkyLake 6151 3.0GHz

Base/maximum bandwidth 4/10 Gbit/s

The Intranet receives and sends packets 500000

Features GPU: 1 * NVIDIA V100 / 1 * 16G

Image
Ubuntu 16.04 server 64bit with Tesla Driver 4
18.67 and Cuda 10.1(40GB)

System disk 4T

Bandwidth 300M/s

2.2.2. Experimental design of single server concurrency test

After determining the number of UE4s running on a single K8s server, a high concurrency test ex-

periment is required based on the overall race high concurrency requirements.（The high concurren-

cy test environment required by the experiment is shown in Table 2 and Table 3） For example, in

this experiment, 100 UE4s are run in the same time period. Therefore, this experiment will set up a

test environment and carry out high concurrency tests for 100 UE4s running in the same time period

from four aspects: time characteristics, resource utilization, capacity and compliance of performance

efficiency(Figure 5) .

Figure 5 Test environment topology

Table 2 High concurrency test coverage table

Serial number Test item Test content

1 Time characteristic
The corresponding time, processing time and
throughput when the product performs its functions
under specified conditions.

2 Resource utilization
CPU utilization and memory utilization when execut-
ing test tasks.

3 Load
Whether the maximum number of concurrent users,
communication bandwidth, transaction throughput
and other parameters meet the requirements.

4
Compliance with per-
formance efficiency

Whether the product complies with the require-
ments specification, product description, etc., as well
as the performance and efficiency requirements in
the standard.

95

Table 3 High concurrency test environment

Testing the hardware environment

Serial number
The name of the

hardware
Configuration Usage

1 The test PC

CPU:30GHZ

Internal Storage：176G

The hard disk：40G

The operating system：
windows server 2016 std.

Bandwidth：100M/s

Deploying pressure
Tools

Testing the Software environment

Serial number
The name of the

Software
Version number Usage

1 Python 3.6.5rc1
Running the test

script

2
The operating sys-

tem
windows server 2016 std.

The pressure script is
deployed on the
Windows server

3. Results analysis

Based on the scheduling method of intelligent connected car race platform, this method is tested

with high concurrency in this experiment. The individual server concurrency was first tested to deter-

mine the amount of UE4 a single server could run. This was followed by a high concurrency test for

large-scale events (this experiment required running 100 UE4 high concurrency tests in the same time

period). Finally, after several rounds of testing and code tuning, the experimental results are as fol-

lows:

3.1. Single server concurrency test result

According to the different question types of the competition, this experiment selected six types of

scenes in the competition: stationary front vehicle (straight line), pedestrian crossing the road (no cov-

er), curved road, obstructed front vehicle, horizontal parking, vertical parking, automatic driving (low

dynamic traffic flow). After 8 tests, the test results are shown in Figure 6. Marked red indicates that

the server runs at a frame rate below 20fps, and marked green indicates that the server runs at a frame

rate above 20fps.

Figure 6 Test the concurrency of a single server in different scenarios

96

In order to further guarantee the smooth operation of a single K8s server, this experiment further

averages the number of UE4 running in the above different scenarios. In addition, if the frame rate of

a single server is above 24fps, it is qualified. Therefore, after calculation, the number of UE4 ques-

tions in decision control category and running perception category can be run by a single server is 6

and 5 respectively (as shown in Table 4).

Table 4 Test the concurrency of a single server in different scenarios

Type of Competition
Question

Quantity (unit)
Frame rate

（fps）

Amount of bandwidth

（Mbps）

Decision control ques-
tions (only millimeter
wave radar is installed)

1 94.95 21.8

2 80.83 43.6

3 65.49 65.4

4 50.04 87.2

5 37.72 108.8

6 30.29 130.4

7 23.90 152

8 20.04 173.6

Perceptual questions
(only cameras are in-
stalled)

Quantity (unit)
Frame rate

（fps）

Amount of bandwidth

（Mbps）

1 61.45 43.2

2 53.68 86.4

3 45.82 129.9

4 33.81 172.8

5 26.13 216

6 19.97 259.2

7 16.79 302.4

8 14.97 345.6
Because the event needs to run both decision control and perception questions at the same time,

this experiment finally determines that the number of UE4 that can be run by a single K8s server is 5.

3.2.High concurrency test results applied to large events

According to the requirement that a single K8s server can run 5 UE4, 20 K8s servers are selected

for the high concurrency test of 100 concurrency. Then the monitoring data is randomly selected and

the maximum value is recorded. After several rounds of testing and code tuning, the monitoring data

is extracted as follows:

This highly concurrent test involves a total of 5 interfaces (system login, running the contest, ob-

taining the data of the main vehicle, obtaining the monitoring data, and the algorithm). In addition,

100 concurrent tests can be started in both the running contest and the data acquisition history, so the

concurrency test passes (as shown in Table 5).

Table 5 Result of 100 Concurrent tests started in the same period

Test pro-
ject

Test scene Expected indicators Actual indicators
Test re-

sult

1 System Login 100 concurrent quantity 100 concurrent quantity Pass

2 Running questions 100 concurrent quantity 100 concurrent quantity Pass

3 Obtain ego vehicle data 100 concurrent quantity 100 concurrent quantity Pass

4 Obtain monitoring data 100 concurrent quantity 100 concurrent quantity Pass

5 Algorithm frame rate>30fps 28<frame rate<30fps Pass

97

4. Conclusion

In this paper, the high concurrency solution of intelligent connected auto race based on cloud com-

puting is studied. By designing the scheduling method of the intelligent connected car race platform,

and through high concurrency test, the validity and reliability of the scheme are verified. The competi-

tion is further ensured through the cloud server, which guarantees the high concurrent demand of the

intelligent connected car event based on cloud computing for competitors from different regions to go

online at the same time. At the same time, it also ensures that all teams can see the ranking of each

team in real time. In addition, ensure that the competition is fair, impartial and open. Especially when

international exchanges are affected by the epidemic, it guarantees the participation of domestic and

foreign teams in competitions and effective technical exchanges, and has a broad application prospect.

5. Reference

[1] Wang Run-min, ZHAO Xiang-mo, XU Zhi-gang, WANG Wen-Wei, CHENG Jing-Jun. A kind

of automatic driving vehicle in ring virtual simulation test platform design [J/OL]. Automotive

technology: 1-7 [2021-08-29]. HTTP: / / https://doi.org/10.19620/j.cnki.1000-3703.20210130.

[2] Lin Fan, Zhang Qiuzhen, Yang Feng. Internet of Things Technology,2020,10(09):65-68.

[3] Wen Long. High Performance Computing Simulation Platform for Intelligent Connected Vehicle

[D]. University of Electronic Science and Technology of China,2020.

[4] Li Xue, Wang Fang. Application of Cloud Computing in Building Large-scale Highly

Concurrent Websites [J]. Computers and Networks,2021,47(11):40-42.

[5] Li Si-li, Yang Jing-Rong, Gou Qiang. Research and Implementation of High Concurrency

Technology for Lightweight Web Server [J]. Computer Technology and

Development,2020,30(10):75-78+85.

[6] Zhao Guang, Ju Changjiang, Pan Jingpeng. Design and Practice of Building Resilient and highly

Available Architecture for Massive and highly concurrent data Collection [J]. New

Industrialization,2020,10(09):58-62.

[7] Yu Lian-he. Fast Construction of Custom Task Scheduling System [J]. Telecommunication

Letters,2020(08):30-32.

[8] Tian Yang-feng, WANG Zhen. Research and Analysis of PaaS Architecture and industry typical

Products based on K8s [J]. Science and Technology Innovation,2018(06):97-98.]

[9] Jin Ziwei. Design and implementation of Docker distributed container automatic operation and

maintenance system based on K8S [D]. Central South University for Nationalities,2018.

[10] Yang Di. Microservice System based on Container Cloud [J]. Telecommunication

Science,2018,34(09):169-178.

98

