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Abstract
In recent times, machine learning has gained incredible traction in the artificial intelligence community,
and neural networks in particular have been leveraged in many successful applications originating from
various domains. However, it is hard to provide any formal guarantee on the behavior of this kind of
models, and therefore their reliability is still in doubt, especially concerning their deployment in safety
and security-critical applications. In this work, we will present our contributions on the topic of formal
verification, which recently emerged as a promising solution to address some of these problems. We will
also present two novel use cases originating from real-world applications we are working on and the
related challenges and perspectives.
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1. Introduction

In the last few decades, artificial intelligence (AI) has become increasingly popular as it has been
employed in many different applications with a great degree of success [1, 2]. Among those
domains, safety and security-critical ones are often of particular interest both to the research and
industry communities. As an example, the automotive domain has seen increasingly substantial
investments in financial and time resources from both. However, industrial applications in this
kind of domain require formal guarantees on the behavior of the algorithms and models used,
since thorough regulations have been established by national and international authorities
regarding the employment of AI in these areas. Unfortunately, the currently most popular
AI technologies, that is, machine learning (ML) and neural networks, provide only statistical
guarantees on their behavior which, while may be enough for many applications of interests,
still fall short when human lives, or large amounts of money, are at stake. Furthermore, neural
networks have been proven to be subject to reliability issues like adversarial attacks, which
are small variations of the inputs which cause unforeseeable changes in their behavior. It is
easy to see how this kind of vulnerability can be both a safety and a security issue with a
couple of examples from the automotive domain: burned pixels in the cameras may cause the
misclassification of a curve as a straight road [3], or small graffiti written by amalevolent actor on
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Figure 1: Example of an adversarial attack in the automotive domain from [3]: a few burned pixels in a
camera can easily mislead a neural network to misclassify a left turn as a right one.

a stop sign may make the model recognize it as a speed limit [4]. As a consequence, part of the AI
research community focused on developing methodologies to formally evaluate the correctness
of the behavior of neural networks and, as witnessed in [5] automated formal verification seems
to provide a path to their adoption in safety and security-critical applications [6]. In this paper,
we will present some of our contributions to this last topic, their prospective applications, and
the open challenges we are facing in the scope of some new use cases originating from realistic
domains. Section 2 present the relevant background and state of the art for verification of
neural networks. In Section 3 we briefly explain our contribution in the domain of verification
of neural networks, whereas in Section 4 we present the new use cases which are guiding our
recent research efforts. Finally, in Section 5 we summarize the challenges we are facing with
the new use cases and our perspectives on how to overcome them.

2. Background

2.1. Neural Networks

Neural networks are machine learning models inspired by the structure of biological neural
networks: more specifically they can be seen as directed graphs composed of interconnected
computing units called neurons. In a feed-forward network, the neurons are arranged in
disjointed layers and each layer is connected only with the following ones forming a direct
acyclic graph (DAG). Every layer of a neural network performs specific computations on the
inputs it receives from the previous layers or, for the first layer of the network, from the outside.
The computational complexity of a layer is directly correlated with both the number of neurons
in such layer and the specific operation carried out by them. It clearly follows that the same
quantities can be used to estimate the complexity of a whole network and, indeed, they are
often used to formally define such complexity.
Some examples of particularly important layers are the linear and activation layers, which

are normally the building blocks used to assemble even the most basic neural networks. In
particular, linear layers apply an affine transformation to their input tensor, whereas activation
layers apply a specific (usually non-linear) function element-wise. Even with only these two
kinds of layers, it is possible to build neural networks which can, in principle, approximate any



continuous function for inputs within a specific range [7].
Finally, another significant layer is the convolutional one, which has been especially successful

when used in architectures applied to computer vision tasks. The idea behind the convolutional
layer is to analyze the input images using a set of perception filters (also known as feature
maps) which can be learned from the data.

2.2. Verification

The aim of formal verification is to provide guarantees regarding the behavior of neural networks:
more specifically verificationmethodologies try to prove if specific neural networks satisfy stated
input-output relations. For this purpose, in the last decade, several verification methodologies
have been proposed for different specifications and architectures [8, 9, 10, 11, 5].

A common distinction between verification methodologies is the one between complete and
incomplete algorithms: complete verification algorithms [12, 13, 14, 15, 16] leverage techniques
like Branch and Bound, Satisfiability Modulo Theories (SMT) and Mixed Integer Linear Pro-
gramming (MILP) to provide a final answer on the compliance of the neural network to the
property of interest, at the price of a greatly increased computational complexity. On the other
hand, incomplete verification methodologies [17, 18, 19, 20, 21] are typically based on methods
like abstract interpretation and bound propagation and, as consequence, they provide an answer
subject to a degree of uncertainty. That is, when an incomplete method is unable to certify that
a network satisfies the property of interest, it is still unsure if the property is truly violated or if
the precision of the approximation used was not good enough. However, when an incomplete
algorithm certifies that the network of interest satisfies a certain property, it is certain that
the network behavior is compliant with it. While the use of over-approximate methods causes
this kind of uncertainty it also produces algorithms whose computational complexity is greatly
reduced.
While this categorization is still commonly used, it should be noted that, in recent times,

many verification tools began to combine complete and incomplete algorithms to get, as much
as possible, the best of both worlds.

3. Contributions

In [22] we investigated if pruning, a methodology developed by the learning community whose
main application until now has been to reduce the dimension of neural networks so that they
can be deployed on hardware with low memory resources, could be leveraged to produce a
training pipeline providing networks easier to verify for the existing verification methodologies.
In our experiments, we considered two different pruning methodologies: one based on the
reduction of the number of connections between the neurons of a neural network, called weight
pruning, and the other based on the removal of whole neurons, called neuron pruning. By
leveraging these two pruning algorithms to reduce different networks, we managed to produce
models with performances comparable to the original ones but, at the same time, much easier to
verify for existing verification tools. In particular, the networks on which neuron pruning was
applied were the easiest to verify: we believe this is because the elimination of whole neurons



from the networks eliminates a corresponding number of non-linearities, which are, in general,
the main culprit behind the high computational complexity of verification algorithms.
In [17] we developed the first version of our tool pyNeVer which provides capabilities for

the training, pruning, and verification of neural networks. The main contribution of this work
was a novel algorithm based on over-approximation for the verification of neural networks:
in particular, the novelty of this algorithm is in the mechanism to dynamically control the
coarseness of the over-approximation down to the single neuron level and a specific eager
heuristic for choosing the neurons on which to apply the more precise abstraction. The resulting
algorithm resulted to be comparable with the state of the art and even outperforms a similar
one on some of our experimental benchmarks. Further experiments were done in [6] on models
generated from an automotive case study.

Finally, in [23] we focused on trying to repair neural networks subject to adversarial examples
so that they became more robust to particular adversarial examples. To do so we leveraged a
MILP solver to find a configuration of the network parameters which made it resistant to the
adversarials of interest. However, most of the networks were too complex to be directly modified
with such a methodology. Therefore, we selected a specific subset of the network architecture
and replaced it with a less complex model which then was repaired. In our experimental
evaluation we confirmed that, while this methodology did not manage to make the model
resistant to adversarial attack in general, it did make it more robust to specific adversarial
examples.

4. Use Cases

Currently, we are working on two new use cases (UCs) from safety and security-critical domains.
In the first one, the task is developing reliable neural controllers for self-piloting a drone during
the course of different activities. The second one consists in developing reliable neural networks
for object detection and recognition tasks in the automotive domain. This second use case is
part of the effort to develop reliable neural networks for safety-critical contexts in the scope
of the AIDOaRt Project, a 3 years long H2020-ECSEL European project focusing on Artificial
Intelligence augmented automation supporting modeling, coding, testing, monitoring, and
continuous development of Cyber-Physical Systems.

4.1. Drone Control

Since the scope of the project was to develop various neural controllers for different tasks,
we focused on building a modular setup for the training of neural controllers in simulated
environments using well-maintained and stable resources. In particular, we leveraged:

• Gym1: an open-source python library providing a standard API for communication
between reinforcement learning algorithms and environments.

• Stable Baseline32: an open source training framework providing scripts for training and
evaluating RL agents using standard state-of-the-art algorithms.

1https://github.com/openai/gym
2https://github.com/DLR-RM/stable-baselines3



Figure 2: The Bitcraze Crazyflie 2.1 drone considered in our first use case.

• PyBullet3: an open source physics simulator for robotics and reinforcement learning.
• gym-pybullet-drones4: an open source Gym-stile environment supporting the definition
of various learning tasks on the control of one or more quadcopters.

Using these open-source resources we greatly simplified the complexity of our setup and we
were able to directly train the network of interest in the environment corresponding to our case
study with the chosen state-of-the-art RL algorithm. In Figure 2 we show the quadcopter model
of choice, which was the default one proposed in gym-pybullet-drones and which we intend to
use to test our neural controllers in real environments.
Beyond the scope of the project, we also intend to leverage the presented setup to produce

novel benchmarks for the verification of neural networks. The motivation for doing so is that,
while the verification community has been prolific in developing novel methodologies, very
few general benchmarks have been proposed, among which the most popular is still the ACAS
XU benchmark [24], released in 2017. Furthermore, drone control is a task relevant to modern
applications and, at the same time, the neural networks used in this kind of control task are
usually small enough for the existing verification methodologies to be successfully applied.

4.2. Automotive

One of the use cases on which the technologies developed within the AIDOaRt project will be
evaluated is the one related to the automotive domain proposed by Abinsula Srl, a company
based in Sassari (Italy) that provides innovative ICT solutions worldwide 5.

Given the wealth of interconnected sensors and software supports modern cars can be easily
seen as cyber-physical systems. This implies that the various stakeholders in the development

3https://pybullet.org/
4https://github.com/utiasDSL/gym-pybullet-drones
5https://abinsula.com/



process of such systems have to work together to ensure that the corresponding product is safe
and reliable. While the methodologies to guarantee the safety and reliability of the hardware
and much of the software are quite well established, the same cannot be said for the components
based on artificial intelligence and machine learning, whose formal certification is still an open
challenge for both the industrial and research communities.
The use case brought by Abinsula aims at enhancing the human interaction and driving

experience, proposing an electronic rear-view mirror that gets data from a set of cameras and
provides the rear image on a screen. The application of AI and ML to sensor data processing
allows for increasing the informative content of the rear environment image providing, for
example, alerts or suggestions for a safer and more effective drive. The use case involves the
usage of four cameras that capture 1920x1080 images in an up to 60 fps stream and also provide
the relevant camera ID. The idea behind the usage of neural networks in this kind of image
processing is to reduce the effort the human user needs to apply for recognizing and processing
the relevant objects in the image they are seeing. As consequence, a fundamental step to
implement a virtual rear mirror able to reliably assist the human user is the formal verification
of the adopted neural networks to ensure the predictability of the system.

5. Challenges and Perspectives

Given the scope of the drone control UC we first analyzed the state of the art regarding the
learning of neural controllers for the kind of tasks we had in mind and we selected a promising
reinforcement learning algorithm, that is, the Soft Actor-Critic. The main advantage of this
algorithm is that it uses two different neural networks: the actor one models the controller,
whereas the critic is used to provide an estimation of how good the actor is. At high level this
allows us to keep down the complexity of the controller (i.e., the actor) that therefore will be
easier to verify. Even so, clearly more complex tasks will require more complex architectures
and therefore we will need to enhance both the scalability and the generality of pyNeVer.
Furthermore, we are interested in developing methodologies which would allow to leverage
the results obtained by an unsuccessful verification of the neural controllers to enhance their
training process so that they became compliant with the property of interest.

Regarding the Abinsula UC, first we focused on the state of the art regarding neural networks
applied in computer vision tasks and we identified an initial set of architectures that could
be viable for the applications of interest. In particular, we identified the YOLO [25] network
architecture, which is one of the most popular learning models used for object detection. This
architecture is able to process videos at 45 frames per second (fps), whereas a more optimized
version manages to reach 150 fps. Furthermore, it greatly outperforms the contemporary models
leveraging classification and learns better generalizable representations of objects. We also
surveyed the state of the art of the verification tools, and we focused on the winner of the
2nd International Verification of Neural Networks Competition [26] (VNN-COMP’21) alpha-
beta-crown [27], which is a neural network verifier based on an efficient bound propagation
algorithm and a branch and bound methodology. It also leverages dedicated hardware (i.e.,
GPUs) in order to scale to relatively large convolutional networks and supports a wide range of



architectures. Of course, we also considered the runner-ups of the same competition, which
present comparable performances to alpha-beta-crown. Nevertheless, from a first comparison
between the benchmarks used during the VNN-COMP’21 (11 convolutional layers) and the
YOLO architecture (109 convolutional layers in its last version), it would seem that the current
state-of-the-art verification tools are far from reaching the scalability needed to support our
preferred architectures. As consequence we focused on identifying various strategies to bridge
this gap between our favored architectures and the effective scalability of verification tools. To
do so we believe that it could be possible to focus our verification on subsets of the network
architecture which are of particular interest for the task at hand and, at the same time, small
enough to be feasible to verify, similarly to what was done in [23]. We also intend to investigate
pruning and/or quantization as means to produce smaller network models which should enable
verification without a significant loss in performances, as we managed to do with less complex
models in [22]. Finally, as for the drone control UC, we are evaluating how to enhance existing
verification tools and methodologies to support network architectures similar to YOLO.
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