
Explicit and Symbolic Approaches for Parity Games
Antonio Di Stasio

Department of Computer Science, University of Oxford, UK

Abstract
In this paper, we review a broad investigation of the symbolic approach for solving Parity Games.
Specifically, we implement in a tool, called SymPGSolver, four symbolic algorithms to solve Parity
Games and compare their performances to the corresponding explicit versions for different classes of
games. By means of benchmarks, we show that for random games, even for constrained random games,
explicit algorithms actually perform better than symbolic algorithms. The situation changes, however,
for structured games, where symbolic algorithms seem to have the advantage. This suggests that when
evaluating algorithms for parity-game solving, it would be useful to have real benchmarks and not only
random benchmarks, as the common practice has been.

Keywords
Parity Games, Symbolic Algorithms

Parity games (PGs) [1] are abstract games with a key role in automata theory and formal
verification [2, 3, 4, 5, 6]. In the basic setting, parity games are two-player, turn-based, played
on directed graphs whose nodes are labeled with priorities (also called, colors) and players
have perfect information about the adversary moves. The two players, Player 0 and Player 1,
take turns moving a token along the edges of the graph starting from a designated initial node.
Thus, a play induces an infinite path and Player 0 wins the play if the smallest priority visited
infinitely often is even; otherwise, Player 1 wins the play.

In formal system design [7, 3, 5, 8] parity games arise as a natural evaluation machinery
for the automatic synthesis and verification of distributed and reactive systems [9, 10, 11], as
they allow to express liveness and safety properties in a very elegant and powerful way [12].
Specifically, in model-checking, one can check the correctness of a system with respect to a
desired behavior, that is, a Kripke structure, by checking whether a model of the system is
correct with respect to a formal specification of its behavior. In case the specification is given
as a 𝜇-calculus formula [13], the model checking question can be rephrased, in linear-time, as a
parity game [1]. Then, a parity game solver can be used as a model checker for a 𝜇-calculus
specification (and vice-versa), as well as for fragments such as CTL, CTL⋆, and the like.

In the automata-theoretic approach to 𝜇-calculus model checking, under a linear-time transla-
tion, one can also reduce the verification problem to a question about automata. More precisely,
one can take the product of the model and an alternating tree automaton accepting all tree
models of the specification. This product can be defined as an alternating word parity automaton

IPS-RiCeRcA-SPIRIT 2022: 10th Italian Workshop on Planning and Scheduling, RiCeRcA Italian Workshop, and SPIRIT
Workshop on Strategies, Prediction, Interaction, and Reasoning in Italy.
" antonio.distasio@cs.ox.uk (A. Di Stasio)
~ https://antoniodistasio.github.io/ (A. Di Stasio)
� 0000-0001-5475-2978 (A. Di Stasio)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:antonio.distasio@cs.ox.uk
https://antoniodistasio.github.io/
https://orcid.org/0000-0001-5475-2978
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


over a singleton alphabet, and the system is correct with respect to the specification iff this
automaton is nonempty [5]. It has been proved there that the nonemptiness problems for
nondeterministic tree parity automata and alternating word parity automata over a singleton
alphabet are equivalent and that their complexities coincide. Hence, algorithms for the solution
of the 𝜇-calculus model checking problem, parity games, and the emptiness problem for parity
automata can be interchangeably used to solve any of these problems, as they are linear-time
equivalent.

The problem of deciding if Player 0 has a winning strategy (i.e., can induce a winning play)
in a given parity game is known to be in UPTime ∩ CoUPTime [14]; whether a polynomial time
solution exists is a long-standing open question [6]. Several algorithms to solve PGs have been
proposed aiming to tighten the asymptotic complexity of the problem, as well as to work well in
practice. Well known are Recursive (RE) [15], small-progress measures (SPM) [16], and APT [2, 17],
the latter originated to deal with the emptiness of parity automata. Recently, Calude et al. [18]
have given a major breakthrough providing a quasi-polynomial time algorithm for solving
parity games that runs in time 𝑂(𝑛⌈𝑙𝑜𝑔(𝑐)+6⌉). Previously, the best known algorithm for parity
games was Dominion Decomposition [19] which could solve parity games in 𝑂(𝑛

√
𝑛), so this

new result represents a significant advance in the understanding of parity games. Notably, all
these algorithms are explicit, that is, they are formulated in terms of the underlying game graphs.
Due to the exponential growth of finite-state systems, and, consequently, of the corresponding
game graphs, the state-explosion problem limits the scalability of these algorithms in practice.
Hence for the analysis of large finite-state systems symbolic algorithms are necessary.

Symbolic algorithms are an efficient way to deal with extremely large graphs. They avoid
explicit access to graphs by using a set of predefined operations that manipulate Binary Decision
Diagrams (BDDs) [20] representing these graphs. This enables handling large graphs succinctly,
and, in general, it makes symbolic algorithms scale better than explicit ones. For example, in
hardware model checking symbolic algorithms enable going from millions of states to 1020 states
and more [21, 22]. In contrast, in the context of PG solvers, symbolic algorithms have been only
marginally explored. In this direction we just mention a symbolic implementation of RE [23, 24],
which, however, has been done for different purposes and no benchmark comparison with the
explicit version has been carried out. Other works close to this topic and worth mentioning
are [25, 26], where a symbolic version of SPM has been theoretically studied but not implemented.

In [27, 28] a first broad investigation of the symbolic approach for solving PGs is provided.
We implement four symbolic algorithms and compare their performances to the corresponding
explicit versions for different classes of PGs [29]. Specifically, we implement in a new tool,
called SymPGSolver1, the symbolic versions of RE, APT, and two variants of SPM. The tool also
allows to generate random games, as well as compare the performance of different symbolic
algorithms.

Our analysis started from constrained random games [30]. The results show that on these
games the explicit approach is better than the symbolic one, exhibiting a different behavior than
the one showed in [30]. To gain a fuller understanding of the performances of the symbolic
and the explicit algorithms, we have further tested the two approaches on structured games.
Precisely, we have considered ladder games, clique games, as well as game models coming from

1The tool is available for download from https://github.com/antoniodistasio/sympgsolver



practical model-checking problems.

Ladder Games. In a ladder game, every node in P𝑖 has priority 𝑖. In addition, each node
𝑣 ∈ P has two successors: one in P0 and one in P1, which form a node pair. Every pair is
connected to the next pair forming a ladder of pairs. Finally, the last pair is connected to
the top. The parameter 𝑚 specifies the number of node pairs. Formally, a ladder game of
index 𝑚 is 𝒢 = (P0,P1,Mv , p) where P0 = {0, 2, . . . , 2𝑚 − 2}, P1 = {1, 3, . . . , 2𝑚 − 1},
Mv = {(𝑣, 𝑤)|𝑤 ≡2𝑚 𝑣 + 𝑖 for 𝑖 ∈ {1, 2}}, and p(𝑣) = 𝑣 𝑚𝑜𝑑 2. Tables 1 and 2 reports the
benchmarks.

𝑚 SRE SAPT SSP SSP2

1,000 0 0.00013 24.86 0.47

10,000 0.00009 0.00016 abort𝑇 41.22

100,000 0.0001 0.00018 abort𝑇 abort𝑇

1,000,000 0.00012 0.00022 abort𝑇 abort𝑇

10,000,000 0.00015 0.00025 abort𝑇 abort𝑇

Table 1
Runtime executions of the symbolic algorithms
on ladder games.

𝑚 RE APT SPM

1,000 0.0007 0.0006 0.002

10,000 0.006 0.005 0.0017

100,000 0.057 0.054 0.18

1,000,000 0.59 0.56 1.84

10,000,000 6.31 5.02 20.83

Table 2
Runtime executions of the explicit algorithms
on ladder games.

Benchmarks indicate that SRE and SAPT outperform their explicit versions, showing an
excellent runtime execution even on fairly large instances. Indeed, while RE needs 6.31 seconds
for games with index 𝑚 = 10𝑀 , SRE takes just 0.00015 seconds. Tests also show that SSP and
SSP2 have yet the worst performance.

Clique Games. Clique games are fully connected games without self-loops, where P0 (resp.,
P1) contains the nodes with an even index (resp., odd) and each node 𝑣 ∈ P has as priority the
index of 𝑣. An important feature of the clique games is the high number of cycles, which may
pose difficulties for certain algorithms. Formally, a clique game of index 𝑛 is 𝒢 = (P0,P1,Mv , p)
where P0 = {0, 2, . . . , 𝑛 − 2}, P1 = {1, 3, . . . , 𝑛 − 1}, Mv = {(𝑣, 𝑤)|𝑣 ̸= 𝑤}, and p(𝑣) = 𝑣.
Benchmarks on clique games are reported in Tables 3 and 4.

𝑛 SRE SAPT SSP SSP2

2,000 0.007 0.003 5.53 abort𝑇

4,000 0.018 0.008 19.27 abort𝑇

6,000 0.025 0.012 39.72 abort𝑇

8,000 0.037 0.017 76.23 abort𝑇

Table 3
Runtime executions of the symbolic algorithms
on clique games

𝑛 RE APT SPM

2,000 0.021 0.0105 0.0104

4,000 0.082 0.055 0.055

6,000 0.19 0.21 0.22

8,000 0.35 0.59 0.63

Table 4
Runtime executions of the explicit algorithms
on clique games

The main result we obtain from our comparisons is that for random games, and even for
constrained random games, explicit algorithms actually perform better than symbolic ones,
most likely because BDDs do not offer any compression for random sets. The situation changes,



however, for structured games, where symbolic algorithms sometimes outperform explicit
algorithms. This is similar to what has been observed in the context of model checking [31].

𝑛 Pr Property SRE SAPT SSP SSP2 RE APT SPM WS DS

14,065 3 ND 0.00009 0.00006 3.30 0.0001 0.004 0.004 0.029 2 2

17,810 3 IORD1 0.0003 0.0005 abort𝑇 85.4 0.006 0.006 0.037 2 2

34,673 3 IORW 0.0006 0.0008 164.73 56.44 0.015 0.014 0.053 2 2

2,589,056 3 ND 0.0002 abort𝑇 abort𝑇 0.29 1.02 0.93 9.09 4 2

3,487,731 3 IORD1 abort𝑇 abort𝑇 abort𝑇 abort𝑇 1.81 1.4 17.45 4 2

6,823,296 3 IORW 0.3 abort𝑇 abort𝑇 abort𝑇 3.87 3.13 22.26 4 2

Table 5
SWP (Sliding Window Protocol)

𝑛 Pr Property SRE SAPT SSP SSP2 RE APT SPM DS

81,920 3 ND 0.00002 31.69 1.37 0.0016 0.031 0.034 0.22 2

88,833 3 IORD1 0.0027 0.003 abort𝑇 abort𝑇 0.036 0.0038 0.27 2

170,752 3 IORW 14.37 98.4 abort𝑇 abort𝑇 0.07 0.07 0.47 2

289,297 3 ND 0.0001 154.89 12.3 0.0058 0.13 0.12 1.34 4

308,737 3 IORD1 0.0088 0.009 abort𝑇 abort𝑇 0.14 0.13 1.37 4

607,753 3 IORW 43.7 abort𝑇 abort𝑇 abort𝑇 0.29 0.27 2.06 4

Table 6
OP (Onebit Protocol)

𝑛 Pr Property SRE SAPT SSP SSP2 RE APT SPM DS

328 1 ND 0.00002 0.002 0.005 0.00002 0.0001 0.0001 0.0004 2

308 1 safety 0.00002 0.003 0.028 0.00002 0.0001 0.0001 0.0004 2

655 3 liveness 0.00008 0.0001 5.52 0.09 0.0003 0.0002 0.001 2

51.220 1 safety 0.0001 1.48 32.14 0.00002 0.01 0.01 0.09 4

53.638 1 ND 0.0001 0.2 4.67 0.0001 0.017 0.015 0.07 4

107,275 3 liveness 0.005 0.001 abort𝑇 abort𝑇 0.03 0.03 0.18 4

Table 7
Lift (Lifting Truck)

Finally, we evaluate the symbolic and explicit approaches on some practical model checking
problems as in [32]. Specifically, we use models coming from: the Sliding Window Protocol
(SWP) with window size (WS) of 2 and 4 (WS represents the boundary of the total number of
packets to be acknowledged by the receiver), the Onebit Protocol (OP), and the Lifting Truck
(Lift). The properties we check on these models concern: absence of deadlock (ND), a message
of a certain type (d1) is received infinitely often (IORD1), if there are infinitely many read
steps then there are infinitely many write steps (IORW), liveness, and safety. Note that, in all
benchmarks, data size (DS) denotes the number of messages.

As we can see, by comparing Tables 5, 6, and 7, the experiments indicate more nuanced
relationship between the symbolic and explicit approaches. Indeed, they show a different
behavior depending on the protocol and the property we are checking. Overall, we note that



SRE outperforms the other symbolic algorithms in all protocols, although the advantage over
RE is discontinued. Specifically, SRE is the best performing in checking absence of deadlock
in all three protocols, but for IORD1 in the SWP protocol with 𝑊𝑆 = 2, or for IORW in
the OP protocol, RE exhibits a significant advantage. Differently, SAPT and SSP2 show better
performances on a smaller number of properties. Moreover, the results highlights that SSP
exhibits the worst performances in all protocols and properties.

We take this as an important development because it suggests a methodological weakness
in this field of investigation, due to the excessive reliance on random benchmarks. We believe
that, in evaluating algorithms for PG solving, it would be useful to have real benchmarks and
not only random benchmarks, as the common practice has been. This would lead to a deeper
understanding of the relative merits of PG solving algorithms, both explicit and symbolic.

Acknowledgments

We thank our co-authors on the publications mentioned in this communication: Aniello Murano
and Moshe Y. Vardi. This work is partially supported by the ERC Advanced Grant WhiteMech
(No. 834228), by the EU ICT-48 2020 project TAILOR (No. 952215), and by the PRIN project
RIPER (No. 20203FFYLK).

References

[1] E. Emerson, C. Jutla, Tree Automata, 𝜇-Calculus and Determinacy, in: 32nd Annual
Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 1-4 October 1991,
1991, pp. 368–377.

[2] O. Kupferman, M. Y. Vardi, Weak Alternating Automata and Tree Automata Emptiness,
in: Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing,
Dallas, Texas, USA, May 23-26, 1998, 1998, pp. 224–233.

[3] E. Clarke, E. Emerson, Design and Synthesis of Synchronization Skeletons Using Branching-
Time Temporal Logic, in: Logics of Programs, Workshop, Yorktown Heights, New York,
USA, May 1981, LNCS 131, 1981, pp. 52–71.

[4] P. Cermák, A. Lomuscio, A. Murano, Verifying and synthesising multi-agent systems
against one-goal strategy logic specifications, in: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA, 2015, pp.
2038–2044.

[5] O. Kupferman, M. Vardi, P. Wolper, An Automata Theoretic Approach to Branching-Time
Model Checking, J. ACM 47 (2000) 312–360.

[6] T. Wilke, Alternating Tree Automata, Parity Games, and Modal 𝜇-Calculus, Bulletin of
the Belgian Mathematical Society Simon Stevin 8 (2001) 359.

[7] E. Clarke, O. Grumberg, D. Peled, Model Checking., MIT Press, 2002.
[8] J. Queille, J. Sifakis, Specification and Verification of Concurrent Programs in Cesar, in:

International Symposium on Programming, 5th Colloquium, Torino, Italy, April 6-8, 1982,
Proceedings, LNCS 137, 1982, pp. 337–351.



[9] O.Kupferman, M.Vardi, P.Wolper, Module Checking., Information and Computation. 164
(2001) 322–344.

[10] W. Thomas, Facets of Synthesis: Revisiting Church’s Problem, in: Foundations of Software
Science and Computational Structures, 12th International Conference, FOSSACS 2009,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2009, York, UK, March 22-29, 2009., LNCS 5504, 2009, pp. 1–14.

[11] B. Aminof, O. Kupferman, A. Murano, Improved Model Checking of Hierarchical Systems,
Inf. Comput. 210 (2012) 68–86.

[12] F. Mogavero, A. Murano, L. Sorrentino, On Promptness in Parity Games, in: Logic
for Programming, Artificial Intelligence, and Reasoning - 19th International Conference,
LPAR-19, Stellenbosch, South Africa, December 14-19, 2013., LNCS 8312, 2013, pp. 601–618.

[13] D. Kozen, Results on the Propositional 𝜇-Calculus, Theoretical Computer Science 27 (1983)
333–354.

[14] M. Jurdzinski, Deciding the Winner in Parity Games is in UP ∩ co-Up, Inf. Process. Lett.
68 (1998) 119–124.

[15] W. Zielonka, Infinite Games on Finitely Coloured Graphs with Applications to Automata
on Infinite Trees, Theor. Comput. Sci. 200 (1998) 135–183.

[16] M. Jurdzinski,Small Progress Measures for Solving Parity Games, in: STACS 2000, 17th
Annual Symposium on Theoretical Aspects of Computer Science, Lille, France, February
2000, Proceedings, LNCS 1770, 2000, pp. 290–301.

[17] A. Di Stasio, A. Murano, G. Perelli, M. Y. Vardi, Solving parity games using an automata-
based algorithm, in: Implementation and Application of Automata - 21st International
Conference, CIAA 2016, Seoul, South Korea, July 19-22, 2016., 2016, pp. 64–76.

[18] C. S. Calude, S. Jain, B. Khoussainov, W. Li, F. Stephan, Deciding parity games in quasipoly-
nomial time, in: STOC 2017, 2017, pp. 252–263.

[19] M. Jurdzinski, M. Paterson, U. Zwick, A deterministic subexponential algorithm for solving
parity games, in: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006, ACM Press,
2006, pp. 117–123.

[20] R. E. Bryant, Graph-based algorithms for boolean function manipulation, IEEE Trans.
Comput. (1986) 677–691.

[21] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang, Symbolic model checking:
10ˆ20 states and beyond, in: Proceedings of the Fifth Annual Symposium on Logic in
Computer Science (LICS ’90), Philadelphia, Pennsylvania, USA, June 4-7, 1990, 1990, pp.
428–439.

[22] K. L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, 1993.
[23] G. Kant, J. van de Pol, Generating and solving symbolic parity games, in: Proceedings 3rd

Workshop on GRAPH Inspection and Traversal Engineering, GRAPHITE 2014, Grenoble,
France, 5th April 2014, 2014, pp. 2–14.

[24] M. Bakera, S. Edelkamp, P. Kissmann, C. D. Renner, Solving 𝜇-calculus parity games
by symbolic planning, in: Model Checking and Artificial Intelligence, 5th International
Workshop, MoChArt 2008, Patras, Greece, July 21, 2008., 2008, pp. 15–33.

[25] D. Bustan, O. Kupferman, M. Y. Vardi, A measured collapse of the modal 𝜇-calculus
alternation hierarchy, in: STACS 2004, 21st Annual Symposium on Theoretical Aspects of



Computer Science, Montpellier, France, March 25-27, 2004, Proceedings, 2004, pp. 522–533.
[26] K. Chatterjee, W. Dvorák, M. Henzinger, V. Loitzenbauer, Improved set-based symbolic

algorithms for parity games, in: 26th EACSL Annual Conference on Computer Science
Logic, CSL 2017, August 20-24, 2017, Stockholm, Sweden, 2017, pp. 18:1–18:21.

[27] A. Di Stasio, A. Murano, M. Y. Vardi, Solving parity games: Explicit vs symbolic, in:
Implementation and Application of Automata - 23rd International Conference, CIAA 2018,
Charlottetown, PE, Canada, July 30 - August 2, 2018, Proceedings, 2018, pp. 159–172.

[28] A. D. Stasio, Reasoning about LTL Synthesis over finite and infinite games, Ph.D. thesis,
University of Naples Federico II, Italy, 2018.

[29] T. van Dijk, Oink: An implementation and evaluation of modern parity game solvers, in:
Tools and Algorithms for the Construction and Analysis of Systems - 24th International
Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, LNCS 10805,
Springer, 2018, pp. 291–308.

[30] D. Tabakov, Evaluation of Explicit and Symbolic Automata-Theoretic Algorithm, Master’s
thesis, Rice University, 2005.

[31] C. Eisner, D. A. Peled, Comparing symbolic and explicit model checking of a software
system, in: Model Checking of Software, 9th International SPIN Workshop, Grenoble,
France, April 11-13, 2002, Proceedings, 2002, pp. 230–239.

[32] J. A. Keiren, Benchmarks for parity games, in: FSEN 2015, 2015, pp. 127–142.


