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Abstract
In this paper, we review the history of model checking and runtime verification on multi-agent systems

by recalling the results obtained in the two research areas. Then, we present some past, present and

future directions to combine these techniques in the two possible sides, that is by using model checking

for multi-agent systems to solve runtime verification problems and vice versa.
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1. Introduction

Software systems cannot be trusted. Even though this sounds as a bold statement, it is most

of the time the case. A software system, to be considered trustworthy, has to offer some

guarantees to the end user. Amongst these guarantees, correctness is by far one of the most

challenging to demonstrate. However, existent solutions to proof software correctness mainly

focus on monolithic systems. So, systems that do not usually present any kind of autonomy, nor

distribution, whatsoever. Unfortunately (in some sense), nowadays, artificial intelligent systems

can be found everywhere. Thus, techniques to tackle their verification in order to establish their

correctness also need to be revised (and adapted).

When we talk about software verification, we mainly refer to standard approaches such

as: testing, simulation, and formal verification. Testing and simulation have one main issue:

they can detect errors but can not determine their absence. To overcome this problem, formal
verification results to be very useful. This approach provides a formal-based methodology to

model systems, specify properties, and verify that a system satisfies a given specification.

In formal verification, the specification is usually based on temporal logics. The latter can

describe the order of events without introducing the time explicitly. In temporal logics, we

mainly distinguish between linear- and branching-time logics, which reflect the underlying
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nature of the time we consider. The most popular temporal logics are 𝐿𝑇𝐿 (linear-time temporal

logic) [34], 𝐶𝑇𝐿 (computation tree logic) [14], and their extension 𝐶𝑇𝐿*
[18]. An outstanding

development in the area of temporal logics has been the discovery of algorithmic methods

to verify properties of finite-state systems represented by Kripke structures [28]. Hence, the

formal verification of a system modelled by a Kripke structure 𝑀 with respect to a temporal

logic specification 𝜙 can be rephrased as “Is 𝑀 a model of 𝜙?”, which explains the name model
checking (MC), as it was coined by Clarke and Emerson in [14].

Naturally, model checking is not the only existent formal verification technique. Specifically,

another verification approach focused on a more dynamic perspective (execution of the system

rather than verification of an abstraction of the latter) is called Runtime Verification [32].

Runtime verification (RV) is being pursued as a lightweight verification technique bridging

static verification techniques, such as MC, and testing. One of the main distinguishing features

of RV is due to its nature of being performed at runtime, which opens up the possibility to

act whenever incorrect behavior of a software system is detected. A fault is defined as the

deviation between the current behavior and the expected behavior of the system [32, 16]. A

fault might lead to a failure, but not necessarily. An error, on the other hand, is a mistake made

by a human that results in a fault and possibly in a failure. Runtime verification is the discipline

of computer science that deals with the study, development, and application of those verification

techniques that allow checking whether a run of a system under scrutiny satisfies or violates a

given correctness property.

In [20], we presented an initial vision on possible overlapping of RV and MC, especially in

the area of Multi-Agent Systems (MAS); which are distributed systems comprised of intelligent

components (called agents) that can be deployed to solve complex tasks in an autonomous

fashion (which may, or may not, involve cooperation and communication amongst the agents).

We focused on MAS for their implicit complexity, and consequently hard verification problem.

Nonetheless, in [20] we mainly focused on the verification aspects of combining RV and MC.

Instead, in here, we present some novel results in that direction, but we also focus on the synergy

between RV and MAS. Thus, not only focusing on how RV can be deployed to verify MAS, but

also on how the verification for MAS can be exploited to support RV.

In the rest of the paper we first discuss the state of the art of model checking and runtime

verification for MAS (Section 2). Then, in Section 3 we present our results to use runtime verifi-

cation to reduce the model checking complexity on MAS and conclude with future directions.

Finally, in Section 4 we present model checking techniques to help runtime verification and

conclude with some future works.

2. State of the art

Model Checking for MAS. One of the most important developments in this field is

Alternating-Time Temporal Logic (ATL), introduced by Alur, Henzinger, and Kupferman [4].

Such a logic allows to reason about strategies of agents having the satisfaction of temporal

goals as payoff criterion. More formally, it is obtained as a generalization of CTL, in which

the existential E and the universal A path quantifiers are replaced with strategic modalities of

the form ⟨⟨Γ⟩⟩ and [[Γ]], where Γ is a set of agents. Despite its expressiveness, ATL suffers



from the strong limitation that strategies are treated only implicitly in the semantics of such

modalities. This restriction makes the logic less suited to formalize several important solution

concepts, such as the Nash Equilibrium. These considerations led to the introduction of Strategy
Logic (SL) [33], a more powerful formalism for strategic reasoning. As a key aspect, this logic

treats strategies as first-order objects that can be determined by means of the existential ∃𝑥 and

universal ∀𝑥 quantifiers, which can be respectively read as “there exists a strategy 𝑥” and “for
all strategies 𝑥”. Notably, a strategy is a generic conditional plan that at each step of the game

prescribes an action. With more detail, there are two main classes of strategies: memoryless

and memoryful. In the former case, agents choose an action by considering only the current

game state while, in the latter case, agents choose an action by considering the full history

of the game. Therefore, this plan is not intrinsically glued to a specific agent, but an explicit

binding operator (𝑎, 𝑥) allows to link an agent 𝑎 to the strategy associated with a variable 𝑥.

Unfortunately, the high expressivity of SL comes at a price. Indeed, it has been proved that the

model-checking problem for SL becomes non-elementary complete and the satisfiability unde-

cidable. To gain back elementariness, several fragments of SL have been considered. Among

the others, Strategy Logic with Simple-Goals [6] considers SL formulas in which strategic

operators, bindings operators, and temporal operators are coupled. It has been shown that

Strategy Logic with Simple-Goals strictly subsume ATL and its MC problem is P-Complete, as

it is for ATL. To conclude this section, we want to focus on a key aspect in MAS: the agents’

visibility. Specifically, we distinguish between perfect and imperfect information games [35].

The former corresponds to a basic setting in which every agent has full knowledge about the

game. However, in real-life scenarios it is common to have situations in which agents have

to play without having all relevant information at hand. In computer science these situations

occur for example when some variables of a system are internal/private and not visible to an

external environment [29, 13]. In game models, the imperfect information is usually modelled

by setting an indistinguishability relation over the states of the game [29, 35]. This feature

deeply impacts on the MC complexity. For example, ATL becomes undecidable in the context

of imperfect information and memoryful strategies [17]. To overcome this problem, some

works have either focused on an approximation to perfect information [8, 11] or developed new

notions on strategies [7, 26, 27, 10, 12, 9].

Runtime Verification for MAS. In [2], the authors presented a framework to verify at run-

time agent interaction protocols (AIP). The formalism used in this work allows the introduction

of variables, that are then used to constrain the expected behavior in a more expressive way.

In [19], the same authors proposed an approach to verify at runtime AIP using multiple monitors.

This is obtained by decentralizing the global specification (specified as a Trace Expression [1]),

which is used to represent the global protocol, into partial specifications denoting the single

agents’ perspective. In [5, 36], other works on runtime verification of agent interactions are

proposed, and in [30] a framework for dynamic adaptive MAS (DAMS-RV) based on an adaptive

feedback loop is presented. Other approaches to MAS RV include the proposals spin-off from

the SOCS project where the SCIFF computational logic framework [3] is used to provide the se-

mantics of social integrity constraints. To model MAS interaction, expectation-based semantics

specifies the links between observed and expected events, providing a means to test runtime



conformance of an actual conversation with respect to a given interaction protocol [38]. Similar

work has been performed using commitments [15].

3. Runtime verification gives a hand to Model checking for
MAS

The model checking problem for 𝐴𝑇𝐿 giving a generic MAS is known to be undecidable.

Nonetheless, decidable fragments exist. Indeed, model checking 𝐴𝑇𝐿 under perfect information

is PTIME-complete [4], while under imperfect information and imperfect recall is PSPACE [37].

Unfortunately, MAS usually have imperfect information, and when memory is needed to achieve

the goals, the resulting model checking problem becomes undecidable. Given the relevance of

the imperfect information setting, even partial solutions to the problem are useful.

The only existent work on exploiting RV to formally verify the strategic behaviour in MAS

is [24, 22]. In such work, given an 𝐴𝑇𝐿 formula 𝜙 and a model of MAS 𝑀 , the procedure

extracts all the sub-models of 𝑀 with perfect information that satisfy a sub-formula of 𝜙. Then,

runtime monitors are used to check if the remaining part of 𝜙 can be satisfied at execution time.

If this is the case, we conclude at runtime the satisfaction of 𝜙 for the corresponding system

execution. Note that, this does not imply that the system satisfies 𝜙, indeed future executions

may violate 𝜙. The formal result over 𝜙 only concerns the current execution, and how it has

behaved in it. However, the following preservation results holds.

Lemma 1. Given a model 𝑀 and an ATL formula 𝜙, for any history ℎ of 𝑀 starting in 𝑠𝐼 , we
have that:

𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝜙𝐿𝑇𝐿(ℎ) = ⊤ ⇒ 𝑀, 𝑠𝐼 |= 𝜙𝐴𝑔

𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝜙𝐿𝑇𝐿(ℎ) = ⊥ ⇒ 𝑀, 𝑠𝐼 ̸|= 𝜙∅

where 𝜙𝐿𝑇𝐿 is the variant of 𝜙 where all strategic operators are removed, 𝜙𝐴𝑔 is the variant of 𝜙
where all strategic operators are converted into ⟨⟨𝐴𝑔⟩⟩, 𝜙∅ is the variant of 𝜙 where all strategic
operators are converted into ⟨⟨∅⟩⟩.

Lemma 1 shows a preservation result from RV to ATL model checking that needs to be

discussed. If our monitor returns true we have two possibilities:

1 The procedure found an under-approximation sub-model in which the original formula 𝜙
is satisfied then it can conclude the verification procedure by using RV only by checking

that the atom representing 𝜙 holds in the initial state of the history ℎ given in input;

2 A sub-formula 𝜙′
is satisfied in an under-approximation sub-model and at runtime the

formula 𝜙𝐴𝑔 holds on the history ℎ given in input.

While case (1) gives a preservation result for the formula 𝜙 given in input, case (2) checks

formula 𝜙𝐴𝑔 instead of 𝜙. That is, it substitutes 𝐴𝑔 as coalition for all the strategic operators

of 𝜙 but the ones in 𝜙′
. So, our procedure approximates the truth value by considering the

case in which all the agents in the game collaborate to achieve the objectives not satisfied in



the model checking phase. That is, while in [8, 11] the approximation is given in terms of

information, in [7] is given in terms of memory of strategies, and in [21] the approximation

is given by generalizing the logic, here we give results by approximating the coalitions. So,

the main limitation of this approach concerns this aspect. Furthermore, we recall that the

procedure produces always results, even partial. This aspect is strongly relevant in concrete

scenario in which there is the necessity to have some sort of verification results. For example,

in the context of swarm robots, with this procedure we can verify macro properties such as

“the system works properly” since we are able to guarantee fully collaboration between agents

because this property is relevant and desirable for each agent in the game. The same reasoning

described above, can be applied in a complementary way for the case of over-approximation

sub-models and the falsity.

Note that this is the first attempt of using runtime verification to verify strategic properties on

MAS. Thus, even though the solution might not be optimal, it is a milestone for the corresponding

lines of research. Additional works will be done to improve the technique and, above all, its

implementation. For instance, we are planning to extend this work by considering a more

predictive flavour.

4. Model checking for MAS gives a hand to Runtime
verification

Runtime Verification is built on the assumption of perfect information over the system, that is,

the monitor checking the system can perceive everything. Unfortunately, this is not always the

case, especially when the system under analysis contains rational/autonomous components

and is deployed in real-world environments with possibly faulty sensors. In [23], an extension

of the standard Runtime Verification of Linear Temporal Logic properties to consider scenarios

with imperfect information is presented; along with all the engineering steps necessary to

update the verification pipeline. Moreover, a corresponding implementation is proposed and

applied to a case study involving robotic systems. In particular, [23] defines the notion of

imperfect information w.r.t. the monitor’s visibility over the system, and then re-engineers the

LTL monitor’s synthesis pipeline to recognise such visibility information.

In [23], imperfect information is specified by means of a indistinguishability relation ∼ over

the atomic propositions. Intuitively, given two atomic propositions 𝑝 and 𝑞, it is said that they

are indistinguishable if and only if 𝑝 ∼ 𝑞.

To handle the verification process in the imperfect information scenario, the standard RV

approach needs to be extended. This extension is based on the notion of duplication of the

atoms. The latter is used in order to make the truth value of each atomic proposition explicit.

The new monitor is defined as follows.

Definition 1 (Monitor with imperfect information). Given an LTL formula 𝜙 and a visible



history ℎ𝑣 , a monitor with imperfect information is so defined:

𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑣𝜙(ℎ𝑣) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊤ ℎ𝑣 ∈ ℒ(𝜙) ∧ ℎ𝑣 /∈ ℒ(¬𝜙) ∧ ℎ𝑣 /∈ ℒ(⊗𝜙)

⊥ ℎ𝑣 /∈ ℒ(𝜙) ∧ ℎ𝑣 ∈ ℒ(¬𝜙) ∧ ℎ𝑣 /∈ ℒ(⊗𝜙)

𝑢𝑢 ℎ𝑣 /∈ ℒ(𝜙) ∧ ℎ𝑣 /∈ ℒ(¬𝜙) ∧ ℎ𝑣 ∈ ℒ(⊗𝜙)

? ̸⊥ ℎ𝑣 ∈ ℒ(𝜙) ∧ ℎ𝑣 /∈ ℒ(¬𝜙) ∧ ℎ𝑣 ∈ ℒ(⊗𝜙)

? ̸⊤ ℎ𝑣 /∈ ℒ(𝜙) ∧ ℎ𝑣 ∈ ℒ(¬𝜙) ∧ ℎ𝑣 ∈ ℒ(⊗𝜙)

? ℎ𝑣 ∈ ℒ(𝜙) ∧ ℎ𝑣 ∈ ℒ(¬𝜙) ∧ ℎ𝑣 ∈ ℒ(⊗𝜙)

Where ℒ(𝜙) is the language of histories satisfying 𝜙, ℒ(¬𝜙) is the language of histories

violating 𝜙, and finally, ℒ(⊗𝜙) is the language of histories making 𝜙 undefined (because of

lack of information).

In what follows, we provide two preservation results from the monitor with imperfect

information to the one with perfect information.

Lemma 2. Given a finite history 𝜎, a monitor with its visibility 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑣𝜙(ℎ), and a general
monitor 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝜙(ℎ), we have that:

if 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑣𝜙(ℎ𝑣) = ⊤ then 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝜙(ℎ) = ⊤
if 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑣𝜙(ℎ𝑣) = ⊥ then 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝜙(ℎ) = ⊥

The above results can be extended to consider multi-monitors and solved by using formal

verification for MAS. In fact, even though a single monitor does not have access to all the

information it needs, multiple monitors might. As in standard distributed RV [25], we are

planning to explore this idea as well, but focusing on the theoretical foundations of information

sharing amongst monitors. Specifically, we are going to show how this can be specified as a

multi-agent problem; where each monitor is denoted as an agent with the goal of gathering

all the information needed to carry out the verification of its formal property. By representing

the information sharing as a multi-agent problem, we could gain from different viewpoints. In

particular, we could exploit existing techniques, used for strategic reasoning [31], to guide the

information sharing amongst the monitors. Moreover, by denoting monitors as agents, we would

recognise their autonomy on what concern the sharing of private information. For instance, a

monitor could be the only one with the access to a certain resource, and it is not realistic to

assume it will freely share such information. This because the act of sharing information is not

free of charge, since it requires to both consume computation time and bandwidth. For this,

and other reasons, it is of paramount importance to take into consideration the cost of sharing.

We are going to show how such cost can be ported into the multi-agent problem, and how it

can guide the selection of the information sharing strategy of the agents (i.e., the monitors).

In particular, we are going to study the theoretical foundation of information sharing amongst

runtime monitors. We will tackle this by porting the problem into a multi-agent setting. By

dosing so, we apply existing formal verification techniques, such as model checking [31], to

exploit the strategic reasoning of the agents to overcome the information sharing problem. We

will not only present theoretical results, but we will also propose an implementation prototype,

as a proof of concept.
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