
Planning with PDDL3 Qualitative Constraints for
Cost-Optimal Solutions Through Compilation
Luigi Bonassi1, Enrico Scala1 and Alfonso Emilio Gerevini1

1Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Italy

Abstract
We study the problem of finding cost-optimal solutions to planning problems that feature qualitative
state trajectory constraints expressed in PDDL3. These constraints are properties that every plan must
satisfy and can be seen as a fragment of LTL over finite traces. The state-of-the-art system for handling
PDDL3 problems is a compilation-based approach. Such a compilation has been tested only using a
satisficing planner, while the case where we require the planner to find optimal solutions is scarcely
studied; with this paper, we want to fill this gap. We propose an experimental analysis that involves
TCORE, the current state-of-the-art compilation approach to handle qualitative PDDL3 constraints,
and two compilation approaches supporting arbitrary LTL formulas. We evaluate each system using
two optimal planners, and we analyze the results using different metrics to explain the behavior of the
considered approaches. Our analysis confirms the result previously obtained with a suboptimal planner;
that is, in the optimal setting TCORE outperforms all other compilations over our benchmark domains.

Keywords
Automated Planning, PDDL3, Compilation, State-Trajectory Constraints

1. Introduction

The aim of this paper is to study the behavior of different state-of-the-art systems for handling
trajectory constraints in the context of finding optimal solutions. In particular, we focus
on planning problems that feature qualitative constraints defined by the PDDL3 language
[1]. PDDL3 is a popular and standard planning formalism that provides primitives for the
specification of such constraints through a subclass of LTL formulas [2]. State-of-the-art
approaches deal with such problems either by directly modifying the search engines [3, 4, 5, 6]
or by compiling temporal constraints away [7, 8, 9, 10, 11, 12, 13]. Compilation is a technique
that works by reformulating a planning problemwith temporal constraints into a new equivalent
problemwithout them. Bonassi et al. [13] presents a novel compilation approach, named TCORE,
for solving planning tasks with PDDL3 qualitative state-trajectory constraints. TCORE extends
a planning task with atomic variables whose role is to maintain the truth of the temporal
properties; then it exploits the concept of regression [14] to determine how actions would
need to be modified to correctly evaluate the formula over time. Problems compiled through
TCORE can be handled by any classical planner that supports conditional effects, making this
approach highly modular. It has been shown that [13], when using a suboptimal planner,
TCORE performs better than other state-of-the-art compilation approaches over the considered

10th Italian Workshop on Planning and Scheduling (IPS-2022)
Envelope-Open l.bonassi005@unibs.it (L. Bonassi); enrico.scala@unibs.it (E. Scala); alfonso.gerevini@unibs.it (A. E. Gerevini)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:l.bonassi005@unibs.it
mailto:enrico.scala@unibs.it
mailto:alfonso.gerevini@unibs.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


benchmarks. Although the results obtained with a suboptimal planner provide a clear picture of
the strengths and weaknesses of the tested compilations, the effectiveness of such approaches
in the context of finding optimal solutions is still unknown. To understand how the optimal
setting influences the performance of different compilations, we present additional experiments
involving TCORE and other compilation approaches for handling arbitrary LTL formulas using
optimal planners. The rest of the paper is structured as follows: Section 2 provides some
background on planning problems with PDDL3 qualitative constraints; Section 3 summarizes
the compilation schema of TCORE; Section 4 presents our experimental analysis; Section 5
gives the conclusions.

2. Background on Planning with PDDL3 constraints

We borrow standard notions and notations from propositional logic and the work by Gerevini
et al. [1] on PDDL3; the reader is referred to this work for more details.

A classical planning problem is a tuple Π = ⟨𝐹 , 𝐴, 𝐼 , 𝐺⟩ where 𝐹 is a set of atoms, 𝐼 ⊆ 𝐹 is the
initial state, 𝐺 is a propositional formula over 𝐹, and 𝐴 is a set of actions. An action 𝑎 ∈ 𝐴 is
a pair ⟨Pre(𝑎), Eff(𝑎)⟩, where Pre(𝑎) is a formula over 𝐹 expressing the preconditions of 𝑎, and
Eff(𝑎) is a set of conditional effects, each of which is a pair 𝑐 ▷ 𝑒 where: 𝑐 is a formula and 𝑒
is a set of literals, both over 𝐹. With 𝑒− and 𝑒+ we indicate the partition of 𝑒 featuring only
negative and positive literals, respectively. A state 𝑠 is a subset of 𝐹, with the meaning that if
𝑝 ∈ 𝑠, then 𝑝 is true in 𝑠, and if 𝑝 ∉ 𝑠, 𝑝 is false in 𝑠. An action is applicable in 𝑠 if 𝑠 ⊧ Pre(𝑎), and
the application of an action 𝑎 in 𝑠 yields the state 𝑠′ = (𝑠 ⧵ ⋃

𝑐▷𝑒∈Eff(𝑎)
with 𝑠⊧𝑐

𝑒−) ∪ ⋃
𝑐▷𝑒∈Eff(𝑎)
with 𝑠⊧𝑐

𝑒+. We indicate

with 𝑠′ = 𝑠[𝑎] the state resulting from applying action 𝑎 in 𝑠, and assume conflicting effects (𝑝
and ¬𝑝) are only yield by conditional effects having their conditions mutually exclusive in 𝑠.
A plan 𝜋 for a problem Π = ⟨𝐹 , 𝐴, 𝐼 , 𝐺⟩ is a sequence of actions ⟨𝑎0, 𝑎1, ..., 𝑎𝑛−1⟩ in Π; plan 𝜋

is valid for Π iff there exists a sequence of states (state trajectory) ⟨𝑠0, 𝑠1, ..., 𝑠𝑛⟩ such that 𝑠0 = 𝐼,
∀ 𝑖 ∈ [0, … , 𝑛 − 1] we have that 𝑠𝑖 ⊧ Pre(𝑎𝑖) and 𝑠𝑖+1 = 𝑠𝑖[𝑎𝑖], and 𝑠𝑛 ⊧ 𝐺. The cost of a plan 𝑐(𝜋), is
given by the sum of the cost 𝑐(𝑎) of each action 𝑎 in 𝜋. A plan 𝜋 is said to be optimal iff no plan
𝜋 ′ with 𝑐(𝜋 ′) < 𝑐(𝜋) exists. PDDL3 state-trajectory constraints are a class of temporal formulae
over trajectory of states, and they involve necessary conditions that the state trajectory of
a valid plan must satisfy. In this work, we consider planning tasks with constraints that in
PDDL3 are called “qualitative” [1], because involving only non-numeric terms. In addition to
the standard problem goals, a trajectory constraint can be of the following types: always 𝜙 (A𝜙),
which requires that every state traversed by the plan satisfies formula 𝜙; at-most-once 𝜙 (AO𝜙),
which requires that formula 𝜙 is true in at most one continuous subsequence of traversed states;
sometime-before 𝜙 𝜓 (SB𝜙,𝜓), which requires that if 𝜙 is true in a state traversed by the plan,
then also 𝜓 is true in a previously traversed state; sometime 𝜙 (ST𝜙), which requires that there
is at least one state traversed by the plan where 𝜙 is true; sometime-after 𝜙 𝜓 (SA𝜙,𝜓), which
requires that if 𝜙 is true in a traversed state, then also 𝜓 is true in that state or in a later traversed
state.
A PDDL3 planning problem is a tuple ⟨Π, 𝐶⟩ where Π is a classical planning problem and 𝐶

is a set of trajectory constraints; the valid plans of ⟨Π, 𝐶⟩ are all valid plans of Π whose state



trajectories satisfy all constraints in 𝐶.

3. TCORE: Trajectory Constraints COmpilation via Regression

This section briefly describes how TCORE translates a PDDL3 problem into an equivalent
planning problem without constraints. TCORE identifies two classes of constraints: invariant
trajectory constraints (ITCs) and landmark trajectory constraints (LTCs). Intuitively, ITCs can
be checked along any plan prefix and if they are violated, there is no way the planner can
ever re-establish them; they are invariant conditions that must be maintained over the state
trajectory of the plan. LTCs are constraints that require certain conditions true at some state
over the state trajectory of the plan. TCORE works by extending the action preconditions and
conditional effects in order to (i) block the violation of ITCs during planning, and (ii) keep track
of the truth of relevant (w.r.t. trajectory constraints) formulae in the states generated by the plan
prefix. This is achieved by making use of the effect regression operator 𝑅, and by introducing a
set of monitoring atoms. The effect regression is a formula manipulation technique: given a
propositional formula 𝜙 and an action 𝑎, 𝑅(𝜙, 𝑎) is a propositional formula such that, for any
state 𝑠, 𝑠 ⊧ 𝑅(𝜙, 𝑎) iff 𝑠[𝑎] ⊧ 𝜙. The regression makes it possible to identify what actual influence
the action has over the trajectory constraint of interest. Monitoring atoms serve the purpose of
collecting relevant facts on the plan state trajectory and asserting their truth/falsity. The ITCs
are: A𝜙, AO𝜙, SB𝜙,𝜓. For each AO𝜙 and SB𝜙,𝜓, TCORE adds the fresh predicates 𝑠𝑒𝑒𝑛𝜙 and 𝑠𝑒𝑒𝑛𝜓
to record whether 𝜙 and 𝜓 have ever held. The LTCs are: ST𝜙 and SA𝜙,𝜓. For each LTC, the
compilation adds a predicate ℎ𝑜𝑙𝑑𝑐. Such a predicate is meant to record whether the constraint
is already satisfied or not according to the current plan prefix.

Algorithm 1 describes the full compilation. As a very first step, TCORE creates the necessary
atoms (line 3) and sets up the initial state so as to reflect the current status of the trajectory
constraints; in particular, the algorithm captures if a LTC is already achieved in 𝐼, or if a formula
(𝜙 or 𝜓) that is necessary for the evaluation of an ITC is already true in 𝐼. Then TCORE checks
whether any ITC is already unsatisfied; if so, the problem is unsolvable.

After the initialization phase, the algorithm iterates over all actions and constraints to modify
each original action model (preconditions and effects) by considering the interactions between
the constraints and the action model. If the constraint is an ITC, the algorithm determines,
by regression, a condition 𝜌 such that, if 𝜌 holds in the state where the action is applied, the
execution of such an action will violate the constraint. For example, in the case of A𝜙, 𝜌 models
whether the action makes formula 𝜙 false (line 10). The regressed condition 𝜌 is negated and
then conjoined with the precondition of the action. In this way, if the action will violate the
constraint in a given state, such an action is deemed inapplicable by the planner. In the case
of ITCs, conditional effects are added to keep track of whether relevant formulae have ever
held in the state trajectory of the plan prefix. For instance, SB𝜙,𝜓 requires to deal with the truth
of 𝑠𝑒𝑒𝑛𝜓: if an action makes 𝜓 true, then the action must make 𝑠𝑒𝑒𝑛𝜓 true too. In this way, the
compilation prevents applying an action 𝑎 when it makes 𝜙 true and 𝜓 has not held before in
current plan state trajectory (lines 14–17).

For each LTC 𝑐 ∈ 𝐶, the algorithm yields a formula 𝜌 that is true only in those states where the
action achieves the targeted formula expressed in 𝑐. Note here the slightly different treatment



Algorithm 1: TCORE
Input :A PDDL3 Planning Problem ⟨⟨𝐹 , 𝐴, 𝐼 , 𝐺⟩, 𝐶⟩

1 𝐴′ = {}
2 𝐺′ = ⊤
3 𝐹 ′ = 𝑚𝑜𝑛𝑖𝑡𝑜𝑟 𝑖𝑛𝑔𝐴𝑡𝑜𝑚𝑠(𝐶)
4 𝐼 ′ = ⋃

𝑐∶ST𝜙∈𝐶
{ℎ𝑜𝑙𝑑𝑐 ∣ 𝐼 ⊧ 𝜙} ∪ ⋃

𝑐∶SA𝜙,𝜓∈𝐶
{ℎ𝑜𝑙𝑑𝑐 ∣ 𝐼 ⊧ 𝜓 ∨ ¬𝜙}∪ ⋃

SB𝜙,𝜓∈𝐶
{𝑠𝑒𝑒𝑛𝜓 ∣ 𝐼 ⊧ 𝜓 } ∪ ⋃

AO𝜙∈𝐶
{𝑠𝑒𝑒𝑛𝜙 ∣ 𝐼 ⊧ 𝜙}

5 if ∃SB𝜙,𝜓 ∈ 𝐶.𝐼 ⊧ 𝜙 ∨ ∃A𝜙 ∈ 𝐶.𝐼 ⊧ ¬𝜙 then
6 return Unsolvable Problem
7 foreach 𝑎 ∈ 𝐴 do
8 𝐸 = {}
9 foreach ITC 𝑐 ∈ 𝐶 do
10 if 𝑐 is A𝜙 then 𝜌 = 𝑅(¬𝜙, 𝑎) ;
11 else if 𝑐 is AO𝜙 then
12 𝜌 = 𝑅(𝜙, 𝑎) ∧ 𝑠𝑒𝑒𝑛𝜙 ∧ ¬𝜙
13 𝐸 = 𝐸 ∪ {𝑅(𝜙, 𝑎) ▷ {𝑠𝑒𝑒𝑛𝜙}}
14 else if 𝑐 is SB𝜙,𝜓 then
15 𝜌 = 𝑅(𝜙, 𝑎) ∧ ¬𝑠𝑒𝑒𝑛𝜓
16 𝐸 = 𝐸 ∪ {𝑅(𝜓 , 𝑎) ▷ {𝑠𝑒𝑒𝑛𝜓}}
17 Pre(𝑎) = Pre(𝑎) ∧ ¬𝜌
18 foreach LTC 𝑐 ∈ 𝐶 do
19 if 𝑐 is ST𝜙 then 𝜌 = 𝑅(𝜙, 𝑎) ;
20 else if 𝑐 is SA𝜙,𝜓 then
21 𝐸 = 𝐸 ∪ {𝑅(𝜙, 𝑎) ∧ ¬𝑅(𝜓 , 𝑎) ▷ {¬ℎ𝑜𝑙𝑑𝑐}}
22 𝜌 = 𝑅(𝜓 , 𝑎)
23 𝐸 = 𝐸 ∪ {𝜌 ▷ {ℎ𝑜𝑙𝑑𝑐}}
24 Eff(𝑎) = Eff(𝑎) ∪ 𝐸
25 𝐴′ = 𝐴′ ∪ {⟨Pre(𝑎), Eff(𝑎)⟩}
26 foreach LTC 𝑐 ∈ 𝐶 do
27 𝐺′ = 𝐺′ ∧ ℎ𝑜𝑙𝑑𝑐
28 return Classical Planning Problem ⟨𝐹 ∪ 𝐹 ′, 𝐴′, 𝐼 ∪ 𝐼 ′, 𝐺 ∧ 𝐺′⟩

for the two types of LTCs. While ST𝜙 only requires 𝜙 to be true, for SA𝜙,𝜓 the compilation
needs to signal the necessity of 𝜓 only when 𝜙 becomes satisfied; this is done by introducing
two conditional effects (lines 21 and 22) affecting the additional goal ℎ𝑜𝑙𝑑𝑐 of 𝐺′ (line 27). Also
observe that 𝜙 can become true multiple times, and each state satisfying 𝜙 needs to be followed
by a state such that 𝜓 is true again; this state can also be the same state in which 𝜙 holds, as
prescribed by the semantics of PDDL3.
Note that Algorithm 1 can add irrelevant preconditions and conditional effects that can

easily be omitted by looking at whether regression leaves a formula unaltered. E.g., for A𝜙, if
𝜌 = 𝑅(¬𝜙, 𝑎) = ¬𝜙, there is no need to extend Pre(𝑎) with ¬𝜌 = 𝜙 at line 17. Such optimizations
are implemented but omitted here for clarity and compactness.

As trajectory constraints are monitored along the entire plan, and regression through effects
provides sufficient conditions for ensuring that no ITC is violated by an action and no LTC
remains unsatisfied at the plan end, it is easy to see that the compiled problem always finds
a solution that conforms with the trajectory constraints of the problem. Moreover, since the
exploited regression establishes necessary conditions too, the existence of a solution in the
compiled problem implies that the original problem is solvable.



Figure 1: Constraints grouped by type across all domains.

4. Experimental Results

Our experimental analysis studies the behavior of TCORE and two state-of-the-art compilation
approaches dealing with LTL constraints in the context of finding optimal solutions. Specifically,
we considered the exponential compilation by Baier and McIlraith [8], in short EXP, and the
polynomial compilation by Torres and Baier [11], in short POLY1. To evaluate the compilations,
we considered two optimal planners: 𝐴∗ with the ℎ𝑚𝑎𝑥 heuristic (implemented in FastDownward
[15]) and SYM-K [16]. The former performs a classical 𝐴∗ search guided by the admissible ℎ𝑚𝑎𝑥
heuristic, while the latter is a top-𝑘 planner2. Such planners are cost-optimal and support axioms,
a feature that is necessary to solve problems compiled through EXP. In total, we tested six
different compiler-planner combinations: the three compilations paired with𝐴∗(ℎ𝑚𝑎𝑥) ({TCORE,
EXP, POLY}𝑚𝑎𝑥 in short) and with SYM-K ({TCORE, EXP, POLY}𝑠𝑦𝑚𝑘 in short).
The performance of each system is evaluated in terms of the number of solved instances

(coverage), the time spent to find a solution (computed as the compilation time plus planning
time), the number of nodes expanded by 𝐴∗(ℎ𝑚𝑎𝑥), and dimension of the compiled problems. All
experiments were performed on a Xeon Gold 6140M 2.3 GHz, with time and memory limits of
1800s and 8GB, respectively. We tested the systems using the benchmark by Bonassi et al. [13].
The suite involves domains from the fifth IPC (https://lpg.unibs.it/ipc-5/), and has a total of 416
instances: 79 for Trucks , 90 for Openstack , 55 for Storage , 94 for Rover , and 98 for TPP . In such
domains, each action 𝑎 has cost 𝑐(𝑎) = 1, i.e., the optimal plan is the shortest. Figure 1 gives a
general overview on how each type of constraint is partitioned between the considered domains.
Overall, the predominant constraint type is always , followed by at-most-once , sometime-before
and sometime .

4.1. Results analysis

Problem dimensions. Table 1 presents the dimensions of the compiled instances in terms
of average number of fluents and average number of effects. Such metrics are computed only

1POLY extends a planning problem with many additional synchronization actions that are necessary to update the
automaton representing a LTL formula. In this experimental analysis, we set the cost of synchronization actions to
zero, as this guarantees that optimal plans correspond to optimal plans of the original problem.

2The objective of top-𝑘 planning is to determine a set of 𝑘 different plans with the lowest cost for a problem [16]. In
our experimental analysis we used a symbolic bidirectional search obtained from the top-𝑘 planner with 𝑘 = 1.

https://lpg.unibs.it/ipc-5/


Domain
Fluents Effects

TCORE EXP POLY TCORE EXP POLY

Openstack 251.5 571.2 883.6 3906.4 452635.8 12815.8
Rover 116.8 346.5 614.1 875.8 155595.9 3238.0
Storage 87.6 184.9 315.2 961.8 18000.6 1666.7
TPP 27.7 98.7 268.3 226.0 3181.3 1014.7
Trucks 374.6 522.5 754.9 8667.6 497196.0 15225.9

Table 1
Average number of fluents and effects in the instances resulting from each compilation. For the sake of
a fair comparison, the reported statics refer to the ground instances. For EXP, the number of fluents
include the number of derived fluents. Averages are computed on instances compiled by all systems.

Domain
𝐴∗ with ℎ𝑚𝑎𝑥 SYM-K

EXP POLY TCORE EXP POLY TCORE

Openstack (90) 10 3 10 1 0 88
Rover (94) 19 0 34 12 0 89
Storage (55) 19 9 33 15 3 31
TPP (98) 18 1 24 14 0 25
Trucks (79) 17 0 39 13 0 44
Total (416) 83 13 140 55 3 277

Table 2
Coverage achieved by all systems across all domains. In parenthesis, the number of instances for a given
domain.

for instances compiled by each system. EXP and POLY work on the lifted representation of
a planning task, while TCORE has to instantiate the planning problem before performing
the actual compilation. For the sake of a fair comparison, the averages reported in Table 1
were calculated by grounding the instances resulting from the two LTL systems using the
FastDownward translator.
We can observe that the tasks compiled by TCORE contain on average less effects and less

fluents compared to the instances compiled with EXP/POLY. This is due to the fact that EXP and
POLY are capable of handling arbitrary nested LTL formulas (unsupported by PDDL3); to deal
with such expressive power, these two compilations rely on automata theory to compile the
LTL formulas away. Integrating the resulting automatons into the domain model requires many
additional fluents and effects as shown by Table 1. On the other hand, TCORE is tailored at
handling PDDL3 qualitative constraints and this allows for a more efficient compilation. Indeed,
TCORE introduces up to one fluent for each trajectory constraint (zero in the case of an always)
and takes advantage of the regression computation to minimize the number of additional effects.

Coverage. Table 2 shows an overall picture of the coverage achieved by each system across
all domains. TCORE𝑠𝑦𝑚𝑘 achieves the highest coverage in four out of five domains, solving a
total of 277 instances. Remarkable are the performances in Rover and Openstack ; TCORE𝑠𝑦𝑚𝑘

solves 95% and 98% of the instances in these domains, respectively. The performances of TCORE



(a) (b)

(c) (d)

Figure 2: Coverage versus planning time (a). Comparison between TCORE𝑚𝑎𝑥 and EXP𝑚𝑎𝑥 in terms of
expanded nodes (b). CPU-time comparison of TCORE with EXP when planning with 𝐴∗(ℎ𝑚𝑎𝑥) (c) and
with SYM-K (d).

with an optimal planner are close to those of TCORE with a satisficing planner: in the same
instances, TCORE with LAMA [17] solves only 34 more instances [13]. This may indicate that,
in many instances, the challenge is to effectively deal with the given set of constraints, rather
than finding the optimal solution.
As expected, TCORE𝑚𝑎𝑥 cannot solve many problems, achieving roughly half the coverage

of TCORE𝑠𝑦𝑚𝑘. We attribute this behavior to the fact that 𝐴∗ with ℎ𝑚𝑎𝑥 is less sophisticated
compared to SYM-K. Interestingly, though, 𝐴∗ with ℎ𝑚𝑎𝑥 is more effective at solving instances
compiled with EXP and POLY; with both compilations, such a system outperforms SYM-K in all
domains. We believe that this is due to the fact that SYM-K does not scale well when problems
have many atoms and effects, and this is the case for the instances compiled through EXP and
POLY, as shown in Table 1.

Coverage-wise, Bonassi et al. [13] observed that with a suboptimal planner EXP outperforms
TCORE in TPP . This is caused by the fact that TCORE fails to ground most instances in this
domain, while EXP directly works on the first-order representation. Our experimental results



show that the two optimal planners cannot exploit this advantage of EXP; this indicates that
finding optimal solutions to problems compiled with EXP in TPP is a challenging task for the
considered planners.
Analogously to the results presented by Bonassi et al. [13], EXP dominates POLY across all

domains. One could expect that the polynomial compilation performs better than the exponential
compilation. This is not the case, as the LTL formulas deriving from PDDL3 constrains do not
lead to an exponential blow-up of the compilation performed by EXP.

CPU time analysis. Figure 2a reports how systems increase their coverage over time.
TCORE𝑠𝑦𝑚𝑘 surpasses EXP𝑠𝑦𝑚𝑘 right from the start, and achieves 90% of its maximum cov-
erage after 333 seconds. TCORE𝑚𝑎𝑥 increases its coverage at a slower rate, achieving 90% of its
maximum coverage in about 474 seconds. Differently, 𝐴∗ with ℎ𝑚𝑎𝑥 is faster than SYM-K with
EXP, as EXP𝑚𝑎𝑥 dominates EXP𝑠𝑦𝑚𝑘.

Figures 2c and 2d show a pairwise comparison of the runtimes of TCORE with the runtimes of
EXP, while Figure 2b compares TCORE𝑚𝑎𝑥 with EXP𝑚𝑎𝑥 in terms of expanded nodes. Most of the
PDDL3 instances are solved generally faster than the instances compiled with EXP. From Figure
2b, we can observe that TCORE𝑚𝑎𝑥 expands less nodes than EXP𝑚𝑎𝑥, and this indicates that the
ℎ𝑚𝑎𝑥 heuristic is more informed when tasks are compiled with TCORE; the EXP compilation
introduces axioms, a feature that seems to be not fully supported by the heuristic. There is an
exception for a small set of Storage problems; in such instances EXP performs more efficiently
than TCORE regardless of the planner. We attribute this to the fact that TCORE has to spend
time to ground the instances before performing the actual compilation, while EXP directly
works on the first-order representation.

5. Conclusions

We have presented an experimental analysis that compares three different compilation-based
systems to handle PDDL3 qualitative constraints with optimal planners. Results shows that
TCORE remains the state-of-the-art approach to handle the considered class of problems.
Recently, Bonassi et al. [18] has shown that, by expressing control knowledge in PDDL3,
TCORE can be used as a tool to improve the coverage of a satisficing planner. In the future, we
intend to test TCORE with new benchmarks featuring control knowledge in PDDL3 to improve
the coverage of an optimal planner. Finally, we plan to extend TCORE for handling quantitative
state-trajectory constraints and to study a compilation that works on the lifted representation
of a planning task.

Acknowledgments

We thank the anonymous reviewers for their helpful comments. This work has been partially
supported by EU-H2020 projects AIPlan4EU (No. 101016442) and TAILOR (No. 952215), and by
MUR PRIN-2020 project RIPER (No. 20203FFYLK).



References

[1] A. Gerevini, P. Haslum, D. Long, A. Saetti, Y. Dimopoulos, Deterministic planning in
the fifth international planning competition: PDDL3 and experimental evaluation of the
planners, Artif. Intell. 173 (2009) 619–668.

[2] A. Pnueli, The temporal logic of programs, in: FOCS, IEEE Computer Society, 1977, pp.
46–57.

[3] A. J. Coles, A. Coles, LPRPG-P: relaxed plan heuristics for planning with preferences, in:
ICAPS, AAAI, 2011.

[4] J. Benton, A. J. Coles, A. Coles, Temporal planning with preferences and time-dependent
continuous costs, in: ICAPS, AAAI, 2012.

[5] Y. Chen, B. W. Wah, C. Hsu, Temporal planning using subgoal partitioning and resolution
in sgplan, J. Artif. Intell. Res. 26 (2006) 323–369.

[6] C. Hsu, B. W. Wah, R. Huang, Y. Chen, Constraint partitioning for solving planning
problems with trajectory constraints and goal preferences, in: IJCAI, 2007, pp. 1924–1929.

[7] J. A. Baier, F. Bacchus, S. A. McIlraith, A heuristic search approach to planning with
temporally extended preferences, Artif. Intell. 173 (2009) 593–618.

[8] J. A. Baier, S. A. McIlraith, Planning with first-order temporally extended goals using
heuristic search, in: AAAI, AAAI Press, 2006, pp. 788–795.

[9] S. Edelkamp, S. Jabbar, M. Nazih, Large-scale optimal pddl3 planning with mips-xxl, 5th
International Planning Competition Booklet (IPC-2006) (2006) 28–30.

[10] S. Edelkamp, On the compilation of plan constraints and preferences, in: ICAPS, AAAI,
2006, pp. 374–377.

[11] J. Torres, J. A. Baier, Polynomial-time reformulations of LTL temporally extended goals
into final-state goals, in: IJCAI, AAAI Press, 2015, pp. 1696–1703.

[12] B. Wright, R. Mattmüller, B. Nebel, Compiling away soft trajectory constraints in planning,
in: KR, AAAI Press, 2018, pp. 474–483.

[13] L. Bonassi, A. E. Gerevini, F. Percassi, E. Scala, On planning with qualitative state-trajectory
constraints in PDDL3 by compiling them away, in: ICAPS, AAAI Press, 2021, pp. 46–50.

[14] J. Rintanen, Regression for classical and nondeterministic planning, in: ECAI, volume 178
of Frontiers in Artificial Intelligence and Applications, IOS Press, 2008, pp. 568–572.

[15] M. Helmert, The fast downward planning system, J. Artif. Intell. Res. 26 (2006) 191–246.
[16] D. Speck, R. Mattmüller, B. Nebel, Symbolic top-k planning, in: AAAI, AAAI Press, 2020,

pp. 9967–9974.
[17] S. Richter, M. Westphal, The LAMA planner: Guiding cost-based anytime planning with

landmarks, J. Artif. Intell. Res. 39 (2010) 127–177.
[18] L. Bonassi, A. E. Gerevini, E. Scala, Planning with qualitative action-trajectory constraints

in PDDL, in: IJCAI, ijcai.org, 2022, pp. 4606–4613.


	1 Introduction
	2 Background on Planning with PDDL3 constraints
	3 TCORE: Trajectory Constraints COmpilation via Regression
	4 Experimental Results
	4.1 Results analysis

	5 Conclusions

