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Abstract  
On the 21st century, the exponential growth of technology, led the world facing a myriad of 

information coming from multitudinous sources. Then, finding ways of storing knowledge 

committed to certain rules became imperious. 

Ontologies have been playing an important role on connecting data to the semantics of the real 

world. Data, without such ontological commitment, could be interpreted as representations of 

different entities than the one it actually is, leading to biased analysis and inaccurate prediction 

on data-driven projects. Such kind of artifact formalizes shared knowledge regarding a domain 

of discourse. 

Therefore, this study will, based on works showing the benefits of bringing ontologies to the 

scenario of Machine Learning techniques, enrich similarity metrics between instances of data. 

So, the Human Disease Ontology (DO) will be used. Instead of calculating pairwise similarities 

between two diseases (terms on DO), groups of diseases will be considered. Therefore, this 

work will rely on adapting a groupwise similarity metric 

Data collection will be done considering the SIVEP-Gripe Dataset. Then, an analysis will be 

made on how better Machine Learning Algorithms can perform the analysis is made 

considering semantic rather than just numerical and categorical features. 
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Introduction 

In December 2019, the first case of coronavirus disease (COVID-19), caused by the SARS- CoV-2 

virus, was reported. It did not take long for the disease to get enormous proportions and become a 

worldwide concern, and on March 11th, 2020, the World Health Organization (WHO) declared the 

disease outbreak a global pandemic [1]. 

COVID-19 is affecting the four corners of the world, and data is coming from a thousand-and-one 

different providers. Therefore, data integration in the COVID-19 domain can be compromised and 

semantic commitments shall be considered when treating pandemic data. As an illustration, in China, 

from Jan 15 until March 2, 2020, there have been seven different versions of the COVID-19 case 

definition issued by the government, and [2] estimate that the lack of a temporal consensus on the 

definitions led China official pandemic tracking to increase up to 7.1 times (IC 95%, 4.8 – 10.9) from 

one definition to another. 
One of the main purposes of ontologies is to make the real-world data semantics explicit [3]; 

consequently, many benefits can be extracted by this kind of artifact, including its use as a 

communication artifact among different stakeholders, as a common data model to mediate data 
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integration and access, or even as a formal specification to enable reasoning on data. In the COVID-19 

domain, several works already proposed ontologies and applications, such as [4,5,6,7]. 

Recently, the multiple benefits of ontologies (including foundational ontologies, conceptual models, 

and other semantically aware artifacts) to enhance data analysis and knowledge extraction have been 

increasingly advocated. In this context, [8] present how ontologies, and specifically foundational 

ontologies, can have multiple benefits on every step of the internal cycle of the Data Science Life Cycle, 

while [9] show the benefits of pairing conceptual models with ontologies to Machine Learning (ML) 

techniques. 

The present work focuses on data regarding the comorbidities (i.e., diseases) of patients who have 

been diagnosed with COVID-19 and were hospitalized in the state of Rio de Janeiro. The main objective 

is to analyze the impact of a semantically aware approach when finding similar subsets of 

hospitalizations in the dataset. 

To this end, we apply a partition-based clustering technique and compared its results in two 

scenarios. The first scenario (semantic unaware) represented each hospitalization as a binary vector of 

comorbidities and applied the conventional cosine similarity metric. The second (semantic aware) 

scenario was proposed as follows. 
Disease Ontology (DO) [10] is an ontology which integrates disease and medical vocabularies 

through extensive cross mapping of DO terms to other medical ontologies, such as MeSH. 

We matched each comorbidity found in the dataset with a corresponding concept in the Disease 

Ontology (DO). A total of 161 distinct diseases were linked to DO concepts, and we observed 465 

different combinations of diseases, for all the patients in the dataset. 

To compute similarities between individual comorbidities, we applied the measure proposed by [11], 

which addressed semantics to find similarities between data, and specifically proposed a similarity 

metric in the bio-ontologies domain using DO terms. However, since each hospitalized patient was 

characterized by a (possibly empty) set of comorbidities in the dataset, the similarity between distinct 

hospitalizations required a groupwise similarity metric, i.e., measuring the similarity between two 

different groups of diseases, which represents the diseases a COVID-19 hospitalized patient has. For 

instance, while the pairwise metric performs a comparison between two terms such as “diabetes” and 

“asthma”, the groupwise similarity metric compares two sets of terms, such as “Diabetes, gilbert’s 

syndrome and flu” and “Psoriasis and AIDS”. Therefore, we applied the metric proposed by [12] for 

calculating groupwise similarities between sets of DO terms. On [12], it is calculated groupwise 

similarities between terms on the SNOMED CT. 

Hence, the semantic aware groupwise similarity between hospitalizations proposed in our work was 

computed by combining the groupwise metric of [12] with the pairwise similarity between DO terms 

of [11]. 

The impact of the proposed semantically aware approach when finding similar subsets of 

hospitalizations in the dataset is assessed in the Data Post-Processing step using metrics of cluster 

quality. An additional analysis was performed to show how well the resulting clusters from each 

scenario partitioned the subsets of diseases. 

 

Disease Ontology (DO) 

In this research, we make use of the Human Disease Ontology (DO), a domain ontology organized 

as a directed acyclic graph, representing the domain of ontologies and is mapped to uncountable others 

application ontologies. 

  

DO makes the knowledge on the domain of human diseases explicit, by describing diseases through 

ontology properties, such as is-a, has-material-basis-in or has-symptom. For instance, DO states that: 

 

bone disease is-a connective tissue disease 
congenital megabladder has-material-basis-in autosomal dominant inheritance allergic 

conjunctivitis has-symptom allergic reaction. 



 

Also, as shown on Figure 1, a term on DO can be linked to other ontologies through relations such 

as has-symptom and has-phenotype. 

 

 
Figure 1: The representation of tyrosinemia type II in Disease Ontology (DO). Source: [13] 

 

The Human Disease Ontology, in its last update on April 28th, 2022, comprises 17,840 classes and 

45 properties [15] and is widely applied for several purposes in Academic and Industry contexts. In 

addition, it has been used by more than 50 other biomedical ontologies and there is a numerous list of 

software tools and other web resources that: (1) support the use of DO data, (2) have integrated or were 

built using DO data, or (3) provide data linkages to the DO website [16]. 

 

On the Benefits of Semantics, Ontologies and Conceptual Modeling in the Data 
Science Lifecycle 

Managing data cannot be accomplished solely by humans with their limited cognitive capabilities 
[9]. Also, available data keeps growing and is becoming more important as a resource for decision-

making. Thus, it is crucial to understand the domain which the data represents, to make a more precise 

usage of it. 

Works [8,9] show that pairing conceptual modeling/ontologies artifacts with data science/machine 

learning techniques can not only enhance Data Science projects results but also support the development 

and evaluation of conceptual modelling approaches. However, this work will focus on the first 

mentioned kind of benefit, when semantical commitment helps on Machine Learning techniques. 

In particular, [8] defend the benefits of using foundational and domain ontologies appears in each 

cycle of the Data Science Life Cycle, including Problem Understanding, Data pre- and post-processing, 

and Data Mining for different techniques (Classification and Clustering, for example). Such benefits 

are summarized on Table 1. 

On the Data Pre-processing step, [8] defend ontologies could help on both on semantic 

interoperability and ontological commitment made explicit. These benefits refer to data integration 

which can be made not considering the ontological commitment of the sources providing the data and, 



therefore, joining data features which refers to different entities of the real world, leading to 

misinterpretations and false results on the DS project. 

When clustering data, relying on foundational ontologies may lead to cluster results that better reflect 

real-world categorization. Moreover, calculating data similarity committed on ontological foundational 

can lead to similarities between data way more befitting to the domain where the treated data lays on. 

 

Table 1 
Multiple Benefits of Foundational Ontologies and Domain Ontologies on Data Science. Source: 
Adapted from [8] 

DS Lifecycle Step Benefit 

Problem understanding Semantic transparency 
Complexity management mechanisms for complex domains 
Data models are more uniform 

Data pre-processing Semantic interoperability 
Ontological commitments made explicit 

Clustering Higher probability of clusters that reflect genuine real-world 
categorizations 
Similarity calculation grounded on ontological foundations 
Easier to identify similarities that are not accidental 
Preventing unwarranted associations evaluation 

Data post-processing Improved understanding of the patterns discovered 
Systematic guidance in the validation of the patterns discovered 
grounded on ontological meta-properties 

 

Traditional data mining methods and techniques treat data as merely “sums of attribute values”, and 

such approach can lead to biases and bad understanding of the patterns discovered [8]. Indeed, 

clustering techniques mostly relies on calculating similarities – a data pre-processing step – which does 

not consider semantical attributes and are basically mathematical operations to calculate Euclidian 

distance and other kind of metrics. However, there have been for the past few years many proposals of 

considering ontologies on the calculation of object similarities, such as [16,17]. Also, on the biomedical 

field, especially for Gene Ontology (GO) [19,20], there are several similarity metrics considering many 

different ontologies, such as Wang [11] and [21,22,23]. However, the metric proposed in [11] can also 

be extended for comparison between DO terms. 

In this research scenario, ontologies will show up as a tool on data preparation step and, therefore, 

may enhance analysis results. The ontology terms (diseases) and taxonomic relations (is-a) will be 

considered when computing similarities between group of comorbidities, since each comorbidity is 

linked to a disease in the Disease Ontology. Similarities should be calculated following a groupwise 

approach, to enable a comparison between two groups of comorbidities. Pairwise similarities may be 

trivially computed by a simple application of a distance metric, either one of the four last mentioned 

metrics or any of the metrics available in HESML (Half-Edge Semantic Measures Library) [24]. 

Semantic aware groupwise metrics, however, are not that simple. According to [24], “A groupwise 

semantic similarity measure is used to compute the degree of similarity between two sets of concepts 

defined into an ontology. This type of measure is commonly used to compare sets of GO terms in 

genomics, although they could also be used to compare sets of WordNet synsets evoked by two words”. 

Section 6 details the approach used to calculate DO terms groupwise similarities. 

 

Associating comorbidities to diseases in the Disease Ontology 

We analyzed the dataset from SIVEP-Gripe (Sistema de Informação de Vigilância Epidemiológica 

da Gripe or Flu Epidemiological Vigilance Information System), a nationwide surveillance database 



used to monitor severe acute respiratory infections in Brazil. Each instance of such dataset represents a 

hospital admission due to COVID-19, characterized by several features regarding case evolution (Death 

or Recovery), patient previous COVID-19 vaccine administrations and others. 

However, this dataset contains a lot of imprecise and missing data, specially on data referring to the 

patient comorbidities, which this work aims to tackle. Hence, data selection followed a semantic aware 

methodology, described as follows. 

Data was selected by filtering the first three thousand hospitalization of 2021 in the State of Rio de 

Janeiro. However, since this work will rely mostly on analyzing each patient set of comorbidities, the 

filtering also considered instances of data with noisy, inaccurate and missing information regarding this 

feature. Also, since this study focuses on the pairing of ontologies to the Data Science Lifecycle, rather 

than discovering new patterns, we did not prioritize analyzing larger datasets. 

Patient comorbidities which appeared in the dataset were then mapped to the ontology. Each 

comorbidity on the dataset was associated with a DO disease. This step was performed manually, by 

searching for DO classes whose names were syntactically similar to the comorbidity name appearing 

in the dataset. Some of these associations can be seen on Table 2. 

For example, if a hospitalization entry on SIVEP-Gripe dataset has, for instance, the word “DPOC” 
(short for Doença Pulmonar Obstrutiva Crônica in Portuguese) in MORB_DESC column, we consider 

that the patient has “Chronic Obstructive Pulmonary Disease”, which has the ID DOID:3083 in the DO. 

 

Table 2 
Disease Matching between SIVEP-Gripe names with DO terms. Source: Authors 

Name on SIVEP-Gripe Database DO Match 

ALCOOLISMO alcohol use disorder 
ALZHEIMER Alzheimer’s disease 

AMILOIDOSE amyloidosis 

ANEMIA deficiency anemia 

Calculating (dis)similarities between DO terms 

There are several ways to calculate pairwise similarities between classes in an ontology. In this work, 

the proposed metric on [11] is applied to measure semantic similarity among DO terms. For computing 

such metric, Wang defines a term 𝐴 in DO as 𝐷𝐴𝐺 = (𝐴, 𝑇𝐴, 𝐸𝐴), where 𝑇𝐴 is the set of all ancestors in 

DO graph and 𝐸𝐴 is the set of edges connecting DO terms to 𝐴. The S-Value of DO term 𝑡 related to 

term 𝐴 is defined as the contribution of 𝑡 to the semantics of 𝐴, such that, for any 𝑡 in 𝐷𝐴𝐺𝐴, its S-value 

related to term A is defined on equation 1. 

𝑆𝐴(𝑡) = {
1, 𝑖𝑓 𝑡 = 𝐴

max{𝑤𝑒 × 𝑆𝐴(𝑡′)|𝑡′ ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑡} , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(1) 

However, 𝑤𝑒 is a value representing the semantic contribution factor for edge 𝑒 ∈ 𝐸𝐴 linking term 𝑡 

with its child 𝑡′, thus for every 𝑒, a corresponding weight 𝑤𝑒 may be predefined. Wang similarity 

measure for DO terms only considers is-a relationships, and the corresponding weight 𝑤𝑒 is preset to 

be 0.7. 

Also, for a given term 𝐴, the total semantic contribution of 𝐴, 𝑆𝑉(𝐴) in 𝐷𝐴𝐺𝐴 is given on equation 

2. 

𝑆𝑖𝑚𝑊𝑎𝑛𝑔(𝐴, 𝐵) =
∑ 𝑆𝐴(𝑡) + 𝑆𝐵(𝑡)𝑡∈𝑇𝐴∪𝑇𝐵

𝑆𝑉(𝐴) + 𝑆𝑉(𝐵)
 

(2) 

For computing such metrics, the R software package DOSE [24] was used, which is part of the open-

source software for bioinformatics Bioconductor. Figure 3 shows a heatmap representing pairwise 

similarities among some DO terms. For instance, let 𝐴 a vector of DO ID terms as follows on equation 

3. 

𝐴 = (8498,409,2841,850,2914,7148,8857) (3) 
 



The seven terms on vector 𝐴 represent, respectively, the diseases in the following set: 

(osteoarthritis, liver disease, asthma, lung disease, immune system disease, rheumatoid arthritis, 

lupus erythematosus). We define a matrix 𝑆, such that the value on position 𝑆𝐴𝑖,𝐴𝑗 represents the 

similarity 𝑆𝑖𝑚𝑊𝑎𝑛𝑔(𝐴𝑖 , 𝐴𝑗), with the graphical representation on Figure 2. 

Also, Figure 2 displays where in the ontology the terms on vector 𝐴 are placed, with respect to their 

relationships and hierarchies between other terms. Moreover, the relationship has-subclass is equivalent 

to is-a in the way that, if A is-a B, then B has-subclass A. 

 
Figure 2: Graph representing path-to-root concepts of six diseases in DO. Source: Author 

 

 
Figure 3: Pairwise similarities between DO terms. Source: Author 

 



As can be seen on Figure 3, rheumatoid arthritis has a high similarity with osteoarthritis because 

both diseases have a relationship is-a with arthritis. Also, since rheumatoid arthritis is-a 

autoimmune disease of musculoskeletal system together with lupus erythematosus, such DO terms 

have higher pairwise similarity when comparing lupus erythematosus with osteoarthritis. 

 

Calculating groupwise (dis)similarities 

Each row in the hospitalization’s dataset represents a hospital entry, which refers to a unique patient. 

As aforementioned, each entry contains data about the diseases a patient has. Hence, each instance on 

the dataset is characterized as a single group of DO terms. With the previous definitions, only pairwise 

similarity metrics between classes in the ontology can be computed. Then, for calculating similarities 

between set of diseases i.e., groupwise similarities, other approaches were required. 

For instance, consider an ordered set 𝐶 containing 𝑛 terms from DO, and an example instantiation 

of C in which 𝑛 =  4, as shown on equation 4. 

C =  {𝒍𝒖𝒑𝒖𝒔 𝒆𝒓𝒚𝒕𝒉𝒆𝒎𝒂𝒕𝒉𝒐𝒔𝒖𝒔, 𝒓𝒉𝒆𝒖𝒎𝒂𝒕𝒐𝒊𝒅 𝒂𝒓𝒕𝒉𝒓𝒊𝒕𝒊𝒔, 𝒍𝒊𝒗𝒆𝒓 𝒅𝒊𝒔𝒆𝒂𝒔𝒆, 𝒂𝒔𝒕𝒉𝒎𝒂} (4) 
Also, let 𝐷 ⊆  𝐶 the subset representing the diseases a patient suffers, and an example instantiation 

of 𝐷, as on equation 5. 

D =  {𝒓𝒉𝒆𝒖𝒎𝒂𝒕𝒐𝒊𝒅 𝒂𝒓𝒕𝒉𝒓𝒊𝒕𝒊𝒔, 𝒂𝒔𝒕𝒉𝒎𝒂} (5) 
Any subset of diseases in 𝐶 may be a represented as a document vector 𝑣, i.e., a 𝑛 - dimensional 

binary vector, in which each coordinate represents if the concept of 𝐶 is in 𝐷. Thus, in this case, 𝑣𝐷
𝑇  =

 (0 1 0 1). This representation is useful and broadly used in Natural Language Processing models and 

some machine learning techniques that rely on similarity measures between instances of data. 

 

Cosine (dis)similarity 

Considering 𝑥, 𝑦 vectors in the n-dimensional space, cosine similarity between these vectors is 

represented as on equation 6. 

𝐺𝑆𝑖𝑚𝑐𝑜𝑠(𝑥, 𝑦) =
𝑥 ∙ 𝑦

‖𝑥‖‖𝑦‖
 (6) 

 

The operation 𝑥 ∙ 𝑦 represents the usual ℝ𝑛 inner product and ‖𝑥‖ represents the Euclidian 

magnitude of a vector 𝑥 ∈ ℝ𝑛. 

Also, this similarity metric follows the property shown on equation 7. 

∀(𝑥, 𝑦) ∈ ℝ𝑛 × ℝ𝑛: 0 ≤ 𝐺𝑆𝑖𝑚𝑐𝑜𝑠(𝑥, 𝑦) ≤ 1 (7) 
Therefore, cosine dissimilarity is defined on equation 8. 

𝐺𝐷𝑆𝑖𝑚𝑐𝑜𝑠(𝑥, 𝑦) = 1 − 𝐺𝑆𝑖𝑚𝑐𝑜𝑠(𝑥, 𝑦) (8) 
Even though this metric represents, at some way, groupwise disease similarities, ontologies are not 

considered as semantical enrichment artifacts. Therefore, according to [8], data mining techniques 

relying in these metrics may lead to less genuine understanding of patterns discovered, due to the lack 

of semantics. 
Hence, section 6.2 provides an ontologically well-founded (dis)similarity metric that may be 

considered as an extension of the original cosine similarity and is inspired on [12] work, which applies 

the metric on the domain of radiology. 

 

Semantically aware cosine (dis)similarity 

For introducing semantic similarity between document vectors, [12] first define (in their words, in a 

loosely way) the similarity between two concepts 𝐶1, 𝐶2 in an ontology as shown on equation 9. 

𝑆𝑖𝑚(𝐶1, 𝐶2) =
1

𝑑
 

(9) 



Where 𝑑 is the number of nodes in the shortest path between concept nodes (inclusive of) 𝐶1 and 𝐶2. 

However, the authors clarify that other similarity measures can be used, as long as it preserves the basic 

property that increasing distance within the ontology is concomitant with a decrease in semantic 

similarity. Hence, the similarity measure defined by [11] for DO terms will be used, as displayed on 

equation 10. 

𝑆𝑖𝑚(𝐶1, 𝐶2) = 𝑆𝑖𝑚𝑊𝑎𝑛𝑔(𝐶1, 𝐶2) (10) 

Henceforward, each term of the domain ontology brought up by the dataset, together with all 

the other concepts in their paths-to-root (a.k.a. seed concepts), will represent each coordinate of the 

document vectors which will be further analyzed. However, Wang pairwise similarity measure already 

represents the weight of seed concepts in its formula. Hence, in this work, only the Disease Ontology 

terms presented on the explored dataset will be considered, and such group of diseases will be 

represented as a set 𝐶, called context set. 

Finally, with the definitions above, the DO terms groupwise similarities, 𝐺𝑆𝑖𝑚𝑊𝑎𝑛𝑔 
(𝐴, 𝐵), with 

respect to a context can now be computed. Hence, let 𝐶 =  {𝐶1, 𝐶2, . . . , 𝐶𝑛} be a set of diseases 

representing the context set and let two group of disease terms, namely, 𝐴 and 𝐵, which by definition, 

𝐴, 𝐵 ⊆  𝐶. Then, groupwise similarity considering semantic is represented on equation 11. 

 

 

𝐺𝑆𝑖𝑚𝑊𝑎𝑛𝑔(𝐴, 𝐵) =
∑ max

𝑎∈𝐴
𝑆𝑖𝑚𝑊𝑎𝑛𝑔(𝑎, 𝑐)𝑐∈𝐶∩(𝐴∪𝐵) ∙ max

𝑏∈𝐵
𝑆𝑖𝑚𝑊𝑎𝑛𝑔(𝑏, 𝑐)

√∑ (max
𝑎∈𝐴

𝑆𝑖𝑚𝑊𝑎𝑛𝑔(𝑎, 𝑐))
2

𝑐∈𝐶∩𝐴 ∙ √∑ (max
𝑏∈𝐵

𝑆𝑖𝑚𝑊𝑎𝑛𝑔(𝑏, 𝑐))
2

𝑐∈𝐶∩𝐵

 
(11) 

  
Also, this similarity metric ranges from 0 to 1, therefore, dissimilarity is derived as on equation 12. 

 

𝐺𝐷𝑆𝑖𝑚𝑊𝑎𝑛𝑔(𝐴, 𝐵) = 1 − 𝐺𝑆𝑖𝑚𝑊𝑎𝑛𝑔(𝐴, 𝐵) (12) 

  
For instance, let’s calculate the similarity between group of DO terms for context 𝐶, as in 

Table 3. 

 

 

Table 3 
Values for computing DO terms groupwise similarities. Source: Authors 

 asthma liver 
disease 

lung 
disea
se 

immune 
system disease 

rheumatoid 
arthritis 

𝐴 = {𝑎𝑠𝑡ℎ𝑚𝑎, 𝑙𝑖𝑣𝑒𝑟 𝑑𝑖𝑠𝑒𝑎𝑠𝑒} 1 1 0.65 0.36 0.13 
𝐵 = {𝑟ℎ𝑒𝑢𝑚𝑎𝑡𝑜𝑖𝑑 𝑎𝑟𝑡ℎ𝑟𝑖𝑡𝑖𝑠} 0.084 0.13 0.13 0.26 1 

 

Similarity between groups of diseases 𝐴 and 𝐵 is then calculated as in equation 13 and 14. 

 

𝐺𝑆𝑖𝑚𝑊𝑎𝑛𝑔(𝐴, 𝐵)

=
1 ∙ 0.084 + 1 ∙ 0.13 + 0.65 ∙ 0.13 + 0.36 ∙ 0.26 + 0.13 ∙ 1

√12 + 12 + 0.652 + 0.362 + 0.132 ∙ √0.0842 + 0.132 + 0.132 + 0.262 + 1
 

(13) 

  
  

𝐺𝑆𝑖𝑚𝑊𝑎𝑛𝑔(𝐴, 𝐵) = 0.1824 (14) 

  
Therefore, in this work, both semantically aware and unaware groupwise dissimilarities were 

calculated. Figure 4 shows how smooth dissimilarity is when enriching data with semantics, while 

semantically unaware measures lead to false dissimilarities between data objects, which potentially may 

impact on further cluster analysis. 



 
Figure 4: Heatmaps of groupwise dissimilarities using semantically unaware (left) and semantically 
aware (right) metrics. Source: Author 

 

Hospitalizations cluster analysis 

On [26], clustering is defined as the process of grouping a set of data objects into multiple groups or 

clusters so that the objects within a cluster have high similarity but are very dissimilar to objects in 

other clusters. Euclidian and Manhattan distance are often used as dissimilarity measure on clustering 

techniques. However, in this study, clustering analysis will rely on both cosine similarity and cosine 

similarity based on the prior mentioned Wang [11] measure. 

This work focuses on the use of the K-medoids clustering technique [27], which is a Partitioning-

Based clustering algorithm that is scalable and compatible to cluster objects upon precomputed 

dissimilarity metrics, which is the case of the data in this study. 

Also, for choosing clustering algorithm parameters (such as the number of clusters) this work relies 

on the Silhouette Coefficient [28] as a metric which we want to maximize. Such metric, based on the 

intra-cluster and extra-cluster distances, provides information regarding the quality of the clusters. 

For making use of such algorithms, Scikit-learn [29] implementation of K-Medoids and Silhouette 

Score on Python programming language [30] was used. 

The average silhouette coefficient was then calculated for each instance of K-medoids application, 

on both semantically aware and unaware dissimilarity data and for different numbers 𝑘 of clusters, 

ranging from 2 to 15. As seen on Figure 5, the optimal number of clusters 𝑘 =  𝑘∗, which maximizes 

the average silhouette score was, on the semantic aware case was 𝑘𝑛𝑜𝑠𝑒𝑚
∗  =  4 and on the semantic 

unaware case was 𝑘𝑠𝑒𝑚
∗  =  5, where each clustering obtained, respectively, scores of 0.277108 and 

0.12143. 



 
Figure 5: Comparing average silhouette score for different number of clusters. Source: Author 

 

The obtained results regarding the quality of the clustering on both treated data are in fact 

encouraging. The bar plot displayed on figure 6 shows that not only the average silhouette is clearly 

higher, but the metric evaluated individually for each data point is clearly higher on the overall. Also, 

cluster 0 of the cosine dissimilarity clustering has mainly negative silhouette scores. Moreover, when 

clustering the semantically aware data, the average silhouette score was higher than 83% (386 out of 

465) of the observations on the semantically unaware scenario. 

 
Figure 6: Bar plot with values of silhouette score for each data point. Source: Author 

 

Dimensionality reduction 

In this work, Multidimensional Scaling MDS [31], a dimensionality reduction technique was useful 

to transform groups of DO terms dissimilarities into points in the cartesian plane. Therefore, both charts 



displayed on Figure 7 were possible. Moreover, information regarding both the clustering results and 

the obtained silhouettes scores were represented, respectively, by introducing different colors and radius 

sizes for each point. Also, for every cluster, the medoid point was represented with a black cross, where 

it emerges a box displaying all DO terms presented by the highest 4 silhouette scored group of diseases 

of each cluster. 

The results shown in Figure 7 are crucial to make explicit how clustering results are improved when 

adding semantics to data. While on the left chart clusters are overlapping (one more evidence to explain 

the low silhouette scores obtained), the one in the right, shows how the clusters were better separated, 

thus way closer to the main objective of this technique, which is to maximize intra-cluster similarities 

and maximize inter-cluster similarities. Lastly, our results evidenced the benefit of “Higher probability 

of clustering results that reflect real-world categorizations”, exactly as mentioned by [8]. When 

comparing both scenarios, the semantically unaware clusters grouped diseases which are, by common 

sense, dissimilar to each other; on the other hand, semantically aware clusters reflected real-world 

categorizations, i.e., diseases within the same cluster are clearly more similar to each other. 

 

 
Figure 7: Graphical representation of clustering on semantically unaware (right) data and semantically 
aware (left) data. Source: Author 

Conclusions 

This work proposes a semantic awareness application of the Data Science Lifecycle on the COVID-

19 domain and shows the benefits of considering ontologies and other semantic structures as tools for 

enhancing ML techniques. 

Even though there are ontology terms groupwise metrics in the literature, they are not as present and 

accessible as the ones measuring pairwise similarities. So, in the context where groupwise distance 

between sets of objects are required, an adaption of the [12] proposal for calculating groupwise 

similarities was made so [11] was computed. 



The benefits of enriching a disease dissimilarity metric with context information were evident. 

Firstly, when calculating groupwise similarities, Cosine Similarity, as shown on Figure 4 led to context 

inaccurate (dis)similarities between data objects and was pointed that could lead to bad results later, 

during cluster analysis. Figures 5 and 6 shows how the overall silhouettes score (i.e.) on an overall are 

considerably higher when enriching data with semantics. 

Figure 7 aims at giving the reader a visualization of the most important results in a nutshell. It 

displays the overlapping clusters, which is a result of the semantically unaware similarity calculation. 

Also, such visual results agree with silhouette values found on the Data Pre-Processing step. On the 

other scatter plot, where data is semantically enriched, intra-clusters distances were minimized, and 

inter-cluster similarities were maximized. Finally, an analysis of the group of diseases grouping is 

visually represented on Figure 7. 

Future Works 

In this work, text treatment step on this work did not rely on modern Natural Language Processing 

(NLP) techniques. Leading, to manual tasks such as linking terms in the DO with data regarding 

comorbidities of the hospitalized patients. Therefore, as future work, such step can be automatized so 

more information can be considered. 

Also, enriching similarity pairwise metric by not only considering is-a relationships, but many others 

an ontology can provide. Also, such as the work of [8], the use of foundational ontologies and their 

associated metaproperties can also be applied for a project using the Data Science Lifecycle. Hence, 

OntoCovid and OntoTB [32,33] are well-founded ontologies that may help when applying ML 

techniques. 

An analysis on how clustering results are associated with mortality and to the use of mechanical 

ventilation will be made. Therefore, semantically enrichment of data could serve as an tool for better 

results on data-driven decision making. 
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