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Abstract  
The paper proposes a method for detecting the trend component in short time series using the 

wavelet test. The test for trend is based on the wavelet decomposition of a time series using the 

Haar wavelet. Numerical studies have shown that the proposed method allows detecting the 

presence of various trend components in short time series (from 8 values). The results show 

the advantages of the wavelet test over many known statistical ones when detecting a trend in 

time series of small length. The sample value of the test can be used as a feature for the 

classification or clustering of time series by machine learning methods. 
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1. Introduction 

During the study of time series, the question of the regularities of their dynamics over a long period 
of time is of great importance. Cognition of regularities of changes in time is a complicated and time-

consuming research procedure since any phenomenon under study is formed by many factors acting in 

different directions. One of the most important tasks in the study and analysis of time series is to identify 

and statistically evaluate the main trend of the process and deviations from it. 
One of the complex concepts of time series analysis is the concept of trend. However, it should be 

noted that the trend of a time series is a rather conventional concept. A trend is understood as a regular, 

non-random component of a time series (usually monotonic), which can be calculated according to a 
well-defined explicit rule. The trend of a real time series is often related to the action of natural (e.g., 

physical) acts or some other objective regularities. However, it is quite difficult to uniquely divide a 

time series into regular parts (trend) and fluctuations (residual) [1,2]. Therefore, in practice, in various 

fields of science and technology, in particular related to infocommunications and information 
technology, it is usually assumed that a trend is some function or curve of a fairly simple type (linear, 

quadratic, etc.) that describes the "average behavior" of a series or process [3-6]. 

An effective tool for studying time series is the multiresolution wavelet analysis, which allows 
decomposing a time series on an orthogonal basis, formed by shifts and multiresolution copies of a 

wavelet function [7]. The analyzed time series is divided into two components: approximation and 

detail, with their subsequent splitting to change the decomposition level of the series. 
Recently, a series of works have been published where the trend component was determined using 

discrete wavelet transform (DWT). In [8], a trend analysis and variance estimation at different 

frequencies in precipitation series based on wavelet analysis were carried out, the results of which were 

used to cluster groups of precipitation and meteorological systems. The authors of [9] developed a 
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method for modeling time series with a variable structure based on wavelets for locally stationary 
processes with the inclusion of trend components. The authors also proposed a method for processing 

the limit of a time series, which applies to data of any length that has trends, by calculating a discrete 

wavelet transform. The authors of the study [10] used wavelet analysis to determine the time trend of 

air temperature. The influence of the trend on the flow of forest streams around their average values 
was also analyzed. In [11], the authors conduct research to identify trends based on discrete wavelet 

transform. The authors propose a test for determining the best wavelet type and decomposition level 

that provides the best wavelet approximation to the original time series.  
The authors of [12] studied wavelet transform methods for the analysis of non-stationary time series 

and focused on the extraction of second-order components from non-stationary time series and their 

application in various applications. In [13], the authors proposed a methodology for trend analysis of 
non-stationary time series based on wavelet analysis, taking into account the best characteristics of 

wavelet transform and their impact on trend detection. The authors considered various types of trends 

and discrete wavelets. 

To identify trends in time series, the authors of [14] developed a method based on discrete wavelet 
transform and k-means clustering. Based on the wavelet reconstruction of the signal, it is possible to 

determine the most significant interval of change in the dynamics of the time series. The authors of [15] 

analyzed the structure of time series of air temperature, precipitation, and river runoff using wavelet 
analysis. This made it possible to investigate the nature of river flow patterns and identify dependencies 

on natural and artificial processes. 

It should be noted that most of the research works use the discrete wavelet transform to identify the 
trend component on a long time interval when the time series has a sufficiently big length. However, 

many tasks require determining the presence of a trend in a very short series, starting from a tenth value. 

For example, such problems include the detection of gamma-ray bursts [16-18]. The duration of a 

typical gamma-ray burst is a few seconds, during this time period it is possible to obtain a maximum of 
60 values, the sequence of which has a trend. Thus, one of the actual tasks of time series analysis is the 

detection of a trend component in short time series [19,20]. 

The objective of this study is to develop a test to detect the presence of a trend in short time series 
based on the discrete wavelet transform. 

2. Problem statement 

The task of this study is to develop a test to detect the presence of a trend in short time series, which 

is based on the decomposition of the time series using the discrete wavelet transform. Consider that the 
time series consists of two components, trend and white noise: 

( ) ( ) ( )S t T t t  , 

where S(t) is the input time series, 1,t N ;  T(t) is a trend, generally being some deterministic function 

of time (linear, polynomial, exponential, logarithmic, etc.); t is white noise with normal distribution 
N(0,σ). 

It is necessary to develop a statistic test K(S,N,wavelet), where S(t) is the input time series, N is a 

length of time series, wavelet is a type of wavelet function used in discrete wavelet decomposition of 
time series. The null hypothesis H0  is assumed that the series of observations does not contain a trend, 

the opposite hypothesis H1 is, that the time series contains a trend. The acceptance or rejection of the 

non-trend hypothesis is carried out with the given significance level α. 

3. Discrete wavelet transform 

Wavelet analysis is a frequency-space analysis of signals. The idea of using wavelets is to 

decompose a signal ( )X t  using a basis formed by shifts and different-scale copies of the basis (mother) 

prototype function ( )t . The basic functions ( )t  are called wavelets if they are defined on the space 
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of complex-valued functions with bounded energy, oscillate around the abscissa axis, rapidly converge 

to zero, and satisfy the condition ( ) 0t dt




 . 

There are continuous and discrete wavelet transforms. Continuous wavelet transform is a 
decomposition of a signal by all possible shifts and compressions/extensions of some function - 

wavelet: 

( , ) ( ) ( , , ) , , , 0C a b s t a b t dt a b R a




   , 

where wavelets ( , , )a b t  are scaled and shifted copies of the generating wavelet ( )t . The variable '𝑎' 

defines the scale of the wavelet and is the inverse of the frequency in the Fourier transforms, and the 

variable '𝑏' is the shift of the wavelet along the signal from the starting point in its definition range, 

whose scale completely repeats the timeline of the analyzed signal. 

DWT provides enough information both for signal analysis and for its synthesis, being at the same 
time economical in the number of operations and in the required memory. The DWT operates with 

discrete values of parameters a  and b , which are set, as a rule, in the form of power functions: 

2 , 2 , ,j ja b k j k Z     , 

where Z  is a space of integers, j  is a scale parameter, k  is a shift parameter. 

One of the fundamental ideas of DWT signals is to divide the studied signal into two components - 

approximation and detail - with their subsequent fragmentation in order to change the level of signal 

decomposition [7,21]. This is possible both in the temporal and in the frequency range of signal 

representation [22,23]. The number of practically used wavelets by scale coefficient j  defines the level 

of signal decomposition. Usually during the processing of the time series ( )X t  of volume n  the wavelet 

analysis is performed by decomposing the series into functions of detail of different scale j (0 )j N   

with maximal value 2[log ]N n . The value of the scale index 0j   corresponds to the case of 

maximum scale - the most accurate approximation, that is equal to the initial series ( )X t , consisting of 

0 2Nn   counts. With increasing j , there is a transition to a rougher resolution. 

Discrete wavelets are used in pairs with the associated discrete scaling functions , ( )J k t . The 

decomposition of time series, performed by using DWT, consists in splitting the studied series into two 
components: approximation and detail components, with the further similar splitting of the 

approximation component to the specified decomposition level. The time series ( )X t  is represented as 

a sum of approximation Napprox (t)  and details jdetail (t) : 

                              
NN jN Na

N j J,k j,k
j 1 k 1 j 1 k 1

X(t)=approx (t)+ detail (t) apr(N,k) (t) det( j,k) (t)
   

       ,   (1) 

where N  is the selected maximum decomposition level, jN  is the number of detail coefficients at the 

level of j , aN  is the number of approximation coefficients at the N  level. 

For the given mother wavelet   and the corresponding scaling function  , the approximation 

coefficients apr( , )j k  and the detail coefficients det( , )j k ,j kd  of the DWT for the process ( )X t  are 

defined as follows: 

 , ,apr(j,k) ( ) ( ) , det(j,k) ( ) ( )j k j kX t t dt X t t dt 
 

 

   , (2) 

where    / 2 / 2
, ,2 2 ; 2 2j j j j

j k j kt k t k          . 

The classical form of multiresolution analysis transforms the time series into a hierarchical structure 

by using wavelet transforms. The hierarchical representation greatly simplifies the analysis of the 
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investigated process. One of the most popular wavelets, also because of its simplicity, is the Haar 

wavelet. Its mother function   and the corresponding scaling function have the form: 

                                 
1, 0 1;

(t)
0, [0,1).

t

t


 
 


,        

1
1, 0 ;

2

1
(t) 1, 1;

2

0, 0, 1.

for t

for t

for t t




 




   


 



 (3) 

and shown in figure 1. 

 

a)                                         b) 

Figure 1: Haar wavelet: (a) mother function  , (b) scaling function   

In this case, the decomposition of the input time series (1) is performed as follows. The input of the 

realization is the time realization ( ) { }, 1,jS t S j n  . For each pair of elements of the series with the 

indices 2j and 2j+1 let's assign two values: 

2 2 1 2 2 1
,

2 2

j j j j

j j

s s s s
v w

  
 

. 

These values form approximation { }j   and detail components { }jw w  of the original time 

series { }jS . The component { }j  is a roughened version of { }jS , and the component { }jw  contains 

the detailed information needed to reconstruct the original series: 

2 2 1, ,j j j j j js v w s v w j    Z
.  

Signal reconstruction is performed according to the formulas: 

( 1) ( ) ( ) ( 1) ( ) ( )

2 2 1 0 0 1, , , , 1,..., 1i i i i i i

j j j j j jv v w v v w j i i i i 

       Z . 

These formulas define the forward and inverse Haar transform of a one-dimensional discrete signal. 

Apply a similar operation to the approximation component { }j  and obtain two new approximation 

and detail components. Then choose the maximum resolution level i1 . Then recursive formulas for 

computing the approximation and detail components on the level 0 1i i
 will be as follows 

 
1( )

,
i

j jv s j Z. .
. (4) 

4. The basic trend components of time series 

A trend is a general systematic component that changes consistently over time. The basic 

mathematical trend models are presented in Table 1:  
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Table 1 
Trends models  

Name Formula 

Linear ty a b t    

Exponential  t

ty a k   

Hyperbolic  /ty a b t   

Power  b

ty a t   

Polynomial  2

1 2 ... m

t my a b t b t b t         

Logarithmic  logty a b t    

Logical max min
min

1
;

1 1
t ta b t a b t

y y
y y y

e e   


  

 
 

The linear type of trend (Fig. 2) is appropriate for displaying the trend of approximately uniform 

change in the amplitude of the time series. The reason for such behavior lies in the influence of 

differently directed and differently accelerated forces of factors, which are mutually averaged, partially 
mutually extinguished, and the resultant becomes a character close to a uniform one. A polynomial 

trend (Fig. 3) usually describes data changing smoothly in different directions. A parabolic trend is the 

most common. In this case, the dynamics of time series is characterized by approximately constant 
acceleration of absolute changes in the amplitude. 

  

Figure 2: Linear trend                   Figure 3: Polynomial trend 

Power trends (Fig. 4) are used when the data consists of the results of observations, the values of 

which increase smoothly with increasing speed. The hyperbolic form of the trend (Fig. 5) is suitable for 

displaying the trend, and processes limited by the level limit value. 

 

Figure 4: Power trend                 Figure 5: Hyperbolic trend 

The logarithmic trend equation (Fig. 6) is used when the process under study leads to deceleration 

of the index growth, but the growth does not stop but tends to some limited limit. The logarithmic trend, 
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like the hyperbolic trend, represents a gradually decreasing process of changes. The exponential trend 
(Fig.7) corresponds to processes developing in an environment that does not create any limits for the 

growth of levels. 

 

Figure 6: Logarithmic trend                    Figure 7: Exponential trend 

5. Experiment description 

The main idea of obtaining the trend wavelet test was that at each next level of time series 

decomposition the size of its approximation and details components decreases by half. Thus, at the last 
level of decomposition, the approximation component contains only two elements. Fig. 8 shows the 

decomposition of time series with a length of 32 values, obtained by formulas (2). At level 4 the 

reconstructed time series containing a trend has a clearly expressed difference in values. 
The greater the amplitude of the trend, then the difference in values is greater. Fig. 9 shows the 

approximation components of the last level of time series decomposition with the trend (dashed line) 

and without trend (solid line). Numerical studies have shown that the Haar wavelet, due to its shape, 
allows to obtain a better result and to detect the presence of a trend. 

Thus, as a test for the presence or absence of a trend, it is advisable to choose a random value 

( , , ) ( 1 2),K S N Haar wavelet abs A A   

where A1 and A2 are values of the approximation component of the time series at the maximal level of 

decomposition. 
In order to use the proposed test with the aim to accept or reject the hypothesis that the time series 

does not contain a trend, i.e. represents independent values of a normal random variable, it is necessary 

to investigate the random variable ( , , )K S N Haar wavelet  for different types of trend and length of time 

series. The functions presented in Table 1 were selected as trend components. Figure 10 shows a model 

time series ( ) ( ) ( ).S t T t t   

6. The experiment results and discussion 

During the research, a sample of time series of 10,000 values were simulated for each type of trend. 

The numerical experiment showed that the value ( , , )K S N Haarwavelet  has a normal distribution with 

zero mathematical expectation and mean square deviation depending on the length of the time series. 

This allows calculating the region of acceptance easily enough. If a sample value is in the interval 

   
;1 ;

2 2

, , , ,sampleN N
K S N Haarwavelet K K S N Haarwavelet 



   
    

   
, then the null hypothesis H0 

is accepted with a significance level  . Otherwise, the hypothesis is rejected (Fig. 11). Table 2 shows 
the values of the regions of acceptance for different lengths of time series. To carry out a comparative 

analysis, the following tests of trend presence were also considered: series test, inversion test, extremum 

test Spearman rank correlation, Foster-Stewart test, Fisher test, and Student's test [3,24,25].  
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Figure 8: Decomposition of the time series using the Haar wavelet 

 
Figure 9: Approximation components with the trend (dashed line) and without trend (solid line).  
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Figure 10: Model trend (top) and time series with trend (bottom)  

 
Figure 11: Sample distribution density ( , , )K S N Haar wavelet   

Table 2 
Regions of Acceptance 

Number of time series values  Regions of acceptance with α=0.05 

N=8 −0,482 ≤ sampleK ≤ +0,482 

N=16 −0,2835 ≤ sampleK ≤ +0,2835 

N=32 −0,17318 ≤ sampleK ≤ +0,17318 

A numerical experiment similar to the one described above was carried out and the best results in 

identifying the trend were obtained using the series test. A series is a sequence of observations of the 

same type, before and after which the observations of the opposite type are followed. The number of 

series S appearing in the sequence of observations of length N will have a certain sampling distribution. 
To test with significance level α, it is necessary to compare the observed value of the number of series 

with the limits of the regions of acceptance 
;1

2
N

S 


 and 
;

2
N

S  . 

Table 3 shows the probabilities of type II error, i.e. deciding that the time series does not contain a 

trend when indeed there is a trend. The results are presented for the wavelet test and the series test. The 

probabilities were calculated for a sample of 10,000 values and the significance level 0.5  .  The 
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conducted numerical experiment showed the advantage of the proposed test over the many known 
statistical ones, especially when identifying the trend in the time series of up to 10 values. It should be 

noted that the worst result in both cases is the detection of a hyperbolic trend. This is explained by the 

fact that with this trend (Fig. 5), most of the time series is close to the asymptotic value. 

Table 3 
Probabilities of type II error 

Trend  
Wavel

et test 
Series test 

Wavelet 

test 
Series test 

Wavelet 

test 
Series test 

 8 values 16 values 32 values 

Linear 0.22 0.98 0.005 0.10 0 0.01 

Polynomial 0.24 0.99 0.01 0.18 0 0.14 

Exponential 0.23 0.99 0.005 0.10 0 0.01 

Hyperbolic 0.83 1 0.70 0.62 0.06 0.67 

Power 0.25 0.99 0.05 0.10 0 0.01 

Logarithmic 0.45 0.98 0.05 0.26 0 0.09 

7. Conclusion 

In this paper, we proposed a trend test based on the wavelet decomposition of the time series using 

the Haar wavelet function. It was shown that the test values have a normal distribution. The regions of 
acceptance about the absence of a trend for different lengths of time series have been calculated. It is 

shown that the proposed test allows to detection of the presence of a trend in time series of small length, 

starting from 8 values. Numerical studies have shown that the proposed test applies to the majority of 

trend functions, but is poorly suited to identify trends whose functions tend to the asymptotic value. 
Numerical comparative analysis with the series test was performed. The results indicate the advantages 

of the wavelet test for trend detection in time series of up to 30 values. 

The results demonstrate the possibility to use the sample value of the criterion as one of the features 
for the classification or clustering of time series. Future research will focus on this direction. 
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