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 Abstract  
The paper considers a problem of enhancing the quality of pairwise comparisons within the 

Analytic Hierarchy Process (AHP). A situation when an expert, who is accountable for 

providing judgments in the form of pairwise comparisons, is not a person of a good integrity. 

They want to boost up a certain alternative but don’t want to claim its advantage explicitly. 

Then applying procedures for rectifying inconsistency definitely shall result in order violations, 

and the system of automated decision making should decide what to do with that. An approach 

based on weighted systems of linear algebraic equations is considered. Some ways of choosing 

appropriate weights for counteracting manipulations are suggested. 
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1. Introduction 

Systems and tools for automated algorithmic-driven decision making are widely proliferated now. 

A very significant place among the algorithms applied in these systems is taken by the Analytic 

Hierarchy Process (AHP) suggested by T.Saaty [1-6 et al.]. AHP typically considers different connected 
levels of hierarchy, each of them involves estimations given by experts – usually in the form of pairwise 

comparisons between given alternatives. But there are many problems related to improving initial 

pairwise comparisons even if there is only one level of hierarchy. 

Let there be n alternatives making a set 𝐴 = {𝑎1,… , 𝑎𝑛}, and let M be a pairwise comparison matrix 

(PCM) provided by an expert. As a matter of fact, the matrix M represents some relation of preference. 

Namely, 𝑚𝑖𝑗 > 1 if 𝑎𝑖 ≻ 𝑎𝑗, and 𝑚𝑖𝑗 = 1  if  𝑎𝑖 ∼ 𝑎𝑗 . Numerical values 𝑢𝑖 = 𝑢(𝑎𝑖) representing 

measures of importance for each alternative can be obtained as the components of the Perronian vector, 

denoted as 𝑦 = 𝒴(𝑀), that is the normalized eigenvector of M. Typically, 𝑢(𝑎𝑖) = 𝑦𝑖 . The other widely 

used way to get the importance of each alternative is to calculate the geometric mean of the 
corresponding row. The most popular scale of preference being used for comparing alternatives is 

probably the original Saaty scale presented in [1] (1 stands for the parity of two compared alternatives, 

the values 2, 3, …,9 are the sequential grades of preference). Many other scales and approaches to 
building such scales have been suggested [6-11 et al.]. 

The logarithmic form of PCMs [12] is widely applied. A matrix C is a logarithmic form of the PCM 

M if its elements are as follows: 

𝑐𝑖𝑗 = log𝜏𝑚𝑖𝑗 , 𝑖, 𝑗 = 1, 𝑛̅̅ ̅̅ ̅ 

where 𝜏 is a chosen logarithm base. In this paper there is no reason for stipulating any specific values 

for 𝜏  though this question might matter in some other contexts. What is really essential is that 
transforming the initial PCM to the logarithmic form allows to get additive pairwise comparisons [6]. 
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It is very helpful for analyzing consistency and for developing procedures for improving it, which is 
the main point of the paper. 

The great problem is that initial PCMs directly provided by experts may be not of sufficient quality. 

Classical concepts of cardinal and ordinal consistency are ubiquitous, a lot of different indicators of 

inconsistency as well as plenty of approaches for rectifying inconsistency have been suggested [1, 6, 
13-24 et al.], many of them are frankly heuristic. Since Saaty had suggested his famous inconsistency 

threshold (numbering 0.1) that has been permanently debated and reviewed (one well-known 

recommendation is that this threshold should be reduced to 0.05). Anyway, such approaches may yield 
good results in normal situations but not be so good if things are not that normal. Many studies are 

focused on the problem of mere improving consistency which often is confused with the problem of 

quality, whereas those problems are not the same. First of all, for an arbitrary square positive matrix 
claimed to be a PCM (even if it is generated randomly and moreover even if it is not an inverse-

symmetric, in other terms reciprocal, matrix) we can easily construct the ideally consistent matrix with 

the same Perronian vector [e.g., 6]. If a procedure for rectifying inconsistency came to such a matrix 

with preserving the initial disorder, such a result obviously would not be good. 
It appears very important to make plausible assumptions about possible sources of inconsistency. It 

may result from various “benign” factors such as objective difficulty with estimating alternatives, lack 

of the experts’ awareness, errors caused by overlooks, inaccuracy, distraction etc. But there may be 
factors of another sort, which can be characterized as “malignant”. An expert, who is accountable for 

providing judgments in the form of pairwise comparisons, may be not a person of good integrity. 

Suppose they want to boost up a certain alternative which is doubted to be the best one, but don’t want 
to claim its advantage explicitly. Then, being aware of the algorithms for decision making implemented 

in the given system, they likely shall manipulate with pairwise comparisons to deceive the algorithms 

and force them to make an improper resolution. In addition to this, a board responsible for organizing 

the process of decision making may be not of sufficient integrity as well. They can, for example, involve 
dummy technical alternatives, impose irrelevant criteria etc. Such strategies are integrally related to 

situations of so-called order violations. 

An order violation is a situation when 𝑢(𝑎𝑖) < 𝑢(𝑎𝑗) whereas 𝑎𝑖 ≻ 𝑎𝑗. Order violations are 

ultimately inevitable if the relation represented by a PCM M is non-transitive, but such situations may 

occur for transitive relations as well and do so even if the given PCM is comparatively consistent. 
Many techniques for enhancing consistency, being applied to an initial PCM which is ordinally but 

not of sufficient cardinal consistency and features an order violation, shall result in getting another 

PCM, which will be free of this flaw. A resulting PCM may be very consistent and sometimes be in a 

good accordance with the initial Perronian vector, this will be showcased below. Such a result may be 
good for “benign” situations (though may be not). But if there is a manipulation, it’s just a false 

improvement of the given PCM. It is exactly what the manipulator wanted, which is to let algorithms 

make a judgment desirable for the manipulator despite their tricky estimations seemingly contradicting 
to that. And then a blame of an improper decision may be put on designers of algorithms but not on the 

manipulator. Technically, in such a situation when an expert states in their PCM that A is better than B 

but wants the algorithms to decide that B is better than A, just an order violation, which is an intentional 
order violation, shall be an integral part and a main goal of the whole manipulation. If such a foul play 

really took place, and an order violation has been detected, the latter may be considered as a telltale 

sign of a manipulation – but that might be not that case, that could be merely an accidental mistake. 

Basically, there may be an opportunity to consult other experts and to form an average PCM based 
on many estimations. But sometimes this may be impossible. In addition to this, experts’ opinions may 

be not independent, and/or they may be biased because of a common influence. So, we are still regarding 

the “pure” case when there is only one expert. 
In this paper some ways to combining techniques for enhancing consistency of initial PCMs with 

counteracting possible manipulations resulting to order violations have been suggested and discussed. 

2. Some examples of deliberate order violations 

Firstly, we are going to use the standard Saaty scale. Let there actually be a competition between 
two alternatives: A1 and A2. 
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Example 1 
The first example is a very basic and well-known one, but we will consider its parametrical form. 

Suppose an expert wants to boost up the alternative A2, but they don’t want to state that explicitly. Then 

they might try to manipulate by imposing a technical, obviously a worse alternative A3 and providing 

a pairwise comparison matrix (PCM) as follows: A1 gets a slight (quantified as 𝑞1) preference over A2 

and A3, and A2 gets more significant preference 𝑞2 over A3. Let’s denote such a parametrized PCM as 

𝑀0(𝑞1, 𝑞2), then  

𝑀0(𝑞1, 𝑞2) =

(

  
 

1 𝑞1 𝑞1
1

𝑞1
1 𝑞2

1

𝑞1

1

𝑞2
1
)

  
 

 

The bad news for the manipulator is that within the standard Saaty scale A2 wins if only 𝑞1 = 2, 𝑞2 =
9. Then the PCM takes a view 

𝑀0(2, 9) =

(

 
 

1 2 2
1

2
1 9

1

2

1

9
1
)

 
 

 

Its Perronian vector approximately equals 

(0.4385, 0.4561,     0.1054) 

Indeed. in this case A2 wins. But another problem is that such a PCM must be very inconsistent. 

Really, its consistency index approximately equals 

𝐶𝐼(𝑀0(2, 9)) ≈ 0.2804 

Since we are applying the standard Saaty scale, we can calculate the consistency ratio as well. It 

equals 

𝐶𝑅(𝑀0(2, 9)) =
𝐶𝐼(𝑀0(2, 9))

𝑅𝐼(3)
≈
0.2804

0.58
= 0.4834 

One can recognize a PCM having such a consistency ratio as an unacceptable one. 
To conceal their manipulations, experts and organizers might try to impose some other base for 

decision making, for instance as in the following example. 

Example 2 
The number of technical alternatives might be increased. Let an overall number of alternatives be n, 

among which only A1 and A2 be the real competitors, and the other n-2 alternatives be the technical 

ones. Like the previous example, A1 gets the slight preference 𝑞1 over A2 and the technical alternatives, 

A2 gets more significant preference  𝑞2 over the technical alternatives, and the other (technical) 
alternatives are on a par. Then the resulting parametrized PCM takes the view 

𝑀′(𝑛, 𝑞1, 𝑞2) = (

1 𝑞1 …
1

𝑞1
1 𝑞2 …

… 1 1 …

)  
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The performed experiments show that such a PCM ensures a victory for A2 just already if 𝑛 =
6, 𝑞1 = 2, 𝑞2 = 3. In this case the Perronian vector approximately equals 

(0.2801, 0.2825,    0.1094,     0.1094,     0.1094,     0.1094) 

The alternative A2 wins, and the consistency index and ratio are as follows: 

𝐶𝐼(𝑀′(6, 2,3)) ≈ 0.0282, 

𝐶𝑅(𝑀′(6, 2,3)) ≈ 0.0228 

These values of consistency are seemingly good, but the quality of the matrix is not. Anyway, the 

planned deliberate order violation caused by the manipulation with the provided PCM is expected. 

The situation is even aggravated if so-called transitive scales are being applied [8 et al.] (such kind 

of scales stipulates that the following grade of preference is quantified 𝜏 times larger than the previous 

one, 𝜏 is a certain parameter). Then for defining preferences between i-th and j-th alternatives we can 

merely specify the value 𝑐𝑖𝑗 which is the distance between those alternatives in terms of grades. So, the 

parametrized PCM can be written as follows: 

𝑀𝑇(𝐶, 𝜏) = (
1 𝜏𝑐12 … …

𝜏−𝑐12 1 𝜏𝑐23 …
…

) 

Example 3 

Let n=3, that is there are three alternatives, and the situation is like that in Example 1. 
Experiments carried out, for instance, in [25] show that the deliberate order violation is gained if 

𝐶 = (
0 1 1
−1 0 4
−1 −4 0

) 

or if 𝑐23 is larger than 4. 

For 𝜏 = 1.2, the Perronian vector approximately equals 

(0.3682,     0.3912,    0.2406) 

The index of consistency approximately equals 0.0296. Though applying such indices to transitive 

scales with different parameters is a special and not very clear issue, it should be the less the better 

anyway. The examples given above illustrate deliberate order violation means that what an expert wants 
to achieve is different from what they claim when constructing the PCM. Of course, it would be 

reasonable to ask the expert for explaining the situation. But the process of decision making can be very 

automated, and such a facility can be unavailable. Therefore, it appears important to develop algorithms 

and automated procedures aimed at detecting possible manipulations and counteracting them, or in 
other words, those robust to manipulations. To say it more accurately, detecting order violations is easy 

but counteracting is not. 

3. A weighted system of linear equations 

An approach to enhancing quality of pairwise comparisons based on solving systems of linear 

algebraic equations was considered in [25]. 

Let M be a pairwise comparison matrix provided by an expert, and C is its logarithmic form 

Then the regarded system can be written in the following form: 

𝑊𝐻𝑥 = 𝑊𝑏           (1) 

where H and b are the matrix and the right side of the system of linear algebraic equations with 

respect to 𝑥𝑖𝑗: 

𝑥𝑖𝑗 = 𝑐𝑖𝑗, 𝑖 = 1, 𝑛̅̅ ̅̅ ̅, 𝑗 = 𝑖 + 1, 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅        (2) 

∀𝑖, 𝑘 > 𝑖, 𝑗 > 𝑘   𝑥𝑖𝑘 + 𝑥𝑘𝑗 − 𝑥𝑖𝑗 = 0       (3) 

𝑊 = 𝑑𝑖𝑎𝑔(𝑤𝑖), 

𝑤𝑖  are weighting coefficients which can be clearly interpreted as degrees of certainty about experts’ 
estimations or of trust to them. 
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Basically, this system follows the idea of applying the logarithmic least square method for getting 
more consistent PCMs [6, 26, 27]. It focuses on analysis of triads and on minimizing distances between 

what is needed for cardinal consistency and what is really provided. 

The system (1-3) is over-determined, it contains 𝑛(𝑛 − 1)/2 unknowns and 
𝑛(𝑛−1)

2
+
𝑛(𝑛−1)(𝑛−2)

6
  

equations. Equations forming the group (2) were named expert equations because they are reflecting 
experts’ estimations. Equations of the group (3) were named consistency, or equidistant, equations, 

because they ensue from the requirements of cardinal consistency if those requirements are written in 

the logarithmic form. It’s easy to show that the system has a single (pseudo)solution which can be 

obtained with the help of the Moore-Penrose pseudo-inversion [28]. 

The obtained 𝑥𝑖𝑗 shall form the new PCM. Such a process can be performed iteratively. The issue 

of convergence within iterative improvements has been studied in [29, 30]. It was shown that under 
certain conditions the consequence of PCMs converges to the ideally consistent PCM with zero 

consistency index, and this can be confirmed experimentally. But, as it was mentioned before, it is 

necessary to control the process so that a risk of transmitting a disorder in the initial data to final 
resolutions would be as low as possible. 

As a tool for such a control we suggest using weighting coefficients for the equations in (1-3). The 

idea of weighting sources of information has been discussed, for instance, in [31] but this idea can be 

implemented in different ways. And the main problem is how to pick out the coefficients 𝑤𝑖 . 
Solving the unweighted system is not very helpful for counteracting intentional order violations. As 

it was mentioned before, in this case that can in fact enhance consistency of the PCM but hardly its 

quality. Experiments carried out in [24] confirm that such enhancements, which can be done once or 
iteratively, eventually result in the consistent PCM with the changed directions of preferences. Whereas 

in the initial matrix we had 𝐴1 ≻ 𝐴2, in the resulting PCM we can get 𝐴2 ≻ 𝐴1, and this is exactly the 

arranged order violation. 

Let’s illustrate this on the Example 3. Since a transitive scale is being used in that example, the 
pairwise comparison matrix C is presented in the logarithmic form from the very beginning. 

For 𝜏 = 1.2 its “classical” exponential form is 

𝑀 = (
1 1.2 1.2

0.8333 1 2.0736
0.8333 0.4823 1

) 

The unweighted system (2-3) for this PCM takes a view 

{

𝑥12 = 1
𝑥13 = 1
𝑥23 = 4

𝑥12 + 𝑥23 − 𝑥13 = 0

 

Its solution yields the following updated PCM (in the exponential form) 

𝑀′ = (
1 1 1.44
1 1 1.7280

0.6944 0.5787 1
) 

After 10 iterations we come to the matrix 

𝑀∗ = (
1 0.9410 1.5302

1.0627 1 1.6261
0.6535 0.6150 1

) 

which is the approximate limit of consequent PCMs.  
Its consistency index practically equals 0. Its Perronian vector equals 

(0.3682,     0.3912,     0.2406) 

So, according to 𝑀∗ 𝑎2 ≻ 𝑎1, and 𝑢(𝑎2) > 𝑢(𝑎1). There is no order violation now because it has 
been committed before, in the course of iterations. Yet, as we have mentioned before, this is not a 

satisfactory solution. So, such algorithms based on unweighted equations shall probably justify 

intentional order violations planned by experts who had manipulated. What algorithms of automated 
decision making should do is decide whether to accept an order violation resulting from their work or 

not. Let’s now look at the problem how to find proper values for the weighting coefficients 𝑤𝑖. 
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4. Some ways of counteracting manipulations by changing weights of 
equations 

Surely, algorithm-based counteracting manipulations can’t be determined and straightforward even 

after an order violation has been detected. A system of decision making should have a set of rules aimed 

at considering a wide range of factors and principles, and this makes the problem rather complicated 

and intricated. We are going to discuss some heuristic rules of such a sort and look at how these rules 
may come in use for getting more or less appropriate coefficients in (1-3). 

Hardly there is any reason for changing weights of consistency equations but changing those for 

expert equations appears promising. In this paper we are regarding the following heuristic rules: 

 pairwise comparisons have a priority 

 considering measures of inconsistency 

 analyzing strongly connected components 
Let’s illustrate these rules one by one. 

Pairwise comparisons have a priority 

Meaningfully this rule has a following interpretation: if an expert explicitly stated in PCM that for 

the alternatives A1, A2 𝐴1 ≻ 𝐴2, and there is no additional opportunity to consult them, then all 

transformations must remain this advantage and the relation 𝑣(𝐴1) > 𝑣(𝐴2) should eventually hold. 

Unfortunately, following this rule may be problematic if there are multiple order violations or the given 

PCM is ordinally inconsistent at all. Technically, it surely can be applied for a single order violation. 
But this rule is too strict and can potentially cause problems if the detected order violation was an 

accidental error but not a deliberately planned result. Certainly, more attention should be paid to order 

violations between alternatives competing for an overall victory. 

We are going to illustrate this rule on the Example 3. Let’s entrench the preference 𝑎1 ≻ 𝑎2 by 

taking weighting coefficients 𝑤 = (1.5,   1,   1,   1). 
The iterative process described above leads to the consistent PCM 

𝑀∗ = (
1 1.051 1.6171

0.9515 1 1.5487
0.6184 0.6499 1

) 

with the Perronian vector 

(0.3891,     0.3703,     0.2406) 

The problem of order violation has been eliminated, the first alternative wins. 

Considering measures of inconsistency 

The main idea is to detect which pairs (i,j) in the initial PCM M are the most inconsistent, that is for 

which pairs the values of deviations 

𝑑𝑖𝑗 = (𝑚𝑖𝑗 −
𝑢(𝑎𝑖)

𝑢(𝑎𝑗)
)2          (4) 

are the largest. 

Let’s build the matrix 𝒟(𝑀) = (𝑑𝑖𝑗, 𝑖, 𝑗 = 1, 𝑛)̅̅ ̅̅ ̅̅  for the Example 3. It approximately equals 

𝒟(𝑀) = (
0 0.0671 0.1091

0.0526 0 0.2002
0.0323 0.0176 0

) 

As a matter of fact, only elements above the main diagonal in 𝒟(𝑀) matter, since only they take 

part in forming the system (1-3). One can see that the largest value of deviation 0.2002 corresponds to 
the pair (2, 3), and that is just a tricky pair which was the main instrument of the manipulation. If we 

decrease a weight of the equation corresponding to this pair, for example by taking 𝑤 = (1, 1, 0.6,
1), we will get the result of iterations which is the consistent matrix 

𝑀∗ = (
1 1.0301 1.3979

0.9708 1 1.3570
0.7154 0.7369 1

) 

with the Perronian vector 

(0.3723,     0.3614,     0.2663) 
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and with eliminated order violation. 
But the regarded case was a very simple one, and the source of the manipulation has been distinctly 

indicated by the criteria of maximum deviation. In more tricky cases the situation may be more 

complicated. 

Example 4 

As a matter of fact, it is the Example 2 with the parameters  𝑛 = 6,  𝑞1 = 2, 𝑞2 = 3.  The 

corresponding PCM equals (here the standard Saaty scale is applied) 

𝑀(6, 2, 3) =

(

 
 
 
 
 
 
 
 

1 2 2 2 2 2
1

2
1 3 3 3 3

1

2

1

3
1 1 1 1

1

2

1

3
1 1 1 1

1

2

1

3
1 1 1 1

1

2

1

3
1 1 1 1)

 
 
 
 
 
 
 
 

 

If we calculate deviations by the formula (4) for this matrix, the maximum deviation will be gained 

for the pair (1, 2), which reflects the preference of 𝑎1 over 𝑎2. In such a situation decreasing weighting 
coefficient for the corresponding equation (for instance, by putting it to 0.75 whereas the other 

coefficients remain to equal 1) seems not to be helpful. The resulting Perronian vector approximately 

equals 

(0.2531,     0.2983,     0.1122,     0.1122,     0.1122,     0.1122) 

which means that the advantage of the second alternative has been even increased. 

In this case the manipulation was more concealed and less concentrated. Instead, increasing it 

according to the first heuristic rule (pairwise comparisons have a priority) yields much better results. 
For example, putting the coefficient to 1.25 yields the Perronian vector 

(0.2859,     0.2648,     0.1123,     0.1123,     0.1123,     0.1123) 

and the first alternative wins. 

Analyzing strongly connected components 
Basically, picking out and analyzing strongly connected components (SCC) in the preference graph 

related to the given PCM appears to be quite useful if the ordinary consistency doesn’t hold, that is the 

initial relation of preference is non-transitive. The idea is to build separate PCMs for each SCC and 
then to combine them with a specially constructed PCM connecting these SCCs. 

Realizations of such an idea can be very different. For example, the following heuristic approach 

might be applied: for separate PCM 𝑀(𝐺𝑘) within the k-th SCC denoted by 𝐺𝑘 preferences could be got 

directly from the initial PCM M. But for making the procedure more flexible and adjustable we suggest 

that these coefficients should rather be calculated by the formula 

𝑚𝑖𝑗
(𝐺𝑘) = 𝑚𝑖𝑗

𝜌1 , 

𝜌1 ≤ 1 is a smoothing coefficient designed to reduce a scatter of values within one SCC. 

Preferences between SCCs are calculated by averaging with the additional treating. More 

technically, given the initial PCM M, the PCM 𝑀(𝐶) for combining SCCs can be calculated by the 

following formula: 

𝑚𝑘𝑙
(𝑐)
= 𝑟𝑘𝑙

𝜌2 

𝑟𝑘𝑙 =
∑ 𝑚𝑖𝑗(𝑖,𝑗)∈𝐵𝑘𝑙

|𝐵𝑘𝑙|
, 

𝐵𝑘𝑙 = {(𝑖, 𝑗): 𝑖 ∈ 𝐺𝑘 , 𝑗 ∈ 𝐺𝑙} 
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where 𝐺𝑘 and 𝐺𝑙  are the k-th and the l-th SCCs, 𝜌2 ≥ 1 is a sharpening coefficient designed to make 

difference between compared SCCs more distinct, and coefficients 𝑟𝑘𝑙 stand for relations between 

𝐺𝑘 and 𝐺𝑙. 
Then the value of the 𝑖-th alternative can be calculated as follows: 

                                                              𝑢(𝑎𝑖) = 𝑦𝑖
(𝐺𝑘) ∙ 𝑢(𝐺𝑘)                  (5) 

where 𝑦𝑖
(𝐺𝑘)should be obtained from the comparison matrix within the SCC 𝐺𝑘, and 𝑢(𝐺𝑘) is a value 

ascribed to 𝐺𝑘 on the base of inter-CSS PCM 𝑀(𝐶). Then the obtained vector of values should be 
normalized so that the sum of its components would equal 1. 

In addition to this, we consider an extended preference graph which contains additional relations 

resulting from order violations. Let’s try to apply this technique to the Example 4. The initial PCM is 

ordinally consistent. Formally, this means that each alternative constitutes a separate SCC with a single 
element. Since we have an order violation in the pair (1, 2), the arc (2,1) should be added to the extended 

graph. So, we have SCCs in the extended graph as follows: 

𝐺1 = {1,2}, 𝐺2 = {3},𝐺3 = {4}, 𝐺4 = {5}, 𝐺5 = {6} 

Comparisons within each SCC but 𝐺1 are trivial and yield 

𝑦1
(𝐺𝑘) = 1, 𝑘 = 2, 5̅̅ ̅̅̅ 

It can be shown that taking 𝜌1 = 𝜌2 = 1 leads to not very good results. Let’s take 𝜌1 = 0.5, 𝜌2 =
1.5. Then for 𝐺1 we get the PCM 

𝑀(𝐺1) = (
1 20.5

1

20.5
1
) 

with the Perronian vector 
(0.5858,     0.4142) 

Then we obtain the inter-CSS pairwise comparison matrix 

(

 
 
 
 
 
 

1 2.51.5 2.51.5 2.51.5 2.51.5

1

2.51.5
1 1 1 1

1

2.51.5
1 1 1 1

1

2.51.5
1 1 1 1

1

2.51.5
1 1 1 1 )

 
 
 
 
 
 

 

with the Perronian vector 

(0.4970,     0.1257,     0.1257,     0.1257,     0.1257) 

Finally, calculating by (5) and normalizing the resulting vector yields the following distribution of 

values among the alternatives: 

(0.2912,     0.2059,     0.1257,     0.1257,     0.1257,     0.1257) 

The order violation has been eliminated. 

5. Conclusions and discussion 

In this paper the main attention is paid to possible manipulations with pairwise comparison matrices 

within the AHP-based decision making which can be deliberately committed by experts accountable 
for forming such judgments. The question is that a manipulator may want to boost up a certain 

alternative, but they don’t want to be accused of non-integrity and to declare an advantage of that 

alternative explicitly. Then the manipulator would like to make up tricky PCMs, and what they want to 
achieve by doing that is force algorithms of decision making to reverse some of their judgments. This 

is the pure order violation, and it’s the deliberate and planned one.  Therefore, if a manipulation really 

takes place, it is typically accompanied with order violations. So, if an order violation is detected, it 
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should be considered as a signal of possible manipulation though the violation might be caused by other, 
more benign reasons like overlooks, inaccuracy etc. 

So, AHP-based algorithms for decision making should become more robust to possible 

manipulations and to acquire some techniques of tackling order violations with the aim of counteracting 

such manipulations. The strategy of dealing with order violations can’t be easy and straightforward, it 
should be based on a set of parametrized rules and involve intelligent combining such rules. 

An approach to enhancing consistency of pairwise comparisons on the base of iterative solving 

weighted systems of linear equations is being developed in the paper. An integral part of the suggested 
approach is to combine enhancing consistency itself with deciding what to do with detected order 

violations. Some rules aimed at picking out weights of these equations are regarded and illustrated in 

the paper. These rules are quite simple, other approaches certainly must exist. For instance, it seems 
promising to apply different techniques of reinforcement learning. Typically, the AHP-based decision 

making is more complicated than it was presented in the paper. It usually comprises some levels of 

hierarchy, at least one of them is related to criteria which possible decisions depend on. There is a vast 

room for foul plays with these criteria, and the issue how to make algorithms of automated decision 
making more robust deserves special research. It appears promising to combine the approach presented 

in this paper with the multi-level model “state-probability of choice” for multiagent decision making 

[32]. A game view on the problem is worth to be developed. This means considering a game in which 
a manipulator can try different strategies of achieving their goals, and a system of decision making 

should implement strategies of detecting manipulations and counteracting them. 

Such considerations appear to be useful for many practical applications, such as financial privacy of 
the telecommunications space [33] or prioritizing cybersecurity measures using incomplete data [34]. 
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