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Abstract  
Extraction of hidden and nonobvious knowledge analyzing knowledge sources, as well as re-

trieval of required knowledge items within a knowledge base, are important features of modern 

intelligent knowledge-based systems. Therefore, in this paper, we propose the modification of 

the algorithm for the decomposition of fuzzy homogeneous classes of objects within fuzzy 

object-oriented dynamic networks, which allows the algorithm to perform knowledge retrieval 

within the set of semantically consistent subclasses constructed at the extraction stage, using 

the attribute-based and dependency-based filters. As the result, the modified algorithm reduces 

the knowledge search space avoiding the construction of semantically inconsistent subclasses 

and performing the filtration of semantically consistent ones depending on filtering parameters. 

To demonstrate the main application scenarios for the developed modification of the decom-

position algorithm, we provided an illustrative example of the decomposition of a fuzzy ho-

mogeneous class of objects, using this modification. 

 

Keywords  1 
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knowledge extraction, knowledge retrieval.  

1. Introduction 

The extraction of hidden and nonobvious knowledge is one of the main tasks within the intelligent 
analysis of knowledge and knowledge engineering in general. Knowledge-based intelligent systems, 

which are equipped with the knowledge extraction module can extend the knowledge base by detecting 

and extracting new knowledge from knowledge sources. Another important knowledge management 
task is knowledge retrieval, which allows users of a system and the system itself to search and find 

required knowledge within the knowledge base. Both these tasks are connected and depending on cho-

sen methods, knowledge extraction and knowledge retrieval can be implemented within a single mod-

ule. Most of the known methods of knowledge extraction within object-oriented knowledge represen-
tation models are based on the two approaches. According to the first one, knowledge extraction is 

based on the logical implication around the concept hierarchies or concept lattices or inheritance rela-

tion between concepts. According to the second one, knowledge extraction is based on the usage of set-
theoretical operations defined over the concept specifications, in particular difference and intersection. 

Such approaches are commonly used within the area of object-oriented programming, object-oriented 

databases, and ontologies. Despite all advantages of such approaches, they do not extract all hidden 

knowledge incorporated within such object-oriented representation structures as objects and classes. 
Therefore, in [18] we proposed another knowledge extraction approach, which is based on the decom-

position of a fuzzy homogeneous class of objects on subclasses. It allows the extraction of subclasses, 

which cannot be obtained via reasoning over the conceptual hierarchies using the inheritance relation. 
Moreover, it provides an opportunity to organize knowledge retrieval during the extraction stage, using 

different techniques for the filtering of subclasses. 
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In this paper, we consider the decomposition of fuzzy homogeneous classes of objects, within fuzzy 
object-oriented dynamic networks. We improved the decomposition algorithm, which was proposed in 

[18], to adapt it for more targetable knowledge retrieval using a filtering approach at the stage of sub-

classes construction. The proposed modification allows the decomposition algorithm to perform the 

knowledge extraction in a form of semantically consistent subclasses of a fuzzy homogenous class of 
objects, as well as knowledge retrieval within the set of all semantically consistent subclasses, using 

attribute and dependency filtering. We implemented attribute and dependency filtering of subclasses to 

perform the knowledge retrieval within a set of all semantically consistent subclasses of a fuzzy homo-
geneous class of objects, which the decomposition algorithm constructs at the knowledge extraction 

stage. To demonstrate how the improved algorithm reduces the knowledge search space and retrieves 

the required knowledge items, we provided an illustrative example of the decomposition of a particular 
fuzzy homogeneous class of objects. To show the possible application scenarios for proposed filtering 

parameters during the decomposition of fuzzy homogeneous classes of objects, we considered seven 

general possible configurations for these parameters, as well as the results of their usage. The rest of 

the paper has the following structure. Section 2 contains the main notions of fuzzy formal concept 
analysis, such as fuzzy context, fuzzy concept, and fuzzy concept lattice. Section 3 describes the anal-

ysis of a specification and a signature of a fuzzy homogeneous class of objects, and its internal semantic 

dependencies created by properties and methods. Section 4 presents the knowledge extraction via the 
decomposition of a fuzzy homogeneous class of objects on semantically consistent subclasses. Section 

5 provides knowledge retrieval by selecting the subset of all semantically consistent subclasses using 

attribute-based and dependency-based filters. In the end, the conclusions section finishes the paper. 

2. Fuzzy Formal Concept Analysis 

Formal concept analysis is a powerful formal lattice-based framework for processing conceptual 

knowledge, proposed by Wille and Ganter [4, 5]. It provides means for the formal representation of 

domain knowledge in a form of formal contexts and defined within them formal concepts, which allows 
us to construct a concept lattice for a particular context and process corresponding conceptual hierarchy. 

Since many domains of knowledge, as well as knowledge itself, have a vague or imprecise nature, the 

formal concept analysis was generalized for fuzzy knowledge. It provides an opportunity to formalize 

such knowledge in terms of fuzzy formal context, associated with a particular domain, and then repre-
sent corresponding knowledge items related to the context as fuzzy formal concepts. After that, we can 

construct a fuzzy formal concept lattice, which consists of two isomorphic complete lattices, where one 

of them represents a fuzzy set of fuzzy objects, while another one represents a set of fuzzy attributes. 
Using the constructed fuzzy concept lattice, we can analyze it and extract new knowledge items, which 

previously were nonobvious or hidden. 

Let us consider the main notions of fuzzy formal concept analysis, described in [1, 6, 8, 10-14]. The 

first fundamental notion is a fuzzy formal context, which combines the internal and external definitions 
of a class in object-oriented programming, object-oriented knowledge representation, object-oriented 

databases, etc. 

Definition 1. A fuzzy formal context is a triple ( , , )K G M I , where G  is a set of objects, M  is 

a set of attributes, and ( ) {( , ) / ( , ) | , , : [0,1]}I II G M g m g m g G m M G M           is a 

fuzzy incidence relation G M . 

Using this definition, we also can represent a fuzzy formal context using a corresponding cross table, 

which describes the fuzzy relation I . The next fundamental notions are subsets of objects and attributes 
defined by the characteristic properties. 

Definition 2. A set of common attributes for all objects from a subset of objects A G  is a set 

{ | : ( , ) },IA m M g A g m T       

where T  is a confidence threshold. 

Definition 3. A set of objects with a subset of common attributes B M  is a set 
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{ | : ( , ) },IB g G m B g m T       

where T  is a confidence threshold. 

All previous notions form a background for the definition of the fuzzy formal concept, which pro-

vides an opportunity to formalize particular domain knowledge items in terms of fuzzy concepts. 

Definition 4. A fuzzy formal concept of the fuzzy formal context ( , , )G M I  with a confidence thresh-

old T  is a pair ( ( ), )A B , where A G  is an extent of the formal concept, while B M  is its an 

intent, A B  , B A  , and ( )( ) { , ( ) | }AA g g g A    , where a membership function ( ) ( )A g  

is defined as 
( ) ( ) min ( , ),A I

m B
g g m 


  where ( , )I g m  is a membership value between object g  

and attribute m  in I . 

The next fundamental notion is a fuzzy concept lattice, which defines a hierarchical structure over 

fuzzy formal concepts. 

Definition 5. A fuzzy concept lattice of a fuzzy formal context K  with a confidence threshold T  is 

a set ( )F K  of all fuzzy concepts of K  with a partial order   and confidence threshold T . 

Analyzing the definitions above, we can see that by default formal context is defined using a set of 

attributes and a set of objects. Nevertheless, as was shown in [2, 3, 7], a formal context can be deter-

mined using a set of attributes and a set of classes. However, such application of fuzzy formal concept 
analysis has an important drawback, – it can produce inconsistent concepts. Algorithms for constructing 

concept lattice, described in [5], compute extents via the intersection of basic extents and do not con-

sider the internal semantic dependencies of fuzzy homogeneous classes of objects. As the result, some 

of the generated fuzzy formal concepts will be semantically inconsistent, i.e. will contradict some in-
ternal semantic dependencies. Therefore, we used an alternative approach to the construction of the 

concept lattice proposed in [18]. 

3. Morphology of Fuzzy Classes 

Each fuzzy homogeneous class of objects consists of a collection of properties (specification) and a 
collection of methods (signature), where the first one defines a structure for all fuzzy objects of the 

class, while the second one determines their behavior. As was shown in [18], there are some internal 

semantic dependencies among properties and methods of each fuzzy homogeneous class of objects, 
since some properties and/or methods can be defined using other properties and/or methods, as well as 

without using them. It is an important fact, that forms the background for the semantically consistent 

decomposition of a fuzzy class. Let us consider a particular fuzzy homogeneous class of objects, its 
internal semantic dependencies, and how they can affect the process of its decomposition.  

However, first of all, let us consider the concept of a fuzzy homogeneous class of objects and its 

subclass within such knowledge representation model as fuzzy object-oriented dynamic networks 

(FOODNs), which was proposed in [15, 16] and later extended in [17]. 

Definition 6. A fuzzy homogeneous class of objects is a collection 

1 1 1 1

/ ( ) ( ( ) / ( ( )), ( ) / ( ( ))) / ( )

(( / ( ),..., / ( )) / ( ( )), ( / ( ),..., / ( )) / ( ( ))) / ( ),n n m m

T M T P T M P T F T M F T M T

p p p p M P T f f f f M F T M T   

 


 

where ( )ip P T  is a crisp or fuzzy property of the class T , ( )if F T  is its crisp or fuzzy method, 

( ) : ( ) [0,1]i ip p A   and ( ) : ( ) [0,1]j jf f A   are measures of fuzziness of a property ip  and a 

method jf , where A  is an object of the class T ,and ( )M T  is a measure of fuzziness of the class T , 

defined in the following way 
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1 1( ) ( ( ( )) ( ( ))) / 2 ( ( ) ... ( ) ( ) ... ( )) / ( ),

( ( )) : ( ) (0,1], ( ( )) : ( ) (0,1], ( ) : (0,1].

n mM T M P T M F T p p f f n m

M P T P T M F T F T M T T

           

  
 

Definition 7. A fuzzy homogeneous class of objects / ( )i iT M T  is a subclass of a fuzzy homogeneous 

class of objects / ( )T M T , i.e. / ( ) / ( )i iT M T T M T , if and only if ( / ( )) ( / ( ))i iP T M T P T M T  

and ( / ( )) ( / ( ))i iF T M T F T M T , where ( / ( ))i iP T M T , ( / ( ))P T M T , and ( / ( ))i iF T M T , 

( / ( ))F T M T  are specifications and signatures of the class / ( )i iT M T  and / ( )T M T  respectively. 

To analyze the internal dependencies among properties and methods of fuzzy homogeneous classes 

of objects, let us consider particular examples of such classes. For this purpose, let us consider the fuzzy 

homogeneous class of objects Pt , which defines a concept of a fuzzy point on a plane, and has the 

following structure: 

1 1

2 1

1

2

( ( , ( , )) /1,

(y, ( , )) /1,

_ ( , ) / 0.92,

_y( , ) / 0.92

) / 0.96,

x

y

Pt p x v V

p v V

f get x pt

f get pt

 

 





 

where 1. /1Pt p  and 2. /1Pt p  are fuzzy quantitative properties of the class / 0.96Pt , which describe 

coordinates ( , )x y  of a point, and defined by the fuzzy sets xV  and yV , where 

{ / ( ) /1 / ( )}, { / ( ) /1 / ( )}x i i x i i y j j y j jV w w d w w V q q d q q                 

where x x xa d b  , y y ya d b  , and ( ) / 2x x xd b a  , ( ) / 2y y yd b a  , where [ , ]x xa b , 

[ , ]y ya b  are real numbers intervals, iw
, iw

, 1,...i   as well as 
jq , 

jq , 1,...j   are defined in the 

following way 

, , , ,

, , , ,

( ) , 1 ( ) ( ), ( ) 1 ( ),

( ) , 1 ( )

i x x x x x x i x x x x x x

j y y y y y y j y y y y y y

i x
i i i i i i i

x x

x i
i i i i

x x

w d k i a d k i d w d k i d d k i b

q d k j a d k j d q d k j d d k j b

w a
w w w w w

d a

b w
w w

b d

      

    

 

 


      


   

             

             


      




    


( ), ( ) 1 ( ),

( ) , 1 ( ) ( ), ( ) 1 ( ),

( ) , 1 ( ) ( ), ( ) 1 ( ),

i i i

j y

j j j j j j j

y y

y j

j j j j j j j

y y

w w w

q a
q q q q q

d a

b q
q q q q q

b d

 

      

      

  



      



      

 


      




      



 

where xk  and yk  are increments; 1. / 0.92Pt f  and 2. / 0.92Pt f  are fuzzy methods of the class 

/ 0.96Pt , which compute the defuzzification representation of the fuzzy qualitative properties 

1. /1Pt p  and 2. /1Pt p , and are defined in the following way 

. . .y.

1 1
1 2. . .y.

1 1

( . . ) . . ( .y. ) .y.

( ) , ( ) ,

( . . ) ( .y. )

pt x v pt v

i i

pt x v pt v

i i

pt x v pt x v pt v pt v

f pt f pt

pt x v pt v

 

 

 

 

 

 
 

 

 

where pt  is a fuzzy object of the class / 0.96Pt . The fuzzy homogeneous class of objects Pt  has the 

measure of its fuzziness equal to 0.96 , according to Definition 6. 
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Now let us consider another fuzzy homogeneous class of objects Rt , which defines a concept of a 

fuzzy rectangle, based on the class / 0.96Pt , and has the following structure: 

1 1

2 2

3 3

4 4

5 5

1

2

( ( , ( , )) /1,

( , ( , )) /1,

( , ( , )) /1,

( , ( , )) /1,

( _ _ , ( ( ), [0,1])) / 0.93,

_ ( , ( , ), ) / 0.9,

_ _ ( , ( , )a

Rt p vertex v Pt

p vertex v Pt

p vertex v Pt

p vertex v Pt

p is a rectangle vf rt v

f get vertex rt i Pt

f get side length rt vertex Pt











 





3

4

, ( , ), ) / 0.88,

_ ( , ) / 0.91,

_ ( , ) / 0.85,

) / 0.94,

bvertex Pt

f compute perimeter rt

f compute area rt











 

where 1. /1Rt p , 2. /1Rt p , 3. /1Rt p , and 4. /1Rt p  are fuzzy quantitative properties, which describe 

vertices of a rectangle, and are defined as objects of the class of objects / 0.96Pt ; 5. / 0.93Rt p  is a 

fuzzy qualitative property, which describes the satisfiability of basic rectangle properties for a rectangle 

object rt , (such as opposite sides of a figure should be parallel and all angles of a figure should be 

right) and is defined by the following verification function 

5 1 2 3 4

5 1 2 3 4

1 4 2

( ) : ( . , . , . , . ) [0,1],

(( . . _ () . . _ ()) ( . . _ () . . _ ())

( . . _ () . . _ ()) ( . .

vf rt rt vertex rt vertex rt vertex rt vertex

vf rt vertex get x rt vertex get x rt vertex get x rt vertex get x

rt vertex get y rt vertex get y rt vertex ge



    

   4_ () . . _ ()));t y rt vertex get y

 

1. / 0.9Rt f  is a fuzzy method, which returns ivertex , {1,2,3,4}i  of a rectangle object rt  in a form 

of objects of the class / 0.96Pt , i.e. 1( , ) ( . )if rt i rt vertex ; 2. / 0.88Rt f  is a fuzzy method, that com-

puted a distance between two vertices of a rectangle object rt , i.e.  

2

2 2

( , , ) ,

( . _ () . _ ()) , ( . _ () . _ ()) ;

a b x y

x a b y a b

f rt vertex vertex d d

d vertex get x vertex get x d vertex get y vertex get y

 

   

 

3. / 0.91Rt f  is a fuzzy method, which computes a perimeter of a rectangle object rt , and is defined in 

the following way 3( ) 2 ( )f rt a b   , where 

_ _ ( . _ (1), . _ (2)),

_ _ ( . _ (2), . _ (3));

a get side length rt get vertex rt get vertex

b get side length rt get vertex rt get vertex




 

4. / 0.85Rt f  is a fuzzy method, which computes an area of a rectangle object rt , and is defined as 

follows 4 ( )f rt a b  , where 

_ _ ( . _ (1), . _ (2)),

_ _ ( . _ (2), . _ (3)).

a get side length rt get vertex rt get vertex

b get side length rt get vertex rt get vertex




 

The fuzzy homogeneous class of objects Rt  has the measure of its fuzziness equal to 0.94 , ac-

cording to Definition 6. Now let us analyze the structure of the fuzzy homogeneous class of objects 

/ 0.94Rt  and detect all its internal semantic dependencies. According to [18], all internal semantic 

dependencies are divided into atoms and molecules, where both of them can be structural and func-

tional. Therefore, let us consider their definitions in more detail. 
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Definition 8. A fuzzy structural atom of a fuzzy homogeneous class of objects / ( )T M T  is a single-

ton collection ( / ( )) { . / ( . )}i i iSA T M T T p T p , where . / ( . ) ( ) / ( ( ))i iT p T p P T M P T   is a 

crisp or fuzzy property defined without using any other properties and (or) methods of the class 

/ ( )T M T , where ( ) / ( ( ))P T M P T  is its specification. 

Analyzing the specification of the fuzzy homogeneous class of objects / 0.94Rt , we can see that 

fuzzy quantitative properties 
1. /1Rt p , 

2. /1Rt p , 
3. /1Rt p , and 

4. /1Rt p , which describe a vertices 

of a fuzzy rectangle, are defined independently from all other properties and methods of the class, 

therefore they define corresponding fuzzy structural atoms within the class, i.e. 

1 1 2 2 3 3

4 4

( / 0.94) { . /1}, ( / 0.94) { . /1}, ( / 0.94) { . /1},

( / 0.94) { . /1}.

SA Rt Rt p SA Rt Rt p SA Rt Rt p

SA Rt Rt p

  


 

Definition 9. A fuzzy functional atom of a fuzzy homogeneous class of objects / ( )T M T  is a sin-

gleton collection ( / ( )) { . / ( . )}i i iFA T M T T f T f , where . / ( . ) ( ) / ( ( ))i iT f T f F T M F T   is a crisp 

or fuzzy method defined without using any other properties and (or) methods of the class / ( )T M T , 

where ( ) / ( ( ))F T M F T  is its signature. 

Since fuzzy homogeneous class of objects / 0.94Rt  does not have any methods defined without 

the usage of any other properties or methods of the class, the set of internal semantic dependencies of 

the class does not contain fuzzy functional atoms. 

Definition 10. A fuzzy functional molecule of a fuzzy homogeneous class of objects / ( )T M T  is a 

following collection 
1 1

( / ( )) ( . / ( . ), { . / ( . ), ... , . / ( . )})
n ni i i j j j jFM T M T T f T f T x T x T x T x   , where 

. / ( . ) ( ) / ( ( ))i iT f T f F T M F T  , 1 | ( ) / ( ( )) |i F T M F T   is a crisp or fuzzy method defined based on 

the other methods and (or) properties 

1 1
. / ( . ), ... , . / ( . ) ( ) / ( ( )) ( ) / ( ( )),

n nj j j jT x T x T x T x P T M P T F T M F T     

which form fuzzy structural and (or) fuzzy functional atoms, and (or) are parts of smaller fuzzy mole-

cules of the class / ( )T M T , where 11 ... | ( ) / ( ( )) ( ) / ( ( )) |nj j P T M P T F T M F T      and 

( ) / ( ( ))P T M P T  is a specification of the class / ( )T M T , while ( ) / ( ( ))F T M F T  is its signature. 

To analyze the specification and signature of the fuzzy homogeneous class of objects / 0.94Rt , we 

can observe that the fuzzy method 1. / 0.9Rt f , which returns a vertex of a fuzzy rectangle according to 

its number, depends on the vertices themselves, as the result, it defines the following fuzzy functional 

molecule 

1 1 1 2 3 4( / 0.94) ( . / 0.9, { . /1}, { . /1}, { . /1}, { . /1}).FM Rt Rt f Rt p Rt p Rt p Rt p  

The fuzzy method 2. / 0.88Rt f , which computes a distance between two consequent vertices of a 

fuzzy rectangle, depends on the pair of such vertices and defines another fuzzy functional molecule 

2 2 1 2 2 3

3 4 4 1

( / 0.94) ( . / 0.88, { . /1, . /1}, { . /1, . /1},

{ . /1, . /1}, { . /1, . /1}).

FM Rt Rt f Rt p Rt p Rt p Rt p

Rt p Rt p Rt p Rt p


 

And finally, fuzzy methods 3. / 0.91Rt f  and 4. / 0.85Rt f , which compute a perimeter and an area 

of a fuzzy rectangle, respectively, depend on three consequent vertices of the rectangle, the method for 
getting their coordinates, and the method for computing the length of rectangle sides, which are formed 

by vertices. As the result, both fuzzy methods define corresponding fuzzy functional molecules, i.e. 
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3 3 2 1 1 2 3

2 1 2 3 4

2 1 3 4 1

2 1 4

( / 0.94) ( . / 0.91,{ . / 0.88, . / 0.9, . /1, . /1, . /1},

{ . / 0.88, . / 0.9, . /1, . /1, . /1},

{ . / 0.88, . / 0.9, . /1, . /1, . /1},

{ . / 0.88, . / 0.9, . /1, .

FM Rt Rt f Rt f Rt f Rt p Rt p Rt p

Rt f Rt f Rt p Rt p Rt p

Rt f Rt f Rt p Rt p Rt p

Rt f Rt f Rt p Rt p



1 2

4 4 2 1 1 2 3

2 1 2 3 4

2 1 3 4 1

2 1

/1, . /1}),

( / 0.94) ( . / 0.85,{ . / 0.88, . / 0.9, . /1, . /1, . /1},

{ . / 0.88, . / 0.9, . /1, . /1, . /1},

{ . / 0.88, . / 0.9, . /1, . /1, . /1},

{ . / 0.88, . / 0.

Rt p

FM Rt Rt f Rt f Rt f Rt p Rt p Rt p

Rt f Rt f Rt p Rt p Rt p

Rt f Rt f Rt p Rt p Rt p

Rt f Rt f



4 1 29, . /1, . /1, . /1}).Rt p Rt p Rt p

 

3 3 2 1 1 2 3

2 1 2 3 4

2 1 3 4 1

2 1 4

( / 0.94) ( . / 0.91,{ . / 0.88, . / 0.9, . /1, . /1, . /1},

{ . / 0.88, . / 0.9, . /1, . /1, . /1},

{ . / 0.88, . / 0.9, . /1, . /1, . /1},

{ . / 0.88, . / 0.9, . /1, .

FM Rt Rt f Rt f Rt f Rt p Rt p Rt p

Rt f Rt f Rt p Rt p Rt p

Rt f Rt f Rt p Rt p Rt p

Rt f Rt f Rt p Rt p



1 2

4 4 2 1 1 2 3

2 1 2 3 4

2 1 3 4 1

2 1

/1, . /1}),

( / 0.94) ( . / 0.85,{ . / 0.88, . / 0.9, . /1, . /1, . /1},

{ . / 0.88, . / 0.9, . /1, . /1, . /1},

{ . / 0.88, . / 0.9, . /1, . /1, . /1},

{ . / 0.88, . / 0.

Rt p

FM Rt Rt f Rt f Rt f Rt p Rt p Rt p

Rt f Rt f Rt p Rt p Rt p

Rt f Rt f Rt p Rt p Rt p

Rt f Rt f



4 1 29, . /1, . /1, . /1}).Rt p Rt p Rt p

 

Definition 11. A fuzzy structural molecule of a fuzzy homogeneous class of objects / ( )T M T  is a 

following collection 
1 1

( / ( )) ( . / ( . ), { . / ( . ), ... , . / ( . )})
n ni i i j j j jSM T M T T p T p T x T x T x T x   , where 

. / ( . ) ( ) / ( ( ))i iT p T p P T M P T  , 1 | ( ) / ( ( )) |i P T M P T   is a crisp or fuzzy property defined based on 

the other properties and (or) methods 

1 1
. / ( . ), .... , . / ( . ) ( ) / ( ( )) ( ) / ( ( )),

n nj j j jT x T x T x T x P T M P T F T M F T     

which form fuzzy structural and (or) fuzzy functional atoms, and (or) are parts of smaller fuzzy mole-

cules of the class / ( )T M T , where 11 ... | ( ) / ( ( )) ( ) / ( ( )) |nj j P T M P T F T M F T      and 

( ) / ( ( ))P T M P T  is a specification of the class / ( )T M T , while ( ) / ( ( ))F T M F T  is its signature. 

Analyzing the specification and signature of the fuzzy homogeneous class of objects / 0.94Rt , we 

can observe that fuzzy qualitative property 5. / 0.93Rt p , which describes the satisfiability of basic 

rectangle properties, and guarantees that points, considered as vertices of a fuzzy rectangle, exactly 
form the rectangle, is dependent on the all vertices of the figure and defines the following fuzzy struc-

tural molecule 

1 5 1 2 3 4( / 0.94) ( . / 0.93,{ . /1, . /1, . /1, . /1}).SM Rt Rt p Rt p Rt p Rt p Rt p  

All detected atoms and molecules of the class / 0.94Rt define a set of internal semantic dependen-

cies, which can be determined in the following way. 

Definition 12. Internal semantic dependencies of a fuzzy homogeneous class of objects / ( )T M T , 

which defines a fuzzy type t , is a set of fuzzy structural and functional atoms and fuzzy structural and 

functional molecules of the class / ( )T M T , i.e. 

1 1

1 1

( / ( )) { ( / ( )),..., ( / ( )), ( / ( )),..., ( / ( )),

( / ( )),..., ( / ( )), ( / ( )),..., ( / ( ))},

n m

w q

ISD T M T SA T M T SA T M T FA T M T FA T M T

SM T M T SM T M T FM T M T FM T M T


 

where 
1
( / ( ))iSA T M T , 1 1,ni   and 

1
( / ( ))jFA T M T , 1 1,j m  are fuzzy structural and functional atoms 

of the fuzzy class / ( )T M T , while 
2
( / ( ))iSM T M T , 

2 1,i w  and 
2
( / ( ))jFM T M T , 

2 1,j q  are its 

fuzzy structural and functional molecules respectively. 

Using this definition, we can conclude that internal semantic dependencies of the fuzzy homogene-

ous class of objects / 0.94Rt  can be represented as follows 

1 2 3 4

1 2 3 4 1

( / 0.94) { ( / 0.94), ( / 0.94), ( / 0.94), ( / 0.94),

( / 0.94), ( / 0.94), ( / 0.94), ( / 0.94), ( / 0.94)}.

ISD Rt SA Rt SA Rt SA Rt SA Rt

FM Rt FM Rt FM Rt FM Rt SM Rt


 

The set ( / 0.94)ISD Rt  forms the background for the decomposition of a fuzzy homogeneous class 

of objects / 0.94Rt  on the semantically consistent subclasses. 
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4. Fuzzy Knowledge Extraction 

Let us consider the definition of the decomposition of fuzzy homogeneous classes of objects based 

on the set of internal semantic dependencies, introduced in [18]. 

Definition 13. Decomposition of fuzzy homogeneous class of objects / ( )T M T , which defines a 

fuzzy type of object t , is a set of semantically consistent subclasses 

1 1( / ( )) { / ( ) / ( ), ... , / ( ) / ( )},n nD T M T T M T T M T T M T T M T    

where fuzzy homogeneous classes of objects 
1 1/ ( ), ... , / ( )n nT M T T M T  do not contradict any fuzzy 

molecular internal semantic dependency ( / ( ))id ISD T M T , 1 | / ( ) |i T M T   of the class 

/ ( )T M T . 

The decomposition algorithm, which was proposed in [18], constructs subclasses of the class 

/ ( )T M T  solving correspondent constraint satisfaction problems, where internal semantic dependen-

cies of the class are used as constraints to select only semantically consistent subclasses. Let us compute 

the full decomposition of the fuzzy homogeneous class of objects / 0.94Rt , using the decomposition 

algorithm proposed in [18], with the following configuration: 

( / ( ) / 0.94, ( / 0.94), [1,9], [0,1], 2).FD T M T Rt C ISD Rt N M        

As the result, the algorithm performed the decomposition of the class / ( )T M T , and constructed 

the list of subclasses, which satisfy the decomposition configuration FD . Therefore, we obtained four 

subclasses of the cardinality of 1, i.e. 

1 1 1 1

1 1 2 2 3 3 4 4( ) /1 ( /1), ( ) /1 ( /1), ( ) /1 ( /1), ( ) /1 ( /1),SC Rt p SC Rt p SC Rt p SC Rt p     

ten subclasses of the cardinality of 2, i.e. 

2 2 2

1 1 2 2 1 3 3 2 3

2 2 2

4 1 4 5 2 4 6 3 4

2 2

7 1 1 8 2 1

2

9

( ) /1 ( /1, /1), ( ) /1 ( /1, /1), ( ) /1 ( /1, /1),

( ) /1 ( /1, /1), ( ) /1 ( /1, /1), ( ) /1 ( /1, /1),

( ) / 0.95 ( /1, / 0.9), ( ) / 0.95 ( /1, / 0.9),

(

SC Rt p p SC Rt p p SC Rt p p

SC Rt p p SC Rt p p SC Rt p p

SC Rt p f SC Rt p f

SC R

  

  

 

2

3 1 10 4 1) / 0.95 ( /1, / 0.9), ( ) / 0.95 ( /1, / 0.9),t p f SC Rt p f 

 

fourteen subclasses of the cardinality of 3, i.e. 

3 3

1 1 2 3 2 1 2 4

3 3

3 1 3 4 4 2 3 4

3 3

5 1 2 1 6 1 3 1

3

7 2 3

( ) /1 ( /1, /1, /1), ( ) /1 ( /1, /1, /1),

( ) /1 ( /1, /1, /1), ( ) /1 ( /1, /1, /1),

( ) / 0.97 ( /1, /1, / 0.9), ( ) / 0.97 ( /1, /1, / 0.9),

( ) / 0.97 ( /1,

SC Rt p p p SC Rt p p p

SC Rt p p p SC Rt p p p

SC Rt p p f SC Rt p p f

SC Rt p p

 

 

 

 3

1 8 1 4 1

3 3

9 2 4 1 10 3 4 1

3 3

11 1 2 2 12 2 3 2

3

13 1

/1, / 0.9), ( ) / 0.97 ( /1, /1, / 0.9),

( ) / 0.97 ( /1, /1, / 0.9), ( ) / 0.97 ( /1, /1, / 0.9),

( ) / 0.96 ( /1, /1, / 0.88), ( ) / 0.96 ( /1, /1, / 0.88),

( ) / 0.96 ( /

f SC Rt p p f

SC Rt p p f SC Rt p p f

SC Rt p p f SC Rt p p f

SC Rt p



 

 

 3

4 2 14 3 4 21, /1, / 0.88), ( ) / 0.96 ( /1, /1, / 0.88),p f SC Rt p p f

 

thirteen subclasses of the cardinality of 4, i.e. 

4 4

1 1 2 3 4 2 1 2 3 1

4 4

3 1 2 4 1 4 1 3 4 1

4 4

5 2 3 4 1 6

( ) /1 ( /1, /1, /1, /1), ( ) / 0.97 ( /1, /1, /1, / 0.9),

( ) / 0.97 ( /1, /1, /1, / 0.9), ( ) / 0.97 ( /1, /1, /1, /0.9),

( ) / 0.97 ( /1, /1, /1, / 0.9), ( ) / 0.97 (

SC Rt p p p p SC Rt p p p f

SC Rt p p p f SC Rt p p p f

SC Rt p p p f SC Rt

 

 

  1 2 3 2

4 4

7 1 2 4 2 8 1 3 4 2

4 4

9 2 3 4 2 10 1 2 1 2

4

11

/1, /1, /1, / 0.88),

( ) / 0.97 ( /1, /1, /1, / 0.88), ( ) / 0.97 ( /1, /1, /1, / 0.88),

( ) / 0.97 ( /1, /1, /1, / 0.88), ( ) / 0.94 ( /1, /1, / 0.9, / 0.88),

( ) / 0.94 (

p p p f

SC Rt p p p f SC Rt p p p f

SC Rt p p p f SC Rt p p f f

SC RT p

 

 

 2 3 1 2

4

12 1 4 1 2

4

13 3 4 1 2

/1, /1, / 0.9, / 0.88),

( ) / 0.94 ( /1, /1, / 0.9, / 0.88),

( ) / 0.94 ( /1, /1, / 0.9, / 0.88),

p f f

SC Rt p p f f

SC Rt p p f f




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seven subclasses of the cardinality of 5, i.e. 

5

1 1 2 3 4 5

5

2 1 2 3 4 1

5

3 1 2 3 4 2

5

4 1 2 3 1 2

5

5 1 2

( ) / 0.99 ( /1, /1, /1, /1, / 0.93),

( ) / 0.98 ( /1, /1, /1, /1, / 0.9),

( ) / 0.98 ( /1, /1, /1, /1, / 0.88),

( ) / 0.96 ( /1, /1, /1, / 0.9, / 0.88),

( ) / 0.96 ( /1, /

SC Rt p p p p p

SC Rt p p p p f

SC Rt p p p p f

SC Rt p p p f f

SC Rt p p









 4 1 2

5

6 1 3 4 1 2

5

7 2 3 4 1 2

1, /1, / 0.9, / 0.88),

( ) / 0.96 ( /1, /1, /1, / 0.9, / 0.88),

( ) / 0.96 ( /1, /1, /1, / 0.9, / 0.88),

p f f

SC Rt p p p f f

SC Rt p p p f f





 

eleven subclasses of the cardinality of 6, i.e. 

6

1 1 2 3 4 5 1

6

2 1 2 3 4 5 2

6

3 1 2 3 4 1 2

6

4 1 2 3 1 2

( ) / 0.97 ( /1, /1, /1, /1, / 0.93, / 0.9),

( ) / 0.97 ( /1, /1, /1, /1, / 0.93, / 0.88),

( ) / 0.96 ( /1, /1, /1, /1, / 0.9, / 0.88),

( ) / 0.95 ( /1, /1, /1, / 0.9, / 0.88,

SC Rt p p p p p f

SC Rt p p p p p f

SC Rt p p p p f f

SC Rt p p p f f f







 3

6

5 2 3 4 1 2 3

6

6 1 3 4 1 2 3

6

7 1 2 4 1 2 3

6

8 1 2 3

/ 0.91),

( ) / 0.95 ( /1, /1, /1, / 0.9, / 0.88, / 0.91),

( ) / 0.95 ( /1, /1, /1, / 0.9, / 0.88, / 0.91),

( ) / 0.95 ( /1, /1, /1, / 0.9, / 0.88, / 0.91),

( ) / 0.94 ( /1, /1, /1,

SC Rt p p p f f f

SC Rt p p p f f f

SC Rt p p p f f f

SC Rt p p p







 1 2 4

6

9 2 3 4 1 2 4

/ 0.9, / 0.88, / 0.85),

( ) / 0.94 ( /1, /1, /1, / 0.9, / 0.88, / 0.85),

f f f

SC Rt p p p f f f

 

6

10 1 3 4 1 2 4

6

11 1 2 4 1 2 4

( ) / 0.94 ( /1, /1, /1, / 0.9, / 0.88, / 0.85),

( ) / 0.94 ( /1, /1, /1, / 0.9, / 0.88, / 0.85),

SC Rt p p p f f f

SC Rt p p p f f f





 

seven subclasses of the cardinality of 7, i.e. 

7

1 1 2 3 4 5 1 2

7

2 1 2 3 4 1 2 3

7

3 1 2 3 4 1 2 4

7

4 1 2

( ) / 0.96 ( /1, /1, /1, /1, / 0.93, / 0.9, / 0.88),

( ) / 0.96 ( /1, /1, /1, /1, / 0.9, / 0.88, / 0.91),

( ) / 0.95 ( /1, /1, /1, /1, / 0.9, / 0.88, / 0.85),

( ) / 0.93 ( /1, /

SC Rt p p p p p f f

SC Rt p p p p f f f

SC Rt p p p p f f f

SC Rt p p







 3 1 2 3 4

7

5 2 3 4 1 2 3 4

7

6 1 3 4 1 2 3 4

7

7 1 2 4 1

1, /1, / 0.9, / 0.88, / 0.91, / 0.85),

( ) / 0.93 ( /1, /1, /1, / 0.9, / 0.88, / 0.91, / 0.85),

( ) / 0.93 ( /1, /1, /1, / 0.9, / 0.88, / 0.91, / 0.85),

( ) / 0.93 ( /1, /1, /1, / 0.9,

p f f f f

SC Rt p p p f f f f

SC Rt p p p f f f f

SC Rt p p p f





 2 3 4/ 0.88, / 0.91, / 0.85),f f f

 

and three subclasses of the cardinality of 8, i.e. 

8

1 1 2 3 4 5 1 2 3

8

2 1 2 3 4 5 1 2 4

8

3 1 2 3 4 1 2 3 4

( ) / 0.95 ( /1, /1, /1, /1, / 0.93, / 0.9, / 0.88, / 0.91),

( ) / 0.94 ( /1, /1, /1, /1, / 0.93, / 0.9, / 0.88, / 0.85),

( ) / 0.94 ( /1, /1, /1, /1, / 0.9, / 0.88, / 0.91, / 0.85)

SC Rt p p p p p f f f

SC Rt p p p p p f f f

SC Rt p p p p f f f f





 .

 

Let us analyze the computed results of the full decomposition of the fuzzy homogeneous class of 

objects / 0.94Rt  and compare them with the direct decomposition of the class, which includes all 

possible subclasses of the class / 0.94Rt . As we can see, the class / 0.94Rt  has five properties and 

four methods, that allow us to construct 
92 512  of its formally possible subclasses (i.e. a power set). 

Using the formula for the computation of binomial coefficients  

!
,

!( )!

k

n

n
C

k n k



 

where n  is a number of properties and methods of the class, while k  is the number of properties and 

methods of its particular subclass, we also can compute the number of subclasses of different cardinal-
ity. The results of these computations are represented in Table 1. The first line means cardinality of 
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subclasses, and the second and the third lines represent quantities of all formally possible and all se-
mantically consistent subclasses of certain cardinality. The fourth line contains decomposition con-

sistency coefficients for subclasses of a particular cardinality, which was computed using the following 

formula 

| ( / ( )) |
( / ( )) 100%,

| ( / ( )) | 2

D T M T
DC T M T

PS T M T
 


 

where ( / ( ))D T M T  is a set of all semantically consistent subclasses of the fuzzy homogeneous class 

of objects / ( ))T M T , while ( / ( ))PS T M T  is a set of its all formally possible subclasses (a power 

set). 

Table 1 

Quantitative analysis of subclasses of the fuzzy homogeneous class of objects / 0.94Rt  

Cardinality 1 2 3 4 5 6 7 8 Total 

Possible Subclasses 9 36 84 126 126 84 36 9 510 
Consistent Subclasses 4 10 14 13 7 11 7 3 69 

Decomposition Consistency 57% 29% 17% 10% 6% 13% 21% 43% 14% 

Analyzing Table 1, we can see that the total decomposition consistency coefficient of the fuzzy ho-

mogeneous class of objects / 0.94Rt  is approximately equal to 14% , which means that approximately 

86%  of all formally possible subclasses of the class are semantically inconsistent. Since the number of 

all formally possible subclasses of the fuzzy homogeneous class of objects grows exponentially de-

pending on the number of properties and methods of the class, this fact allows us to avoid the extraction 
of semantically inconsistent knowledge and efficiently reduce the knowledge search space for the class 

/ 0.94Rt  approximately by 7 times, i.e. 100%:14% 7 . In addition, such an approach avoids the 

production of semantically inconsistent concepts, which can be constructed by methods of fuzzy formal 

concept analysis, during the construction of a fuzzy concept lattice. 

Using all data from Table 1, we constructed the subclass lattice tower of the fuzzy homogeneous 

class of objects / 0.94Rt , which graphically represents the semantic consistency of the subclass lattice 

elements and allow us to estimate the knowledge extraction and search space from another perspective. 
Analyzing Figure 1, we can see figures, which have a form similar to a tower, they are towers of sub-

classes lattices. The highest tower is a tower of subclasses lattice of the class / 0.94Rt . Yellow circles 

with numbers downside mean the cardinality of corresponding sequences of subclasses, where a number 

describes appropriate cardinality. Subclasses of the same cardinality form an antichain of a subclass 

lattice. Green circles with the gray border mean semantically consistent subclasses of the class 

/ 0.94Rt , while gray circles mean semantically inconsistent ones. To analyze the tower of subclasses 

lattices, we can use an interpretation, according to which the green circles are lighted sections or rooms 
of the tower, while gray circles are unlighted ones. The small green tower next to the highest tower is 

its modified version, which contains only semantically consistent subclasses. These two towers illus-

trate the knowledge search space reduction provided by the decomposition algorithm due to avoiding 
the construction of semantically inconsistent subclasses. Other green-gray towers of subclasses lattices, 

which are bordered by gray rectangles, represent the decomposition of particular subclasses of the class 

/ 0.94Rt , using the same algorithm. They show, that each non-empty subclass of the cardinality n , 

where 1 | / ( ) |n T M T  , can be also decomposed on the subclasses. 

5. Fuzzy Knowledge Retrieval 

As it was noted in [19, 20], the main goal of many retrieval algorithms is to reduce the search space 
as much as possible. One of the approaches to reducing the knowledge search space was proposed in 

[9], according to which, formal contexts can be matched by some of their sub-contexts the following 

relations: { | , }s sgJm m m gIm  , { | , }s sgJm m m gIm  , { | (| , | / | |) }
ss s s mgJm m m gIm m   . 

However, using such an approach produces additional concept lattices and requires matching them with 
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the main concept lattice creating corresponding clusters, which can affect the knowledge extraction and 
retrieval performance. In the previous section, we used the algorithm for the decomposition of fuzzy 

homogeneous classes of objects, which was proposed in [18]. The main goal of the algorithm is to 

extract hidden or non-obvious knowledge in a form of semantically consistent subclasses of a fuzzy 

homogeneous class of objects, via its decomposition. It reduces the knowledge search space by avoiding 
the construction of semantically inconsistent subclasses of a fuzzy homogeneous class of objects during 

its decomposition. However, the algorithm uses parameters  

1[ ,..., ], 1 | / ( ) |, [ , ] [0,1],kN n n k T M T M a b      

where N defines a sequence of required cardinalities for subclasses, which will be obtained as the result 

of the decomposition, while M  determines required measure of their fuzziness. These parameters allow 

the algorithm not only to extract subclasses of a fuzzy homogeneous class of objects, using correspond-
ing restrictions but also retrieve them using filtering. As the result, the algorithm constructs a subset of 

all semantically consistent sub-classes of a fuzzy homogeneous class of objects. Therefore, we can 

conclude that the decomposition algorithm performs knowledge extraction via the decomposition of a 

fuzzy homogeneous class of objects, as well as knowledge retrieval via the filtration of the set of se-
mantically consistent subclasses. 

Despite all advantages of the algorithm, it can be modified and improved in the context of knowledge 

retrieval by adding additional filtration parameters, which will provide an opportunity to filter the sub-
classes using attributes and dependencies. According to this, let us modify the decomposition algorithm 

by adding a parameter for filtering by attributes, i.e. 

1 1 1 1
[ [ . / ( ),..., . / ( )], [ . / ( ),..., . / ( )]],

w w q qa i i i i j j j jQ include T a a T a a exclude T a a T a a       

where [ ]aQ include  and [ ]aQ exclude  define a list of attributes (properties and/or methods) of a fuzzy 

homogeneous class of objects / ( )T M T , which should be present and absent in all semantically con-

sistent subclasses of the class, constructed by the algorithm, and where 11 ... | / ( ) |wi i T M T    , 

and 1 ... | / ( ) |j qi j T M T    . 

Since any fuzzy homogeneous class of objects has its own internal semantic dependencies, they can 

be used as an additional filtering parameter. Therefore, let us modify the decomposition algorithm by 

adding the corresponding parameter for filtering by dependencies, i.e. 

1 1
[ [ ( / ( )),..., ( / ( ))], [ ( / ( )),..., ( / ( ))]],

v md i i j jQ include d T M T d T M T exclude d T M T d T M T    

where [ ]dQ include  and [ ]dQ exclude  define a list of internal semantic dependencies (atoms and/or 

molecules) of a fuzzy homogeneous class of objects / ( )T M T , which should be present and absent in 

all semantically consistent subclasses of the class, constructed by the algorithm, and where 

11 ... | ( / ( )) |vi i ISD T M T    , and 1 ... | ( / ( )) |j mi j ISD T M T    . 

Attribute and dependency filtering parameters allow the algorithm to reduce the number of con-

structed subclasses, as well as to find only required subclasses, among all semantically consistent ones, 
according to the specified query. Using these two parameters, we modified the decomposition algorithm 

proposed in [18], in the following way. 

Algorithm 1. Decomposition of fuzzy homogeneous classes of objects. 

Require: / ( )T M T , C , N , M ,  , aQ , dQ  

Ensure: D  

1: : {};D   

2: for n N  do 

3:     : {};t   

4:     for 1,..., 2 1ni    do 

5:         if binary( ).count(1)i i  then 
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6:             for / ( ) / ( )j ja a T M T  , 1,...,| / ( ) |j T M T  do 

7:                 if ( & (1 )) 0i j   then 

8:                     .add( / ( ));j jt a a  

9:                 : compute_fuzziness( , );t   

10:                 if M   then 

11:                     sutisfy :  true; 

12:                     for all c C  do 

13:                         if not is_satisfy( , )t c  then 

14:                              satisfy :  false; 

15:                              break; 

16:                     if satisfy  then 

17:                         if satisfy_query( , )at Q  and satisfy_query( , )dt Q  then 

18:                             .add( / );D t   

19:             : {};t   

20: return D . 

The modified algorithm decomposes a fuzzy homogeneous class of objects / ( )T M T  constructing 

the subset of its subclasses, which are semantically consistent ones, i.e. do not contradict any internal 

semantic dependency ( / ( ))c C ISD T M T  , and have a required cardinalities, measures of fuzzi-

ness, and satisfy attribute and dependency filters. The generation of semantically consistent subclasses 

of the class / ( )T M T  is performed due to the resolving constraint satisfaction problems, which allows 

the algorithm to extract only consistent subclasses. The procedure is_satisfy( , )t c  verifies that a par-

ticular candidate-subclass / ( ) / ( )t M t T M T  does not contradict a certain constraint 

( / ( ))c ISD T M T  in a form of internal semantic dependency (i.e. structural or functional molecule). 

If the candidate-subclass does not contradict the constraint, the procedure is_satisfy( , )t c  returns true, 

in opposite case it returns false, and if the constraint is not applicable to the subclass, it returns none. 

The procedure is_satisfy( , )t c  is invoked only for those candidate-subclasses, which have the appro-

priate cardinality and the measure of fuzziness defined by the parameter N , i.e. | / ( ) |t t N  , and 

the parameter M , i.e. ( )t M  , respectively. It reduces the algorithm complexity, avoiding invoca-

tion of the procedure is_satisfy( , )t c  for all candidate subclasses.  

Procedure 1. compute_fuzziness( , )t   

Input: T ,   

Output: ( ) [0,1]M T   

1: sum : 0;  

2: for ia T , 1,...,| T |i   do 

3:     sum: sum ( );ia   

4: ( ) : round(sum/ max(| |,1), );M T T   

5: return ( )M T . 

 

Procedure 2. is_satisfy( , )t c  

Input: t , c  

Output: satisfy { true, false, none}  

1: satisfy : none; 

2: if [0]c t  then 

3:     satisfy : false; 

4:     for [ ]c i c , 1,...,| |i c  do 

5:         for [ ][ ] [ ]c i j c i ,  

1,...,| [ ] |j c i  do 

6:             if [ ][ ]c i j t  then 

7:                 satisfy : true; 

8:             else 

9:                 satisfy : false; 

10:                 break; 

11:         if satisfy  then 

12:             return satisfy ; 

13: return satisfy . 

Procedure 3. satisfy_query( , )t Q  
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Input: t , Q  

Output: satisfy { true, false}  

1. if | [ ] | 0Q include   and 

| [ ] | 0Q exclude   then 

2.     return true; 

3. for [ ]q Q include  do 

4.     if q t  then 

5.         return false; 

6. for [ ]q Q exclude  do 

7.     if q t  then 

8.         return false; 

9. return true. 

 

 
Figure 1: Tower of subclass lattice of the fuzzy homogeneous class of objects / 0.94Rt  
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The second part of the filtration for selected semantically consistent subclasses, which satisfy all 

restrictions from set C , and have the required cardinality and measure of fuzziness, is performed by 

the procedure satisfy_query( , )t Q . At this stage, from all semantically consistent subclasses previ-

ously selected, the algorithm retrieves only those subclasses which satisfy the attribute and dependency 

filters. If a particular subclass of the decomposed class / ( )T M T  does not satisfy attribute and/or de-

pendency filters, it will be excluded from the resulting decomposition. Such filtering is useful when we 
have additional meta-knowledge about the structure and/or behavior of semantically consistent sub-

classes of the class / ( )T M T , which makes the retrieval process more targetable. 

To demonstrate the particular applications of the proposed modification of the decomposition algo-
rithm, let us consider a few examples of decomposition-based retrieval of fuzzy knowledge using the 

fuzzy homogeneous class of objects / 0.94Rt , which was described in section 2. Suppose we want to 

find all semantically consistent subclasses of the class / 0.94Rt , which have a cardinality of 5 or 6, a 

measure of fuzziness defined on the interval [0.95,1] , computed with the accuracy of 2 signs, and 

which contain attributes 
1. /1Rt p  and 

1. / 0.9Rt f . This can be done by using Algorithm 1 with the 

following configuration: 

1

1 1

( / 0.94, ( / 0.94), [5,6], [0.95,1],

[ [ . /1, . / 0.9], []], [ [], []]).a d

D Rt ISD Rt N M

Q include Rt p Rt f exclude Q include eclude

  

     
 

As the result, the algorithm performed the partial decomposition of the class / 0.94Rt , and constructed 

the following list of subclasses, which satisfy the decomposition configuration 1D : 

5 5 5 5

1 2 4 5 6

6 6 6 6

1 3 4 5

6 6 6 6

6 8 9 10

( / 0.94) { ( ) / 0.98, ( ) / 0.96, ( ) / 0.96, ( ) / 0.96,

( ) / 0.97, ( ) / 0.96, ( ) / 0.95, ( ) / 0.95,

( ) / 0.95, ( ) / 0.94, ( ) / 0.94, ( ) / 0.94}.

D Rt SC Rt SC Rt SC Rt SC Rt

SC Rt SC Rt SC Rt SC Rt

SC Rt SC Rt SC Rt SC Rt


 

Let us consider another case. Suppose we want to find all semantically consistent subclasses of the class 

/ 0.94Rt , which have a cardinality of 5 or 6, a measure of fuzziness defined on the interval [0.95,1] , 

computed with the accuracy of 2 signs, and which do not contain the attribute 2. / 0.88Rt f . This can 

be done by using Algorithm 1 with the following configuration: 

2

2

( / 0.94, ( / 0.94), [5,6], [0.95,1],

[ [], [ . / 0.88]], [ [], []]).a d

D Rt ISD Rt N M

Q include exclude Rt f Q include exclude

  

     

 

As the result, the algorithm performed the partial decomposition of the class / 0.94Rt , and constructed 

the following list of subclasses, which satisfy the decomposition configuration 2D : 

5 5 6

2 1 2 1( / 0.94) { ( ) / 0.99, ( ) / 0.98, ( ) / 0.97}.D Rt SC Rt SC Rt SC Rt  

Let us assume that we need to find all semantically consistent subclasses, which simultaneously satisfy 

configurations 1D  and 2D . This can be done by using Algorithm 1 with the following configuration: 

3

1 1 2

( / 0.94, ( / 0.94), [5,6], [0.95,1],

[ [ . /1, . / 0.9], [ . / 0.88]],

[ [], []]).

a

d

D Rt ISD Rt N M

Q include Rt p Rt f exclude Rt f

Q include exclude

  

  

  

 

As the result, the algorithm performed the partial decomposition of the class / 0.94Rt , and constructed 

the following list of subclasses, which satisfy the decomposition configuration 3D : 

5 6

3 2 1( / 0.94) { ( ) / 0.98, ( ) / 0.97}.D Rt SC Rt SC Rt  

Now let us assume that we need to find all semantically consistent subclasses of the class / 0.94Rt , 

which have a cardinality of 5 or 6, a measure of fuzziness defined on the interval [0.95,1] , computed 
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with the accuracy of 2 signs, and which contain structural molecule 
1( / 0.94)SM Rt . This can be done 

by using Algorithm 1 with the following configuration: 

4

1

( / 0.94, ( / 0.94), [5,6], [0.95,1], [ [], []],

[ [ ( / 0.94)], []]).

a

d

D Rt ISD Rt N M Q include exclude

Q include SM Rt exclude

     

  
 

As the result, the algorithm performed the partial decomposition of the class / 0.94Rt , and constructed 

the following list of subclasses, which satisfy the decomposition configuration 
4D : 

5 6 6

4 1 1 2( / 0.94) { ( ) / 0.99, ( ) / 0.97, ( ) / 0.97}.D Rt SC Rt SC Rt SC Rt  

Let us consider another case. Suppose we need to find all semantically consistent subclasses of the class 

/ 0.94Rt , which have a cardinality of 5 or 6, a measure of fuzziness defined on the interval [0.95,1] , 

computed with the accuracy of 2 signs, and which do not contain the functional molecule 

2( / 0.94)FM Rt . This can be done by using Algorithm 1 with the following configuration: 

5

2

( / 0.94, ( / 0.94), [5,6], [0.95,1], [ [], []],

[ [], [ ( .0,94)]]).

a

d

D Rt ISD Rt N M Q include exclude

Q include exclude FM Rt

     

  
 

As the result, the algorithm performed the partial decomposition of the class / 0.94Rt , and constructed 

the following list of subclasses, which satisfy the decomposition configuration 5D : 

5 5 6

5 1 2 1( / 0.94) { ( ) / 0.99, ( ) / 0.98, ( ) / 0.97}.D Rt SC Rt SC Rt SC Rt  

Let us assume that we want to find all semantically consistent subclasses, which simultaneously satisfy 

configurations 4D  and 5D . This can be done by using Algorithm 1 with the following configuration: 

6

1 2

( / 0.94, ( / 0.94), [5,6], [0.95,1], [ [], []],

[ [ ( / 0.94)], [ ( .0,94)]]).

a

d

D Rt ISD Rt N M Q include exclude

Q include SM Rt exclude FM Rt

     

  
 

As the result, the algorithm performed the partial decomposition of the class / 0.94Rt , and constructed 

the following list of subclasses, which satisfy the decomposition configuration 6D : 

5 6

6 1 1( / 0.94) { ( ) / 0.99, ( ) / 0.97}.D Rt SC Rt SC Rt  

And finally, suppose we need to find all semantically consistent subclasses, which simultaneously sat-

isfy configurations 3D  and 6D . This can be done by using Algorithm 1 with the following configura-

tion: 

7

1 1 2

1 2

( / 0.94, ( / 0.94), [5,6], [0.95,1],

[ [ . /1, . / 0.9], [ . / 0.88]],

[ [ ( / 0.94)], [ ( .0,94)]]).

a

d

D Rt ISD Rt N M

Q include Rt p Rt f exclude Rt f

Q include SM Rt exclude FM Rt

  

  

  

 

As the result, the algorithm performed the partial decomposition of the class / 0.94Rt , and constructed 

the following list of subclasses, which satisfy the decomposition configuration 7D : 

6

7 1( / 0.94) { ( ) / 0.97}.D Rt SC Rt  

As we can see, attribute and dependency filtering provide an opportunity to use Algorithm 1 with dif-
ferent configurations for extraction and retrieval of fuzzy conceptual knowledge in a form of fuzzy 

homogeneous classes of objects. Now let us consider subclass 
6

1 ( ) / 0.97SC Rt  in more detail. Accord-

ing to the definition of the fuzzy homogeneous class of objects / 0.94Rt , the subclass 
6

1 ( ) / 0.97SC Rt  

has the following definition:
6

1 1 1

2 2

3 3

4 4

5 5

1

( )( ( , ( , )) /1,

( , ( , )) /1,

( , ( , )) /1,

( , ( , )) /1,

( _ _ , ( ( ), [0,1])) / 0.93,

_ ( , ( , ), ) / 0.9,

) / 0.97,

SC Rt p vertex v Pt

p vertex v Pt

p vertex v Pt

p vertex v Pt

p is a rectangle vf rt v

f get vertex rt i Pt









 


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6

1 1 1

2 2

3 3

4 4

5 5

1

( )( ( , ( , )) /1,

( , ( , )) /1,

( , ( , )) /1,

( , ( , )) /1,

( _ _ , ( ( ), [0,1])) / 0.93,

_ ( , ( , ), ) / 0.9,

) / 0.97,

SC Rt p vertex v Pt

p vertex v Pt

p vertex v Pt

p vertex v Pt

p is a rectangle vf rt v

f get vertex rt i Pt









 



 

where all properties and methods of the subclass have the same meaning as for the class / 0.94Rt . As 

we can see, the subclass 
6

1 ( ) / 0.97SC Rt  completely satisfies the decomposition configuration 
7D  and 

has a semantically consistent interpretation with the domain of the class / 0.94Rt .  

Indeed, the subclass 6

1 ( ) / 0.97SC Rt  defines four fuzzy points on a plane, which form a fuzzy rectan-

gle, and provides an ability to get access to each vertex of a figure in a form of an object of the fuzzy 

homogeneous class of objects / 0.96Pt . Considered examples of the decomposition of the fuzzy ho-

mogeneous class of objects / 0.94Rt  demonstrate, that process of the knowledge extraction can be 

combined with the process of knowledge retrieval, which allows us to consider different strategies for 

knowledge extraction, retrieval, and integration. For example, if a fuzzy homogeneous class of objects, 
which is need to be decomposed has a big amount of properties and methods, then it can be fully de-

composed only one time, and all constructed semantically consistent subclasses can be integrated into 

the knowledge base. In this case, the knowledge retrieval process can be reduced to searching within 
the knowledge base. If a class has a small number of attributes, it can be decomposed each time, when 

we need to retrieve some of its semantically consistent subclasses. In this case, we can reduce the size 

of the knowledge base just using the fact, that the class stores all its subclasses within itself. 

6. Conclusions 

In this paper, we proposed the modified version of the algorithm for the decomposition of fuzzy 

homogeneous classes of objects, which extracts hidden and non-obvious knowledge in a form of se-

mantically consistent subclasses of a fuzzy homogeneous class of objects based on its internal semantic 
dependencies. After that, the algorithm performs the knowledge retrieval among subclasses obtained at 

the previous stage and selects only those ones, which satisfy attribute and dependency filters. Such 

modification allows the algorithm to reduce the knowledge search space not only in the extraction stage 

but also in the retrieval stage. In addition, we proposed an approach to the analysis of decomposition 
consistency, which is based on computing the corresponding coefficients and construction of towers of 

subclasses lattices. It allows us to consider different strategies for decomposition knowledge extraction 

and retrieval, which provide new architectural solutions for intelligent knowledge-based systems. 
To demonstrate possible application scenarios for a modified version of the decomposition algo-

rithm, we considered the main possible configurations of attribute and dependency filtering parameters. 

New filtering parameters can be combined with the cardinality and fuzziness of subclasses, which pro-
vides a more flexible and powerful tool for describing the retrieval restrictions, as well as reducing 

knowledge search space. Such an approach to filtering makes the knowledge retrieval process more 

targetable, especially when we have additional meta-knowledge about the structure and/or behavior of 

searchable semantically consistent subclasses of the fuzzy homogeneous class of objects. However, 
despite all advantages of the algorithm, it requires future analysis and optimization. 
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