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Abstract  
The paper describes a nonparametric test for recognizing the point of change in the time 

series, before and after which the values of the time series obey different distributions. The 

test is based on the Matveychuk–Petunin scheme, which is a generalization of the Bernoulli 

scheme using Dempster–Hill procedure. To recognize the point of change in the time series, a 

simplified Klyushin–Petunin homogeneity criterion is used, based on an exact confidence 

interval. The test works equally well with samples that do not have ties, as well as with 

samples having ties. It allows both online and offline implementations. The test compares 

segments of time series with high accuracy with a significance level of no more than 0.05. 

The sensitivity and stability of the proposed test is higher than that of its classical 

counterparts. The test provides high accuracy of recognition of two heterogeneous random 

samples for both the location shift hypothesis and the scale shift hypothesis. The proposed 

approach has wide practical applications in all areas where time series arise. 
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1. Introduction 

The problem of finding change points in time series has now become ubiquitous. It arises, for 
example, in medical applications in which it is necessary to continuously monitor the vital signs of 

patients. This task is typical for technological processes monitoring also. Early recognition of changes 

in the distribution of time series values makes it possible to identify and prevent unfavorable 

situations, including deterioration in the condition of patients, disruption of the flow of technological 
processes, industrial accidents, etc. Therefore, the development of accurate and stable algorithms for 

the appearance of change points in time series is an urgent task. 

The problem of finding points of change in the time series is posed as follows: to find points 
before and after which the values of the time series obey different distributions. To do this, it is 

necessary to test the hypothesis that the distributions of random values of the time series in adjacent 

intervals are identical. If this hypothesis is rejected, the point separating these intervals is called the 

change point. The paper describes a new approach to finding change points in a time series based on 
an exact confidence interval. 

Change point recognition methods are divided into online and offline methods. Online methods 

find change points by analyzing data streams in real time. Offline methods detect change points by 
analyzing the time series as a whole. For an overview of the corresponding algorithms, see [1]. In this 

paper, we consider one-dimensional random variables. Since multidimensional time series are 

widespread in various subject areas, there are many methods for finding transition points in 
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multivariate data streams. An overview of modern methods for finding transition points in 
multidimensional time series are published in [2, 3]. 

Our approach use the Dempster–Hill procedure (aka Hill Assumprion A(n) or Nonparametric 

Predictive Inference) [4], that is thoroughly investigated and applied for solving various problems in 

papers of F. Coolen (see, for example, [5–8]) and V. Vovk (see, for example, [9–11]).  
Coolen, Coolen-Maturi, and Alqifari [5] presented nonparametric predictive inference for future 

order statistics and joint and conditional probabilities for events involving multiple future order 

statistics. The authors shown the use of predictive probabilities for order statistics in statistical 
inference. Bakera, Coolen-Maturi, and Coolen [6] introduced nonparametric predictive inference 

(NPI) for stock returns and presented the inference on future stock returns, illustrating the proposed 

NPI methods by historical stock market data. Yin, Coolen, and Coolen-Maturi [8] provided an 
exploration of the statistical methods based on imprecise probabilities for accelerated life testing, 

applying nonparametric predictive inference. Alqifari and Coolen [7] considered robustness of 

Nonparametric Predictive Inference (NPI), in particular inference involving future order statistics. 

The authors introduced new concepts for assessing the robustness of statistical procedures to the NPI 
and demostrated that most of their nonparametric inferences had good robustness to small changes in 

the data. Vovk et al [9] derived predictive distributions that are valid under a nonparametric 

assumption using applied conformal prediction. The authors introduced and explored predictive 
distribution functions that always guarantee coverage for i.i.d. observations. Their algorithm 

generalizes the classical Dempster-Hill predictive distributions. Vovk et al. [10] proposed schemes 

based on exchangeability martingales. Their method is general and may be applied to any prediction 
algorithm.  Vovk [11] described a universal probability forecasting systems, i.e. a system that is 

consistent for any distribution, provided that the observations are i.i.d., and proved the existence of 

universal conformal predictive systems.  

In opposite to papers mentioned above, we construct our approach on the Matveychuk–Petunin 
and Jonson–Kotz models [12–15] that are generalized Bernoulli schemes. 

2. Homogeneity and change-point detection test 

Consider two samples  1 2, ,..., nx x x x  and  1 2, ,..., ny y y y  drawn fro the distributions 1F  and 

2F , respectively. The null hypothesis 0H  states that 1 2F F . The alternative hypothesis is 1 2F F . 

The Matveychuk–Petunin and Jonson–Kotz models [1215] allow construction of a two-sided 

confidence interval  1 2,p p  with a given the significance level for both the true and false null 

hypothesis H0.  

Let      1 2
, ,...,

n
x x x  be variance series constructed using the sample x  . If H

0
 is true and the sample 

x obeys an exchangeable continuous distribution, then the Hill‘s assumption [4] states that 

     , , ,
1

i j

j i
P x x x j i

n


  


   (1) 

If the null hypothesis H
0
 is false, then the probability of the random event      ,ij i j

A x x x   

significantly deviates from (1). To estimate this deviation we construct  1 2N n n   confidence 

limits     1 2
,ij ij ijI p p  for the binomial proportion ijp  corresponding to given significance level 

βusing various formulas [16]. Since these intervals have different coverage probability and lengths, 

the most natural choice is to use an exact confidence interval, like the Clopper–Pearson interval [17]. 
It allows avoiding problems connected with the varying coverage probability and selection of 

parameters. Let L  be the number of intervals ijI  containing ijp  and  ,x y L N   is the relative 

frequency of the random event  ij ijB p I   with the probability 1−β. Using the arguments described 

above, we can construct the confidence interval I for the probability  p B  with the significance level 

https://pure.royalholloway.ac.uk/portal/en/persons/vladimir-vovk(74ed8b21-d9d7-4ab6-8dbf-6f177b91b945).html
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that is less than 0.05. The decision rule of the Klyushin–Petunin test is formulated in the following 

way: if the confidence interval I contains 0.95 then the hypothesis 0H  is accepted, otherwise it is 

rejected. The statistics  ,x y  is a heterogeneous measure of the samples x and y. 

As far as N can be quite large, the original version of the test may request quite long computations. 

Therefore, it is desirable to simplify the test. We propose do not use all intervals 
    ,
i j

x x  but 

randomly choose the fixed number M of such intervals.  
Consider the process of construction exact confidence interval for binomial proportion based on 

the 3-rule. Let x  be a unimodal random value. Then, the 3-rule holds [18]  

    
4

3
81

p x m x x    

where  m x  is the mean and  x  is the standard deviation . Therefore, the coverage probability of 

the confidence interval         3 , 3m x x m x x    is greater than 0.95 

In the classical Bernoulli model we have  

   
1 1

3 3 ,
2 2

a m x x np npq            
1 1

3 3 ,
2 2

b m x x np npq       

Therefore, the coverage probability of the confidence interval  ,a b   follows the binomial 

distribution, i.e. the significance level of the confidence interval  

1 1 1 1
3 , 3

2 2 2 2
I np npq np npq

 
        
 

  

does not exceed 0.05. 

Let us re-state the random event x I  as follows:  

1 1
3 .

2 2
x np npq      

Therefore, in the Bernoulli model we have  

1 3 1
.

2 12
P h p npq

n n

 
     

 
  

To construct the exact confidence interval for the binomial proportion p on the relative frequency 

h in the Bernoulli model consisting of n independent trials introduce two functions depending of  

   0,1 :p p h p     and    
1

1 .
12

p np p     

Denote  

   
1

1 .
12

p np p     

The graph  p  is the upper half of an ellipse E passing through the points  

21
,0

2 3

n
A n n

n

  
      

  

, 
1 1 1

,
2 12 4

B
n

 
   
 

, 21
,0

2 3

n
C n n

n

  
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with the center 
1

,0
2

 
 
 

. The graph of  p  is the restriction of the graph of  p  on the segment 

 0,1  stretching or shrinking the graph by  
3

n
 and shifting it by 

1

2n
.  

Therefore, the graph of the function  p  which does not depend on h  is an arc of ellipse   

passing through the points   0, 0 , 
1 1

,
2 2

  
  

  
 ,   1, 1 , such that the function  p  reach the 

minimum at the point 
1

2
p   and it is symmetrical with respect to this point. 

The lower confidence limit p
1
 is a root of the quadratic equation  

2 2

2

9 9 1 1
1 2 0.

2

h
p h p h

n n n n n

   
          

   
 (2) 

If  
1 3

0
2 12

h
n n

   , then the lower confidence limit p
1
 is the least root of (2). If  0h  , 

then 1 1p  . 

The upper confidence limit 2p  is a root of the quadratic equation  

2 2

2

3 3 1 1
1 2 0.

2

h
p h p h

n n n n n

   
          

   
 

If  1 1h   , then the upper confidence limit 2p   is the largest root of (3). If  1 1 ,h   then 

2 1.p    

For the generalized Bernoulli model similar reasoning gives the following quadratic equation for 

lower confidence limit: 

 

 

 

 
2 2

2

9 1 9 11 1
1 2 0

2 2 2

m n m n h
p h p h

n m m n m m m

      
                 

  (3) 

If 
1 3

2 12
h

m m
   , then the lower confidence limit 1p  for the generalized Bernoulli model is 

the least root of (3). If h   , then 1 0p  .  

Similar, the upper confidence limit 2p  for the generalized Bernoulli model is the root of the 

equation 

 

 

 

 
2 2

2

9 1 9 11 1
1 2 0

2 2 2

m n m n h
p h p h

n m m n m m m

      
                 

  (4) 

If 1 h   , then the upper confidence limit 2p  is the largest root of (4). If 1 h   , then 2 1p  .  

By virtue of the previous results the significance level of the confidence interval does not exceed 0.05.  

3. Comparison of the sensitivity of versions of Klyushin–Petunin test 

In [19] we compared the sensitivity and precision of the Klyushin–Petunin test based on the 
Wilson confidence interval with the sensitivity and precision of the Kolmogorov–Smirnov test and 

Wilcoxon test. Now, we compare the sensitivity of the Klyushin–Petunin test, Klyushin–Petunin exact 

confidence interval based on the 3-rule with complete selection of the intervals 
    ,
i j

x x  and its 

simplified version when we use only given number of randomly selected intervals 
    ,
i j

x x . In the 
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simplified version we do not make exhaust selection of the intervals 
    ,
i j

x x  but just randomly 

select 100 intervals, using the practical observation that the relative frequency almost exactly 
approximates the probability after 100 trials [20]. We generated samples (n = 40) drawn from the 

distributions which have the same location and the different scale, the same scale and the different 

locations, and the different scales and locations. Hereinafter we use the following notation: N(μ, σ) is 
the normal distribution, where μ is the mean and σ is the standard deviation, U(a, b) is the uniform 

distribution on an interval  ,a b , LN(μ, σ) is the lognormal distribution, E(λ) is the exponential 

distribution with the parameter λ, and G(k, Θ) is the gamma distribution with parameters k and Θ. 

Consider the segment of the time series  1 2, ,...x x . The change point of this time series is the point 

mx  such that  1 2, ,..., mx x x , m n  has the distribution 1F  and  1 2, ,...m mx x   has the different 

distribution 2F . We propose to find a change point in the following way. Consider the sample 

 1 2, ,..., kx x x  and a sliding segment  1, ,...,i i i kx x x   where i = 1, …, n. As i increases the sliding 

window sample becomes “contaminated” by the elements of the second sample. Ideally, when we 

reach a change point, the homogeneity measure attains its minimum value, and when the sliding 

window moves across the change point the homogeneity measure increases. Therefore, the graph of 

the homogeneity measure shows a saw tooth pattern. The Klyushin–Petunin homogeneity measure is 
monotonically decreasing before the change points and monotonically increasing after the change 

point. In Table 1 we show the result of the comparison of the sensitivity of the various version of the 

Klyushin–Petunin test. If the test detect a change-point earlier than its counterparts, it is considered as 
more sensitive. 6In Table 1 the order numbers of the contaminants detected by the Klyushin–Petunin 

test when we consider all the intervals 
    ,
i j

x x   (original version), complete exact Klyushin–Petunin 

test and simplified exact version 100 with 5%- significance level for various distributions are 

represented. The change-point in Table 1 is such point kx  that the test accepts the hypothesis H
0
 for 

samples  1 2 1, ,..., kx x x F   and  1 2 2, ,...,k k nx x x F   , k ≤ n. 

Table 1 
 Order numbers of change-points 

Test Tests 

 Original 
version 

Complete exact 
version 

Simplified exact 
version 

N(0,1)–N(3,1) 15 17 16 
N(0,1)–N(2,1) 16 19 18 
N(0,1)–N(1,1) 22 30 21 
N(0,1)–N(0,2) 23 24 33 
N(0,1)–N(0,3) 18 17 21 
N(0,1)–N(0,4) 22 17 20 
LN(0,1)–LN(3,1) 12 14 18 
LN(0,1)–LN(2,1) 15 24 19 
LN(0,1)–LN(1,1) 25 26 20 
LN(0,1)–LN(0,4) 24 28 22 
LN(0,1)–LN(0,3) 19 18 29 
LN(0,1)–LN(0,2) 29 33 31 
U(0,1)–U(2,3) 13 12 14 
U(0,1)–U(1,2) 12 14 12 
U(0,1)–U(0.5,1.5) 22 27 17 
E(1)–E(4) 21 17 24 
E(1)–E(3) 22 26 25 
E(1)–E(2) 27 29 24 
G(1,2)–G(4,1) 15 14 17 
G(1,2)–G(4,2) 17 15 15 
G(1,2)–G(2,2) 20 17 24 
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Remember, that this fact does not effect on the precision of the change point detection because 
despite the detection of a contamination the homogeneity measure monotonically decreases until the 

left end of the sliding window attain the change point. After this the Klyushin–Petunin homogeneity 

measure becomes monotonically increasing. 

For instance, when the first segment  1 2 40, ,...,x x x  has the distribution N(0,1) and the second 

segment  41 42 80, ,...,x x x  has the distribution N(3,1), the sample  1 2 40, ,...,x x x  is considered 

contaminated when m > 15 according to the complete Klyushin-Petunin original test (see Table 1). It 
is easy to see, that the Klyushin–Petunin test is more stable than its counterparts in all considered 

cases. If the entry of Table 1 is 40 then the corresponding test did nor reject the null hypothesis H
0
. 

The Table 1 shows that the Klyushin–Petunin test is more sensitive for shifted distributions with 
the different means and the same standard deviation (N(0,1) vs N(1,1), N(2,1), and N(3,1), LN(0,1) vs 

Lognogmal(1,1), LN(2,1), and LN(3,1), U(0,1) vs U(2,3), U(1,2), and U(0.5,1.5)) than its 

counterparts. For exponential and gamma distributions the exact Klyushin–Petunin test is in average 

more sensitive. 

 
Figure 1: P-statistics between samples from 
different normal distributions, different 
locations 

Figure 2: P-statistics between samples from 
different normal distributions, different scales 

 
Figure 3: P-statistics between samples from 
different uniform distributions 

Figure 4: P-statistics between samples from 
different lognormal distributions, different 
locations

The Table 1 shows that the Klyushin–Petunin test is more sensitive for distributions with the the 
means and the different standard deviation (N(0,1) vs N(0,4), N(0,3), and N(0,2), LN(0,1) vs 

Lognogmal(0,4), LN(0,3), and LN(0,2) than its counterparts. The second important result shown in 

the Table 1 is the fact that the original Klyushin–Petunin test is more robust than its versions in all 
cases. The combination of the high sensitivity and robustness makes it the effective tool for test 

heterogeneity and change-point detection. In addition, Fig. 15 demonstrate monotonic property of 

the p-statistics and the fact that a sew-like form of its graphs where “a tooth of sew is a change point 

of a time series, allows exactly detect change points. 
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Figure 5: P-statistics between samples from 
different lognormal distributions, different 
scales 

Figure 6: P-statistics between samples from 
different exponential distributions  

 
Figure 7: P-statistics between samples from different gamma distributions 

4. Conclusion 

We considered a nonparametric test for recognizing the point of change in the time series, before 

and after which the values of the time series obey different distributions. This test uses the 
Matveychuk–Petunin scheme, which is a generalization of the Bernoulli scheme using Dempster–Hill 

procedure. To recognize the point of change in the time series, we uses the original Klyushin–Petunin  

test, the exact Klyushin–Petunin test and simplified Klyushin–Petunin homogeneity test based on the 
proposed exact confidence interval. All the tests compared segments of time series with high accuracy 

with a significance level of no more than 0.05. The sensitivity and stability of the proposed tests is 

higher than that of its classical counterparts. The tests provide high accuracy of recognition of two 
heterogeneous segments for both the location shift hypothesis and the scale shift hypothesis. The 

proposed approach has wide practical applications in all areas where time series arise. 

The original KlyushinPetunin test based on the Wilson confidence interval is the most sensitive, 

robust and accurate for almost all considered distributions. The modifications of this test using the 

exact KlyushinPetunin confidence interval has the same precision, require less computation, but are 

less robust. Therefore, they could be used as tools for detection change points in data streams in 

situations when the speed of computations is more important than the robustness. Nevertheless, future 
work will focus on improving the robustness of the proposed test and investigating the multivariate 

case. 
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