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Abstract  
This paper presents an analysis of modern Transformer-based approaches to the semantic 

modelling of words and sentences. It covers the research and design of semantic similarity and 

paraphrase identification methods, as well as experimental evaluation of their performance.  

Metric learning approach and Transformer-based models are analysed as a basis for possible 

applications for solving tasks related to semantic similarity estimation. Experimental results 

for Siamese and triplet networks are presented along with a comparison of various aggregation 

functions.  

Experiments demonstrate that the considered deep language models based on the Transformer 

architecture can be used to obtain efficient latent words' features and to analyse their 

connections within a sentence and links between sentences. The proposed combined approach, 

which is based on using the BERT-like models fine-tuning, has shown significant 

improvements to the various popular strategies.  
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1. Introduction 

Analysis of semantic similarity of sentences is one of the main tasks in the field of Natural Language 

Processing. It is crucial for clustering, information retrieval, summarization, plagiarism detection, etc. 

In general, the task of measuring semantic similarity consists in assigning some value, which represents 

similarity, to a pair of sentences. In this paper, we mostly consider the task in a binary setting, in other 
words, we try to solve the problem of identifying whether two sentences are semantically identical, i.e., 

are paraphrases. The considered solution is based on some continuous measure of similarity and some 

threshold value. The problem of semantic similarity analysis and identification is usually considered as 
a task of classification or logistic regression. Although the task of paraphrase identification is 

formulated in semantic terms, approaches to solving this problem are often based on statistical 

classifiers that use shallow lexical and syntactic features.  
Usually, models based on bag-of-words, n-grams, and TF-IDF [1] are used to form a representation 

of a sentence for such approaches, followed by some methods of similarity estimation (such as 

Levenstein's editing distance, longest common substring, Jaccard coefficient, and cosine distance) [1] 

for measuring similarity between two sentences. However, paraphrasing is usually done by replacing 
words with their synonyms/antonyms, syntactic modifying, shortening the sentences, combining, 

reorganizing, mixing words, generalizing the mentioned concepts, which allows changing the original 

text, while maintaining the semantics of the sentence. This fact makes such approaches inefficient. 
Other approaches leverage the usage of syntactic features, i.e., take into account the structure of the 

sentence [2, 3], with an assumption that similar sentences have similar syntactic structures. However, 

this assumption cannot solve the problem of "the same semantics but different syntactic structures". 
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In recent years, traditional methods for modeling the semantics of words and sentences have given 
way to approaches based on artificial neural networks. Such models can learn to find hidden features 

and, most importantly, to identify the relationships between both words and sentences, which is crucial 

for the task of measuring semantic similarity. Deep neural models, in contrast to traditional approaches, 

model the contextual representation of words; this means that two identical words, but used in different 
contexts, have different vector representations. English sentences and the relationship of semantic 

similarity between them are the object of this research. Research methods and tools include deep 

learning natural language models based on the Transformer architecture, some deep learning methods, 
and text data corpora for neural network training. 

The following section presents an overview of Transformer-based models, their limitations, and 

opportunities for using them to solve tasks related to semantic similarity estimation. Section 3 covers 
aspects of semantics modeling, methods of sentence representations formation, and usage of metric 

learning approach for similarity measuring. Experimental results are presented in Section 4. 

2. Deep language models 

2.1. Transformer deep neural network architecture 

The Transformer architecture proposed in [4] has become, in a sense, a golden standard in the 
modern field of natural language processing. The ideas and approaches described in the original paper 

are the basic elements for numerous modern deep learning language models.  

However, the mechanism of attention described by the authors is considered to be the most 
significant contribution. The attention function can be specified as a mapping of input data consisting 

of queries and sets of key-value pairs to a set of outputs, where queries, keys, values, and the output are 

represented as vectors. The result is calculated as a weighted average of the values, where the weight 

assigned to each value is set using the relevance function for the query and the corresponding key.  
The attention mechanism proposed by the authors is called “Scaled Dot-Product Attention”, it takes 

queries, dimension keys 𝑑𝑘, and dimension values 𝑑𝑣 as an input. The attention function is calculated 

for a set of queries simultaneously, which form a matrix 𝑄. The keys and values are also represented by 

some matrices 𝐾 and 𝑉. The output matrix is calculated as follows: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 

For large values of 𝑑𝑘, the absolute value of the scalar product of the query and key vectors becomes 
greater, displacing the softmax function [5] in the parts where it has very small gradients. To overcome 

this effect, the scalar product is scaled by 
1

√𝑑𝑘
 .  

For the proposed architecture, not only the attention function is calculated with the keys, values, and 

dimensional queries 𝑑𝑚𝑜𝑑𝑒𝑙 , but the queries, keys, and values are projected onto the dimensions 𝑑𝑘 , 𝑑𝑘, 

and 𝑑𝑣 correspondingly with different trained linear projections for ℎ times. After that, the attention 

function is computed in parallel for all the projected queries, keys, and values. Then the results are 
concatenated, there is another linear projection and, as a result, the final values are obtained. The 

described mechanism is called the multi-head mechanism of attention. It allows models to receive 

information from different subspaces in different positions simultaneously. 

2.2. BERT-based models 

The authors of [6] presented the language model BERT (Bidirectional Encoder Representations from 

Transformers). The BERT architecture consists of a multilayer bidirectional Transformer encoder. 

BERT is designed for pre-training of deep bidirectional word embeddings by considering the right and 
left contexts in all layers of the model. Such representations are then used for the final training in 

specific NLP tasks. Recent empirical improvements, based on transfer learning for language models, 

have shown that prior unsupervised training is an integral part of many natural language understanding 

systems. BERT is an example of a pre-trained model with a bidirectional architecture that can 
successfully solve a wide range of problems. The BERT model has catalyzed the emergence of new 
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models based on its architecture and the principles proposed in the original article. Training of such 
models requires significant computational resources, huge corpora of text data and many hours of 

experiments for successful selection of hyperparameters. The authors of [7] researched the impact of 

all these factors on the effectiveness of the original BERT model and proposed an approach to model 

training based on its architecture, which they called RoBERTa (Robustly optimized BERT approach).  
This approach is based on relatively simple modifications: longer training time with larger batch 

size and bigger text corpus; omission of the NSP target function; training on longer input sequences; 

dynamic masking of the training data. A new large CC-News text corpus has also been proposed to 
control the effects of training data size. It is worth mentioning that the authors of RoBERTa increased 

the size of the token dictionary from 30 000 to 50 000, using a slightly modified version of tokenization. 

Thus, the implementation of all the mentioned techniques in RoBERTa helped to improve the efficiency 
of the original BERT model. Model size increase during pre-training often improves the accuracy for 

specific tasks. However, at some point, further enlargement of the model becomes more difficult due 

to the limitations of memory in graphics cards and training time. To overcome these limitations, the 

authors of the ALBERT model (A Little BERT) [8] proposed two techniques that reduce the number 
of parameters of the BERT model and speed up the training process, while maintaining and even 

improving its accuracy: factorization of the embeddings' weights matrix and usage of the same 

parameters in different layers. Both techniques significantly reduce the number of parameters of the 
BERT model but maintain its accuracy and increase the efficiency of each parameter. These techniques 

also play the role of additional regularization, which stabilizes training and improves generalization. 

3. Sentence semantics modeling 

3.1. Problem setting 

For modeling the sentence semantics, we consider the construction of a finite-dimensional vector 

space 𝑆 ⊆  𝑅𝑛 , in which each sentence is represented by some element. The main feature of the resulting 

space is that two semantically similar sentences are close to each other in terms of some similarity 

measure. Thus, it would be sufficient to compare the embeddings of each sentence using the defined 
similarity measure to identify semantic similarity. Figure 1 shows the general scheme of constructing 

vector representations for two sentences with their subsequent comparison. 

For the construction of this space, we use contextual word embeddings obtained by using deep 
language models based on Transformer, namely BERT, RoBERTa and ALBERT. We use cosine 

similarity as a similarity measure. We also propose some other measures based on neural networks. 

Apart from that, to obtain the desired property of the space (semantically similar sentences being close), 

we consider certain models' training strategies, which intensify this discriminatory effect. 

3.1. Deep language models’ outputs aggregation 

We use the aforementioned Transformer-based language models as a basic element for modeling 

sentence semantics. Each such model takes a sequence of words, which form a sentence, as an input. 

The attention mechanism, which is fundamental for such a model, is used for building contextual 
representations of each word. On the one hand, this representation encapsulates the statistical features 

of the word within a particular language and, on the other hand, it takes into account the word’s role in 

the context of the sentence. Unlike basic recurrent models, the Transformer encoder unit, which is the 
basis of BERT, RoBERTa and ALBERT, processes both the left and the right context of each word.  

Thus, the deep language model transforms the input sequence of words into a sequence of contextual 

representations of the corresponding words. To obtain the sentence embedding, we need to aggregate 

this sequence of words' embeddings. Obviously, sentences, in general, have different lengths, so it is 
important that the vector representation of each sentence has some fixed size, which will determine the 

dimensionality of the vector space of sentences. Averaging of all the contextual word embeddings is 

the most obvious option (here, 'MEAN' denotes this method). In this case, the dimensionality of the 
sentences space is the same as the dimensionality of the words space. For this aggregation method, each 

word is equally important for constructing a sentence representation. The maximum function (MAX) is 

another method of aggregation, for which the largest value of the vector components is taken.  
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A special CLS token was introduced in the original BERT article. This token is always added in 
front of the input sequence. The vector representation corresponding to the CLS token is used as an 

embedding of the whole sentence. For BERT and other models, this embedding is used for the 

subsequent fine-tuning for specific tasks. We also consider this aggregation method. 

3.1. Similarity measure based on a neural network 

Despite the widespread popularity of cosine similarity for different tasks of natural language 

processing, other sentence similarity measures are also worth considering. Today, neural networks are 

a powerful and effective tool in many applications, so in the scope of this paper, we also analyze and 

build some methods for similarity measuring based on neural networks.  

  
Figure 1: Semantic similarity identification scheme 

In general, measuring the degree of similarity of two sentences can be reformulated into a regression 
or classification problem. The regression problem consists in finding a real number, which corresponds 
to the similarity value. And the classification problem is considered when some class label is assigned 
to a pair of sentences, e.g., for the task of paraphrase detection, where there are two classes. Binary 
classification is often formulated as the problem of logistic regression with the subsequent introduction 
of some threshold value. Thus, having two sentence embeddings, we will solve the problem of logistic 
regression to identify their semantic similarity. Since logistic regression is a special case of 
classification, here, we name the neural network for similarity measuring a classifier.  

Some properties of the classifier required for practical applications are the following. First of all, the 
number of classifier parameters must be much smaller than that of the language model. The required 
computation time and the amount of memory are also important.  

A 'heavy' and slow classifier will be inefficient in practice. Two sentences' embeddings, 𝑎 and 𝑏, are 
the input for the classifier. The next step is the transformation of these vectors into a single 
representation that is fed to the neural network. Authors of [9] proposed to use the combined vector of 
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the 𝑎 and 𝑏 together with the results of operations on them, such as component-wise summation, 
subtraction, multiplication, etc. E.g., (𝑎, 𝑏, |𝑎 − 𝑏|, 𝑎 ∗ 𝑏) is one of the possible input vectors.  

In this paper, we consider the effectiveness of different representations. The resulting combined 
vector representation of the sentences is then fed to the input of an artificial neural network. For the 
case of logistic regression, the output of the neural network is always one number, i.e., a one-
dimensional vector. To get the similarity measure value, we use a sigmoid, which translates its argument 
into a number from the interval (0; 1). We also use a specific threshold value to identify the class. 

3.2. Metric learning. Siamese and triplet networks 

Neural network training consists in the optimization of a specific objective function, also called the 
loss function. The goal is usually to minimize the network's inference error with respect to the correct 
label of the input object. For identifying semantic similarity, we need to evaluate the relative distance 
or similarity between the two input sentences. This training strategy is widespread in other areas of 
artificial intelligence, where there is a need to compare different objects. This concept is called metric 
learning, and the target function used in this case is called contrastive loss.  

The task of identifying the semantic similarity of sentences conforms to the principles of metric 
learning. We first get the sentences' embeddings by using a deep language model. Then we choose the 
comparison function, i.e., the similarity function. After that, we train a deep language model to generate 
similar vector representations for semantically similar sentences and distant vectors for dissimilar ones.  

There are two general approaches to constructing the contrastive loss function: using pairs of training 
objects (pairwise loss function) and using triplets of training objects (triplet loss function). 

3.2.1. Pairwise loss function. Siamese neural network 

The first approach involves the usage of positive and negative pairs of training objects. Positive pairs 

are formed from an anchor object 𝑥𝑎 and a positive object 𝑥𝑝 that is close to 𝑥𝑎 in terms of the defined 

similarity measure, and negative pairs are formed by an anchor object 𝑥𝑎 and a negative object 𝑥𝑛 that 
is dissimilar to 𝑥𝑎. The objective of the training is to form vector representations, for which the distance 
𝑑 is as small as possible for the positive pairs and is greater than a certain margin 𝑑 for the negative 

pairs. Let 𝑟𝑎 , 𝑟𝑝 and 𝑟𝑛 denote the corresponding embeddings of the input objects, then the pairwise loss 

function can be formulated as follows: 

 

The pairwise loss function is often used when embeddings are formed using identical deep neural 
networks with common weights. In this case, training is based on Siamese neural networks. 

3.2.2. Triplet loss function. Triplet neural networks 

The contrastive loss function based on triplets of training objects in many cases shows better results 

than the pairwise loss function. Triplets are formed by the anchor 𝑥𝑎, positive object 𝑥𝑝, and negative 

object 𝑥𝑛. This approach is based on the fact that the distance between the anchor and the negative 

object is greater (with a margin of m) than the distance between the anchor and the positive object. In 
the general case, the triplet loss function is formulated as follows 

𝐿(𝑟𝑎 , 𝑟𝑝 , 𝑟𝑛)  =  𝑚𝑎𝑥(0, 𝑚 +  𝑑(𝑟𝑎 , 𝑟𝑝)  −  𝑑(𝑟𝑎 , 𝑟𝑛)) 

Like the pairwise loss function, the triplet loss function is most often used when embeddings are 
obtained using identical deep neural networks with shared weights. In this case, training is based on the 
triplet neural networks. 

3.3. Fine-tuning of the BERT-like language models 

The main purpose of BERT is its further fine-tuning for a specific NLP task. BERT is a pre-trained 
model with a built-in attention mechanism, which is used to extract certain features of words and to 
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model the relationships between them within a sentence. And it is the process of fine-tuning that allows 
one to accurately interpret these features and relationships to solve specific problems. This approach 
demonstrates the best results for different tasks on a variety of corpora. This applies to the problems of 
semantic similarity and paraphrase identification. Although this approach works well for the pairs of 
input sentences, it requires both sentences to be fed together to the model. This implies significant 
computational costs. Authors of [10] investigated that finding the most semantically similar pair among 
n = 10000 sentences requires n ⋅ (n– 1)/2 = 49995000 runs of the BERT model. This task takes 
approximately 65 hours on a modern V100 graphics card. Such a long search time is inadequate for 
practical applications in an era when the volume of new information is growing exponentially.  

Thus, despite the high accuracy of the BERT model after its fine-tuning for a specific task, this 
approach cannot be applied to real-world problems such as semantic similarity identification, clustering, 
information retrieval for the huge streams of input objects. That is why in this paper, we consider 
methods of constructing a semantic representation of each sentence separately, which can be used for 
their efficient comparison. However, the method of simultaneous training for a pair of sentences as a 
single input sequence, which was proposed in BERT, can help to improve the results. 

4. Experiments 

4.1. Training experiments setting 

For training and testing the proposed approaches, we use Microsoft Research Paraphrase Corpus 
(MRPC), which is classic for the analysis of semantic similarity of sentences [11].  

The task of paraphrase identification, as mentioned earlier, is a binary classification problem. In this 
case, the most popular choices for model quality assessment metrics are accuracy and F1-score. The 
latter allows one to get a better evaluation of the model quality when the corpus is not balanced, as for 
MRPC. For paraphrase identification based on metric learning and logistic regression, we need to select 
a threshold for classification. For fair assessment of the model performance on the test corpus and its 
ability to generalize, the choice of the threshold value is made using cross-validation.  

Python programming language and PyTorch framework have been used for the development of the 
software system for training experiments. All the experiments have been performed on an Nvidia 
GeForce GTX 1060 graphics card with 6GB of video memory. HuggingFace library has been used for 
accessing the deep language models and corresponding weights. Due to memory limitations, the 

following model versions have been selected for the experiments: 𝐵𝐸𝑅𝑇𝑏𝑎𝑠𝑒, 𝑅𝑜𝐵𝐸𝑅𝑇𝑎𝑏𝑎𝑠𝑒, 
𝐴𝐿𝐵𝐸𝑅𝑇𝑏𝑎𝑠𝑒. For all experiments, the batch size is 12. Each model has been trained for 30 epochs, 
each of 80 iterations. For the classification and fine-tuning, the additional block (head) of the neural 
network has been trained during the first 10 epochs with "frozen" weights of the language model.  

A stochastic gradient descent with a Nesterov momentum with a parameter of 0.9 has been chosen 
as the optimizer. The initial value of the learning rate depends on the specific model and target function, 
but the overall strategy for changing the step is to reduce it by a factor of 0.5 every 5 epochs.  

L2 regularization with parameter 0.01 has been chosen for regularization of the model. For Siamese 
and triplet networks, the m value has been set to 0.5 for all the experiments. 

4.2. Results and analysis of the training experiments 

4.2.1. Initial results of the language models 

The initial results of the models with pretrained weights for different types of outputs aggregation 
are presented in the Table 1, to give better understanding of how efficient the training and different 
target functions are. Cosine similarity has been used as a measure of similarity. As we see, types of 
aggregation MEAN and CLS show slightly better metrics’ values. 

4.2.1. Metric learning 

Deep language models are pre-trained to extract a diverse set of features from the input word 
sequence. To solve a particular problem, one needs to interpret these features correctly, assign bigger 
weights to some of them and discard others. Metric learning allows models to better use certain features 
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for semantic similarity identification. Table 2 shows the results of models’ training in the paradigm of 
the Siamese networks. An improvement for all the models and types of aggregation can be noticed, 
comparing to the results in the Table 1. Table 3 shows the results of training using a triplet networks-
based approach. Based on the comparison with the Table 2, the training strategy based on the triplet 
networks shows much better results than the one based on Siamese networks. This is also confirmed by 
research in other fields of artificial intelligence. 

Table 1 
Initial results (accuracy/F1) of the language models 

 MEAN MAX CLS 

BERT 0.659/0.789 0.659/0.785 0.664/0.797 
RoBERTa 0.681/0.791 0.661/0.788 0.664/0.797 
ALBERT 0.690/0.788 0.683/0.792 0.665/0.798 

Table 2 
Results (accuracy/F1) of the Siamese networks 

 MEAN MAX CLS 

BERT 0.692/0.798 0.684/0.789 0.697/0.801 
RoBERTa 0.693/0.797 0.686/0.790 0.701/0.799 
ALBERT 0.691/0.799 0.684/0.787 0.702/0.811 

Table 3 
Results (accuracy/F1) for the triplet networks 

 MEAN MAX CLS 

BERT 0.709/0.809 0.692/0.795 0.729/0.818 
RoBERTa 0.709/0.807 0.691/0.799 0.720/0.812 
ALBERT 0.694/0.793 0.676/0.797 0.715/0.795 

4.2.2. Logistic regression 

Several types of combinations of sentences’ vector representations have been analyzed, together 
with variants of classification networks with different parameters and numbers of layers, to identify 
semantic similarity using the neural network-based similarity measure.  

Based on the results of numerous experiments, which did not show significant differences in the use 
of many hidden layers, we decided to choose a network with one input layer. We chose binary cross 
entropy as a loss function.  In order to choose the type of embeddings aggregation, we conducted 
experiments with the BERT model and the CLS aggregation type. The results and types of combinations 
are shown in Table 4, where 𝑢, 𝑣 are vector representations of sentences, operation “ ∗ ” denotes the 
element-wise vector multiplication. 

Table 4 
Results (accuracy/F1) for different types of aggregation 

Type of aggregation  BERT(CLS) 

(u, v) 0.671/0.782 
(|u - v|) 0.689/0.791 
(u * v) 0.698/0.795 

(u, v, |u - v|) 0.722/0.812 
(u, v, u* v) 0.719/0.809 

(u, v, |u - v|, u*v) 0.727/0.814 

The best results have been obtained for aggregation (u, v, |u - v|, u*v), which is used for the 
subsequent experiments. Table 5 shows the results of logistic regression training for all the models and 
types of aggregation. Comparing the results obtained for triplet networks and logistic regression, we 
see that the use of the neural network-based measure of similarity shows much better results, especially 
when using the RoBERTa and ALBERT models. It is also worth noting that sentence embeddings, 
which have been obtained from logistic regression training, can be efficiently compared using cosine 
similarity 
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Table 5 
Results (accuracy/F1) for the logistic regression 

 MEAN MAX CLS 

BERT 0.712/0.811 0.709/0.802 0.727/0.814 
RoBERTa 0.782/0.839 0.762/0.829 0.809/0.860 
ALBERT 0.770/0.837 0.751/0.823 0.769/0.843 

4.2.3. Conclusions on the aggregation type 

Analyzing the outcomes of the experiments, we conclude that the MAX aggregation type shows the 
worst results. We can assume that the maximum function is quite ‘aggressive’ and discards some 
important generalized properties. MEAN and CLS show quite similar results, which motivates the usage 
of one of these aggregation types for sentence embeddings. Following the original BERT paper and 
taking into account the mentioned results, we use the CLS aggregation type for the subsequent 
experiments. 

4.2.4. Models fine-tuning 

As mentioned above, BERT-like models have certain pre-trained weights. The model must be fine-
tuned for any task. This also applies to the problem of paraphrase identification, when two sentences 
are combined into a single input sequence. Fine-tuning usually increases the quality of results, but this 
approach is impractical due to significant computational costs. However, in Table 6, we present the 
results of our own fine-tuning and the results given by the authors in the original articles. It is worth 
noting that our results have been obtained for the base versions of all models. The results of RoBERTa, 
presented in the article, are given for the large version and of ALBERT - for the xxlarge version. Both 
of these versions have significantly more parameters than the base version. 

Table 6 
Results (accuracy/F1) after the fine-tuning 

 Obtained result Presented in the article 

BERT 0.864/0.898 -/0.889 
RoBERTa 0.885/0.915 -/0.909 (large) 
ALBERT 0.857/0.894 -/0.909 (xxlarge) 

4.2.5. Combined approach 

All the considered models have a certain initial set of weights, used as the starting point for further 
training. Despite the inability to apply the approach of semantic similarity identification, which was 
proposed in the original finetuning method, i.e., combining two sentences into one sequence, which is 
used as an input to the language model, we can use the weights obtained in the process of such tuning 
as the initial ones for the aforementioned metric training and logistic regression. We will call this two-
step method of training a combined approach. Table 7 presents the results of the language models that 
were initially fine-tuned (Table 6), using the considered training strategies and the type of aggregation 
CLS, where Baseline is the starting result of the models with cosine similarity, Siam - Siamese learning 
strategy, Triplet - triplet networks learning, LR - logistic regression. 

Table 7 
Results (accuracy/F1) based on the combined approach 

 Baseline Siam Triplet LR 

BERT 0.708/0.790 0.751/0.828 0.743/0.825 0.796/0.851 
RoBERTa 0.729/0.807 0.721/0.811 0.725/0.817 0.798/0.855 
ALBERT 0.692/0.799 0.730/0.822 0.724/0.819 0.779/0.843 

The results show that model fine-tuning helps to improve results when used with further training 
strategies. Thus, the fine-tuning approach, proposed by the authors of the original BERT model for 
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tasks on the level of pairs of sentences, can also be suitable for sentence semantics modeling, i.e., in 
constructing a vector space of sentences, in which semantically similar sentences are represented by the 
close elements (in terms of some similarity measure). The obtained training results show that the 
standard usage of the outputs of the considered language models for getting the sentence embeddings 
is inefficient. The strategy of metric learning and logistic regression can be used to obtain better, more 
‘discriminative’ sentence embeddings for more accurate semantic similarity identification. 

5. Conclusions 

In this paper, efficient approaches to the analysis of semantic similarity of sentences using deep 
learning methods were proposed and investigated. The considered deep language models based on the 
Transformer architecture can be used to obtain efficient latent words' features and to analyse their 
connections within a sentence, as well as connections between sentences. However, to model the 
semantics of a sentence, i.e., to construct a vector space where semantically similar sentences 
represented by points in that space are close, we need an appropriate interpretation of the features and 
connections provided by the language model. We researched and applied corresponding training 
strategies, which allowed us to obtain more discriminative features. Metric learning based on Siamese 
and triplet networks with a cosine degree of similarity allowed to improve the initial results of the 
considered language models. Logistic regression as a comparison measure has shown that this approach 
is very promising.The proposed combined approach, which is based on using the BERT-like models 
fine-tuning, has demonstrated significant improvements to the previously discussed training strategies. 
The results indicate the efficiency of the proposed and researched approaches. 
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