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Abstract  
A one-depot capacitated vehicle routing problem (VRP) with several constraints is 

investigated. In particular, its representativity as an optimization problem on fragmentary 

structures is established, and its evolutionary-fragmentary model is built. It justifies the 

possibility of reducing the VRP to a permutation-based optimization problem and its solution 

by evolutionary algorithms involving permutations. This model allows straightforward 

extending to more complex vehicle routing problems, including multi-depot and pickup-

delivery ones. Details of the implementation of evolutionary algorithms to the VRP are given 

such that the geometric crossover operator. 
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1. Introduction 

Let us consider a one-depot capacitated vehicle routing problem (VRP) [3,4,5] in the following 

formulation: cargo is delivered from a node 0  (depot) to n  other nodes (customers) by a uniform 

transportation fleet of m identical vehicles. All routes start and end at the depot, and vehicles can return 

to the depot several times. Customers' requests are known and must be satisfied, while cargo is divisible. 

The transportation cost of a vehicle consists of the fixed part, the renting cost, and the variable part 

involving a cost of a km of the route.  

Problems of this type are hard to solve to optimality [3]. Therefore, to search for suboptimal 

solutions, the use of metaheuristics is justified [1,2,6,8,17,18,19,20,21,22,23,24]. 

This paper will show that the VRP in the above formulation can be seen as an optimization problem 

on a fragmentary structure (FS) [10,11,12] and can be reduced to an unconstrained permutation-based 

problem. This makes it possible to solve it by evolutionary algorithms [1,2,6,8,17,18,19,20].  

2. Optimization problem on a fragmentary-oriented structure 

A fragmentary oriented structure ( , )X E  [4,5] on a finite set X  is a set E  of finite sequences of 

X -elements of the set X such that if a sequence 1 2{ , ,..., }mx x x  belongs to E , then any of its initial 

subsequence 1 2{ , ,..., | }kx x x k m  also belongs to E . 

Elements of E  are called feasible fragments, and their length is called the cardinality of the 

fragment. Feasible fragments of cardinality 1  are called elementary. A feasible fragment is called 
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maximal if it is not a subsequence of any other feasible fragment. An empty set is considered a feasible 

fragment. 

If an efficient procedure for checking if a sequence belongs to the set E (an oracle) exists, then any 

maximal fragment can be constructed by the following greedy algorithm: 

a) first, some linear ordering of the set X  is conducted; 

b) at the initial step 0=i  , an empty sequence 0 =X  is chosen; 

c) at step 1+k , the first element 1 1 2\{ , ,..., }+ k kx X x x x  in the given order is selected such that 

the condition 1 2 1{ , ,..., }+ kx x x E  holds. This condition will be called the attachment condition; 

d) the algorithm terminates if, at the next 1+k -th step, it is impossible to find an element \ kx X X  

that can be attached to 1 2{ , ,..., }kx x x E , i.e., no one of the remaining elements can be attached to 

1 2{ , ,..., }kx x x E . 

Note that if 1 2{ , ,..., } kx x x E  and  x X  there exists a polynomial oracle for verifying 

1 2{ , ,..., , }kx x x x E , i.e., an algorithm of polynomial complexity on the cardinality of X  for checking 

the attachment condition 1 2{ , ,..., , }kx x x x E , then, evidently, the problem of constructing the 

maximum fragment is also polynomially solvable. 

The output of applying a fragmentary algorithm is the maximum fragment. This fragment depends 

on the involved elements of X . Respectively, the elements depend on the initial ordering of X . Thus, 

natural mapping arises of a set nS  of all n -dimensional permutations [9] onto the set of maximum 

fragments of a fragmentary structure. Note that this mapping is surjective. 

Let a fragmentary structure ( , )X E  be given on a finite set X . In addition, let a function 
1: →f E R  

monotonous in inclusion be defined as an optimization criterion. This means that each feasible fragment 

'E E  associates with some real number ( ) 1' f E R , such as 1 2, E E E : if 1 2E E  then 

( ) ( )1 2f E f E  (or ( ) ( )1 2f E f E ).  

One way to specify such a function is additive. Namely: a non-negative number ( ) 0w x   (weight) 

is associated with each element x X . The relation 1 2

1

({ , ,.., }) ( )

=

=
k

k i

i

f x x x w x  defines the function 

f . 

An optimization problem on a fragmentary structure is to find a feasible fragment with the maximum 

value of the criterion (.)f . It is easy to see that the optimal solution to the problem with a monotonic 

criterion will be a maximum fragment. At least the maximum fragment is always present among the 

optimal solutions if a function f   is monotonic. Note that the maximum fragment condition can be 

mandatory in the optimization problem even without additional assumptions about the objective 

function. Therefore, further, we restrict the search for a solution to a subset of maximal fragments 

among all fragments.  

From the above, it follows that any optimization problem on a fragmentary structure can be reduced 

to a combinatorial optimization problem on a set of permutations of dimension n . Each function 

1: →f E R  defined on a fragmentary structure is associated with a covering function  
1: →nF S R  that 

maps the set nS  onto 1R . The value of this function on a permutation  ns S  is determined as the 

following. First, using a fragmentary algorithm, the maximum fragment e E  is constructed based on 

linear ordering given by the permutation, and then the value ( )f e  is calculated on the fragment e . 



3. An evolutionary algorithm for functions defined on a permutation set 

Now, we consider the problem of finding an optimal value of a function 
1: →nF S R . To find 

suboptimal solutions to the optimization problem min→

nS
F , we apply an evolutionary algorithm with 

a geometric crossover operator [10,13,14,15,16]. Let us outline the principle of the algorithm [10,11]. 

The set nS  of all permutations induced by  1,...,n   is chosen as a solutions' underlying set. First, with 

the help of the initial population operator, a set 0  nY S  of solutions is constructed. Each element of 

this set is a random permutation. At each successive step, a certain set of permutations, the current 

population, is assumed to be given. At the first step, it is a set 0=Y Y . For each of Y -elements, the 

value of the selection criterion is calculated and is considered as a covering mapping of the original 

problem. 

 

 
Figure 1: Evolutionary algorithm scheme 

 

Next, the selection operator in the current population selects a set of pairs for the crossover Y . A 

crossover operator is applied to each pair from the selected set of pairs, which assigns a permutation-

offspring to each pair of permutations of "parents", and then a mutation operator is applied to the 

crossover result with probability (0,1) . 

In this way, a set Y  of offsprings is found. An evolution operator is applied to the intermediate 

population Y Y , which is the union of the current population and the set of offsprings, which allocates 

a new current population on this set. The evolution process is repeated until the termination condition 

for the evolutionary algorithm is met. The "best" solution in terms of the value of the function F  in the 

last current population is taken as an approximate solution to the optimization problem. The block 

diagram of the evolutionary algorithm is shown in Fig. 1. 

4. Geometric crossover on the permutations set 

Here, we describe the geometric crossover operator on permutations.  

The permutation set nS  can be viewed as a metric space with the Kendall metric [7]. In the Kendall 

metric, the distance ( , )u v  between permutations ,  nu v S  is defined as the minimum number of 

transpositions of neighbouring elements needed to translate one permutation into another. 
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A crossover :  →n n nK S S S  is geometric in the Kendall metric if equality 

( , ) ( , ( , )) ( ( , ), )= +u v u K u v K u v v    holds for any permutations ,  nu v S . This means that the result 

of applying the crossover K   lies on the segment connecting the permutations ,u v . 

Let ( )1 2, ,...,= n ns s s s S . The notation si j  will be used to indicate that, in permutation s , an 

element i  precedes an element j . We define an order permutation matrix ,( )s
ij i ja  if the permutation 

s  as follows: 

1    if  

1  if  j

0    if  




= − 
 =

s
s
ij s

i j

a i

i j

 

Theorem. Let permutations ( )1 2, ,...,= nu u u u  and ( )1 2, ...,= nv v v v  be given. The Kendall distance 

between u  and v  is defined as 

                                  

1 1

1
( , ) | |

2
= =

= −
n n

v u
Kend ij ij

i j

u v a a .                                  (1) 

Proof. Let  u v . Then permutation v  contains two neighbouring elements ,i j  such that 

                                    и   u vi j j i .                                                         (2) 

Indeed, let us assume that there be no such elements in v . In v , we choose the closest elements ,i j  

having the property (2). Now, we select an element k  between the elements j  and i  in the permutation 

v . Then we have ,      u v vi j j k i . But this means that in the permutation u  is either uk i , or 

uj k . Hence, ,i j  are not nearest, having the property (2), in the permutation v . Therefore, 

neighbouring elements ,i j  exist in the permutation v  possessing property (2). In the permutation v , 

sequentially swapping neighbouring elements satisfying (2), we come to the permutation u  in the 

minimum number of steps equal to 

1 1

1
| |

2
= =

−
n n

v u
ij ij

i j

a a , which is the Kendall distance between u  and 

v . 

Suppose permutations ,  ns t S  define linear orderings , s t  on a set {1,2,..., }n . Hence, on the 

permutations, we can introduce another ordering  st  (generally speaking, not linear) as follows: 

      }   st s tx y x y и x y . 

Such an order can be described as a directed graph G , whose nodes are elements of {1,2,..., }n . The 

elements are in the relation stx y  if there exists a directed path in graph G  cone ting nodes x  and 

y  . 

Let us give an example for 6=n  and ( )1,3,5,2,6,4=s , ( )2,6,5,1,3,4=t . The graph corresponding 

to the order is shown in Fig. 2. 

A linear order u  defined by a permutation  nu S  on a set {1,2,..., }n  is called consistent with the 

order st  if ux y  follows from the condition stx y . A set of permutations corresponding to linear 

orders, which are consistent with st , forms a segment connecting permutations ,  ns t S  in the Kendall 

metric. 

 

 



 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 2: Graph of order st  

 

Now, for two permutations ,  ns t S , we describe an algorithm for finding permutations that lie on 

the segment  ,  s t . Consider a graph corresponding to the order st . First, we randomly choose one of 

the nodes as a source in this graph. This node will determine the first element of a resulting permutation 

 ,  u s t . We fix this node in u  and remove it from the graph together with outgoing edges from it. 

We proceed in the same manner on the rest of the graph. This process is continued until all nodes of the 

graph are removed. The algorithm's output is a permutation u , which determines a linear order on 

{1,2,..., }n  consistent with the order st . It is easy to show that such an algorithm can obtain any 

permutation consistent with the order st  with an appropriate choice of the sequence of exploring graph 

nodes. 

In particular, we introduce the following algorithm. Let ( )1 2, ,...,= ns s s s  and ( )1 2, ,...,= nt t t t  be 

arbitrary permutations in nS . A permutation  ,  u s t  is constructed as follows: coordinates of vectors  

s  and t  are revised consecutively. At the k -th step, any one of the first elements of the sequences is 

selected and added to u . Then, this element is taken from s  and t . For example, one of the algorithm's 

outputs for permutations (2,3,6,1,7,8,4,5)  and (4,6,7,1,3,2,8,5)  will be a permutation 

(2,3,4,6,1,2,8,5) . Clearly, the resulting permutation always lies on the segment   ,  s t  in the Kendall 

metric. 

5. VRP fragmentary model  

Now, we return to our delivery routing problem of cargo. Let us demonstrate that the consider route 

nodes. In addition, each node, except for the depot node 0 , is included in this set once, while 0  is 

included 1+n  times. Now, let us describe a feasible fragment as a sequence of elements of X . Each 

feasible fragment can be represented as a concatenation of sequences 1 2, ,..., kE E E , where k n , 

1 2{0, , ,..., },  1,2,...,= =i i i ipE x x x i k . Each of these sequences iE   corresponds to a route iR  that starts 

at the node 0  and passes sequentially through all sequence nodes. In addition, the length of each route 

iR  does not exceed the length of the vehicle run minus the distance from the last point of the route to 

the depot 0 . There may be present several zero entries in the sequence, which correspond to returns of 

vehicles to the depot for new loading. The sum of requests at route nodes between two successive 

returns to the depot cannot exceed the carrying capacity of a vehicle. In the concatenation of sequences 

1 2, ,..., kE E E , elements of X  different from 0  are presented at most ones. It is easy to verify that all 

such fragments form a fragmentary structure. A feasible solution to the problem corresponds to the 

maximum fragment containing all nodes X . Let the cost of renting one vehicle be c , and the cost of 
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one unit of route length is p . Then the formula +kc pL  determines the objective function value on a 

feasible fragment  1 2, ,..., kE E E , where L  is the length of the route corresponding to the fragment. 

Thus, the VRP is an optimization problem on a fragmentary structure. Hence, an evolutionary 

algorithm for solving problems on fragmentary structures can be used to find suboptimal solutions to 

this problem. 

6. Conclusion 

The possibility of applying evolutionary algorithms is justified for a one-depot capacitated delivery 

routing problem (VRP) with limited travel distance. As a tool to accomplish this, fragmentary structures 

were used. Such structures were singled out in the VRP, thus justifying the reducibility of the problem 

to permutation-based optimization. The presented approach can be used for a wide class of vehicle 

routing and scheduling problems. 
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