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Abstract  
Machine learning is an effective tool for data-driven medicine. Machine learning methods 

show high accuracy in the direction of automated diagnostics. Diabetes Mellitus is a 

significant global problem. Today, more than 400 million people live with this diagnosis. 

Within the framework of this study, a model for diagnosing patients with suspected Diabetes 

Mellitus based on the Density-Based Spatial Clustering of Applications with Noize method 

was developed. An experimental study of the method was carried out on the PIMA Indians 

Diabetes open dataset. The model shows high accuracy, allowing it to be used in medical 

institutions for decision support in diagnosing. 
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1. Introduction 

Diabetes Mellitus is a metabolic disorder of multiple etiologies characterized by chronic 
hyperglycemia with abnormal carbohydrate, fat, and protein metabolism resulting from impaired 
insulin secretion and action [1]. 

Diabetes mellitus is a global public health problem. As of 2022, 422 million people worldwide 

have diabetes, 6.028% of the planet's total population [2]. At the same time, there is an annual 
increase in the incidence. According to forecasts of the growth dynamics of the incidence of diabetes, 
by 2025, the number of patients will increase by two times. Furthermore, by 2030, diabetes will be the 
world's number 7 cause of death [3]. 

The main threat posed by Diabetes Mellitus is an early disability and high mortality from 
concomitant cardiovascular diseases. The main consequences of Diabetes Mellitus are as follows [4]: 

• Diabetes is the leading cause of blindness. 

• Diabetes is the leading cause of non-traumatic lower limb amputation. 

• The risk of stroke, kidney failure, heart attacks, and other cardiovascular diseases increases 
four times. 

The main risk factors for diabetes include [5]: 

• Overweight. 

• Unbalanced nutrition. 

• Hereditary predisposition. 

• Physical inactivity. 

• Chronic gastritis. 

• Cholecystitis. 

• Impaired glucose tolerance. 
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• Age over 40 years. 

• Constant stress. 
In addition to high social importance, the problem of diabetes is also of economic importance. The 

fight against diabetes, depending on the country, is spent from 3 to 15% of annual health care budgets 
[6]. 

The primary means of combating diabetes are prevention and early diagnosis. Early diagnosis is 
especially effective in the context of the escalation of Russia's war in Ukraine. Access to facilities and 
adequate medical care is often difficult in areas with active hostilities. Therefore, physicians' 
automation tools and decision support systems are of particular relevance. 

Over the past few years, the global COVID-19 pandemic has driven the digitization of healthcare 
worldwide. Information technologies are used to solve such problems as modeling the consequences 
of epidemics [7], medical diagnostics [8], forecasting infectious diseases [9], assessing resources and 
consequences of disease outbreaks [10], researching viruses [11], etc. 

This study aims to develop a clustering model for patients with suspected Diabetes Mellitus based 
on the Density-Based Spatial Clustering of Applications with Noize method. 

Research is part of a complex, intelligent information system for epidemiological diagnostics, the 

concept of which is discussed in [12]. 

2. Materials and Methods 

Cluster analysis is the task of grouping a set of objects into subsets so that objects from one cluster 
are more similar than objects from other clusters according to some criterion. The clustering problem 
belongs to the class of unsupervised learning problems. 

Let X be a set of objects, Y be a set of cluster identifiers. The distance function between objects 

ρ (x, x′) is given on the set X, given a finite training sample of objects Xm = {x1, …, xm} ⊂ X. It is 

necessary to divide the sample into clusters, that is, to each object xi ∈ Xm, assign a label yi ∈ Y, so that 
the objects within each cluster are close concerning the metric ρ, and objects from different clusters 
differed significantly. 

In medicine, cluster analysis is used for diagnostics [13], determining the severity of a disease in a 

patient [14], searching for factors influencing the development of disease [15], and identifying 
treatment regimens [16]. 

Within the framework of this study, a model for diagnosing patients with suspected Diabetes 
Mellitus based on the Density-Based Spatial Clustering of Applications with Noize (DBSCAN) 
method was developed. 

The DBSCAN method consists of the fact that inside each cluster, a typical density of points 
(objects) is observed, which is noticeably higher than the density outside the cluster, as well as the 
density in areas with noise is lower than the density of any of the clusters [17]. At the same time, each 

cluster point's neighborhood of a given radius must contain at least a certain number of points. A 
threshold value sets this number of points. 

Consider a set of points in some space requiring clustering. To perform DBSCAN clustering, 
points are divided into core points, point density reachable points, and outliers as follows: 

• A point p is a core point if at least minPts points are at a distance not exceeding ε, the 
maximum neighborhood radius from p, to it. Such points are reachable from p. 

• The point q is directly accessible from p if the point q is at a distance not more significant 
than ε from the point p, and p must be the main point. 

• A point Aq is reachable from p if there is a path p1, p2, …, pn and pn = q, where every point 
pi + 1 is reachable directly from pi (all points on the path must be primary except for q). 

In this case, all points that are not reachable from the main points are considered outliers. If p is a 
core point, it forms a cluster along with all points (core or non-core) that are reachable from that 
point. Each cluster contains at least one central point. Non-core points can also be part of a cluster. 

Reachability is not a symmetric relationship because, by definition, no point can be reached from a 
non-primary point, regardless of distance. Two points, p, and q, are density related if there is a point o 
such that both p and q are reachable from o. Density connectivity is symmetrical. 

Then the cluster satisfies two properties: 



• All points in the cluster are pairwise connected in density. 

• If a point is a density reachable from some point in the cluster, it also belongs to the cluster. 
The DBSCAN algorithm has the following form: 

• It is necessary to find points in the ε neighborhood of each point and select the main points 
with more than minPts neighbors. 

• It is necessary to find the connected components of the core points on the graph of neighbors, 
ignoring all non-core points. 

• You must assign each non-principal nearest cluster if the cluster is ε -neighbor. Otherwise, the 
point is noise. 
Advantages of DBSCAN: 

• The method does not require specification of the number of clusters in the data. 

• The method has the concept of noise and is resistant to outliers. 

• The method allows finding arbitrary-shaped clusters. 

• Experts can set method parameters if the data is well interpretable. 

• The method is insensitive to the order of points in the dataset. 
Disadvantages of DBSCAN: 

• Edge points that can be reached from more than one cluster may belong to any of those 
clusters, depending on the order in which the points are viewed. However, such situations rarely 

occur for most datasets, so they have practically no effect on the final result. 

• The quality of DBSCAN depends on the distance measurement. Usually, the Euclidean metric 
is used for this. 

• The method cannot cluster data well with a significant difference in density. 

3. Results 

The Python programming language was used for the cluster analysis model's software 
implementation. For the pilot study, we used data from an open dataset of patients with suspected 
Diabetes Mellitus PIMA Indian Diabetes, collected by the National Institute of Diabetes and 
Digestive and Kidney Diseases [18]. The dataset contains 768 records with nine attributes. Dataset 
parameters are presented in Table 1. 
 

Table 1 
Medical records description 

Attribute Scale type Data type Range 

Pregnancies Metric Decimal 0…17 
PGConcentration Metric Integer 0…199 

DiastolicBP Metric Integer 0…122 
TriFoldThick Metric Integer 0…99 

SerumIns Metric Integer 0…846 
BMI Metric Integer 0…67.1 

DPFunction Metric Integer 0.08…2.42 
Age Metric Decimal 21…81 

Diabetes Boolean 0/1 0,1 
Attribute Scale type Data type Range 

 
The data distribution is shown in Figure 1. 

The data set was divided into objects and objective functions. Figure 2 shows the results of the 
cluster membership calculation, the clustering quality assessment using the corrected Rand 
coefficient, and the clustering quality assessment using the normalized mutual information. 

The model quality assessment using adjusted Rand index is 0,0028. The model quality assessment 
using normalized mutual information is 0,0021. 



 
Figure 1: Data distribution 

 

Figure 3 shows the visualization of points belonging to clusters and the display of noise points, i.e. 
points that took the value "-1". 



 
Figure 2: Results of cluster analysis 

 
The simulation results show sufficient performance to use the model in practical healthcare to 

support decision-making on the diagnosis of Diabetes Mellitus. 

4. Conclusions 

The task of clustering patients with suspected diseases is relevant for supporting decision-making 
by doctors when making diagnoses. Automation of diagnostics and the use of machine learning 
methods for this increase the accuracy of diagnostics and can be used by medical institutions to 
improve work efficiency. This task is especially relevant in Russia's war in Ukraine because residents 
of the temporarily occupied territories and territories where active hostilities occur do not have full 
access to medical care. Therefore, models for diagnosing various diseases can be used by patients in 

combination with remote consultation by a family doctor. 
As part of this study, a clustering model for patients with suspected Diabetes Mellitus was 

developed based on the DBSCAN method. An open dataset of patients with suspected Diabetes 
Mellitus PIMA Indian Diabetes, collected by the National Institute of Diabetes and Digestive and 
Kidney Diseases, was used to verify the model. The developed model showed high performance. The 
model quality assessment using the adjusted Rand index is 0.0028. The model quality assessment 
using normalized mutual information is 0.0021. This suggests that the proposed model can effectively 

be used as a decision support tool for physicians diagnosing Diabetes Mellitus. 



In the future, it is planned to apply the model to actual data on patients with suspected Diabetes 
Mellitus in the Kharkiv region. 

 

 
Figure 3: Visualizations of cluster analysis 
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