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Abstract

The water environment in which unmanned surface vehicles (USVs) navigate presents many unique challenges. One of
these is the risk of encountering obstacles that are (partially) submerged and therefore poorly visible. Therefore, their extent
cannot be determined directly from available above-water sensor data. On the other hand, it is well known that human
skippers are able to safely navigate boats around obstacles even without underwater sensors and only with the help of their
expertise. In this paper, we describe initial work on extending the USV obstacle detection to include such functionality using
a compositional model. To learn to hallucinate the extent of obstacles with a minimum of learning effort, we exploit the
nature of obstacles (people in kayaks, canoes, and on paddleboards) that are visible most of the time, but not always. We
evaluate the impact of such hallucinations on USV safety and maneuverability, and suggest additional cases where such

hallucinations can be used to improve USV safety.
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1. Introduction

Unmanned surface vehicles (USVs) are increasingly rec-
ognized as a valuable tool for a variety of applications,
including military, environmental, and commercial pur-
poses. These autonomous craft are capable of operating
in difficult or hazardous environments, making them
ideal for tasks that would be too risky for humans.

On the other hand, one of the envisioned benefits of
USVs is the ability to gather data and perform tasks for
extended periods of time without the need for human
intervention. This would allow them to cover large areas
and collect a large amount of data that can then be used
for a variety of purposes. USVs equipped with sensors
and cameras could be used, for example, to monitor and
map the marine environment, track wildlife [1], or assess
the health of coral reefs [2]. However, truly autonomous
vehicles with no captain on board and no contact with
remote operators must essentially duplicate the reason-
ing of a trained skipper in certain situations. One of
those situations are (partially) submerged objects that
cannot be detected by USV sensors located above the
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Figure 1: Left: detection of objects using Yolov7 [3], a person
is detected (dark blue), but neither boat nor paddle board are
detected. We hallucinate the boat (in green). Right: Same per-
son, later, when the boat is actually detected by Yolov7 (light
blue), comparing the actual detection versus the hallucination

(green).

water, but whose presence could be easily inferred by a
human operator.

Our approach is best illustrated by observing Fig. 1.
Based on the observation that people cannot walk or
sit on water, we force the hallucination of a boat with
every person that is detected on the surface of the water.
The parameters of the hallucinated object are learned
from person-boat compositions obtained by using a pre-
trained object detector on a separate dataset and do not
require annotation.
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This paper is organized as follows: Following related
work, we define the problem we want to use to demon-
strate the capabilities of our method. We then introduce
the basic concepts of compositional models and describe
our use case and evaluation method. In the experimental
part, we present our own dataset used in our experiments
and its properties, followed by the evaluation setup focus-
ing on the USV navigation. Finally, we discuss the results
and further applications of the presented approach.

2. Related work

Recently, numerous papers have been published on the
subject of USV sensors, obstacle detection and navigation.

The computer vision aspect of marine environment
interpretation has been approached in several ways so
far: Some authors have acquired datasets to facilitate do-
main transfer for Deep Learning and further investigate
the specific problems in the maritime domain [4, 5, 6].
Several USV architectures with different sensors have
been presented to solve problems such as poor lighting
conditions and the need for absolute distance measure-
ments [7, 8, 9]. In addition, authors have proposed deep
learning methods specific to the maritime domain that ei-
ther incorporate additional relevant modalities or address
problems that arise in the maritime domain [10]. Numer-
ous publications have also been presented that address
automatic navigation and maritime collision avoidance
compliance [11].

Han et al. [12] have presented a complete platform and
framework for obstacle detection and avoidance, com-
plete with multimodal sensors, obstacle detectors, and
collision avoidance rules. They use SSD detector [13] to
detect potential obstacles and track them using sensor fu-
sion. Since real-time performance is usually desired, fast
detectors such as SSD or YOLO [14] are usually preferred
for USV applications.

Several datasets have also been published, some of
which will be used as learning data for Deep Learning-
based methods and others as benchmarks for existing
methods. One such dataset, SMD, was proposed by
Prasad et al. [4]. It contained 51 RGB and 30 NIR se-
quences and was primarily intended for monitoring.
Since then, several more USV oriented datasets have
been proposed, such as MODD [15], MaSTr1325 [5], and
MODS [6].

In the past, obstacle detection was performed directly
by estimating salient regions [16] or color segmenta-
tion [8]. Before the widespread use of Deep Learning,
several approaches were also proposed that mainly fo-
cused on semantic segmentation followed by anomaly
detection. These methods [15, 17] used prior informa-
tion about the scene and refined it with color image in-
formation. With the advent of Deep Learning, the two

branches of obstacle detection have been improved. On
the one hand, researchers have adapted or retrained gen-
eral object detectors for marine environments [18, 19, 10]
using more precise classification information and custom
datasets. However, such approaches only work for well-
defined objects. Unknown structures, such as floating
debris or piers, cannot usually be detected using such
methods.

The other branch of obstacle detection is semantic
segmentation. Several methods have adapted general
segmentation methods to the marine environment [20,
7, 21]. Obstacle detection can be performed using such
methods by determining regions that are partially or
completely surrounded by water.

The method presented in this paper operates at a
higher level of reasoning and aims to use assumptions
that reasonably hold in water-bound environments. It
relies on existing but imperfect methods for obstacle
detection (in this paper we use Yolov7 [3]).This work
contains two contributions:

« A method for improving the safety of USV and
its environment by improving the estimation of
free passage corridors in front of the USV, even
with imperfect obstacle detectors.

+ An evaluation method that evaluates increase of
safety in that case

3. Problem definition

In situations where we cannot reliably observe fully or
partially submerged obstacles using any of the sensors
mounted above the water, we use knowledge of com-
monly occurring structures in marine environments to
improve the safety of a USV.

In this paper, we present preliminary research results:
We focused on the problem of detecting boats or other
floating objects in situations where a person was detected
above the water surface, but the corresponding boat was not
detected. Such cases often occur when boats are of a sim-
ilar color to the surrounding water, partially submerged
due to maneuvering, or are otherwise poorly visible due
to backlight or the distance between a smaller object and
the camera. The work was performed using RGB images,
because of the wide availability of pre-trained object de-
tectors that perform reasonably well without the need
for additional training.

Since we are dealing with coastal and continental wa-
ter regions where smaller boats such as rowboats and
paddle boats are usually found, consistent detection of
such obstacles is necessary. Depending on the lighting
conditions, size and color of the boats, detection with
conventional detectors applied to color images is not al-
ways consistent. This inconsistency can be a hazard to



Jon Muhovi¢ et al. CEUR Workshop Proceedings

safe navigation, especially when maneuvering near other
boats.
This problem has the following interesting properties:

« Solid physical foundation. People cannot walk
or sit on the water. There must be some kind of
highly buoyant device present to support their
weight.

« No opportunity to introduce gross errors with
false detections. False positives only restrict the
possibilities for the USV to advance, and our ex-
periments were designed to check for that effect.

« No manual annotations are needed, since we can
obtain ground truth using the object detector
(Yolov7) and therefore obtain plenty of data to
train the higher-reasoning model.

The method will be later extended to a wider range of
problems, which are discussed in Section 7.2, but repre-
sent edge cases and thus are subject to problems of data
collection.

4. Our method

Our method is heavily influenced by the work of Ko-
porec et al. [22], that uses hierarchical compositional
models to detect objects’ visible parts even when large
parts of objects are occluded, and allows collection of ex-
pert knowledge from a small number of targeted human
annotations. In our work we use a highly simplified im-
plementation of Human-Centered Deep Compositional
(HCDC) model [22].

4.1. Compositional models

In computer vision, a composition refers to the arrange-
ment of visual elements in an image. These visual ele-
ments are called parts and can be low level primitives (e.g.
edges, corners) or high-level objects themselves (e.g. cap,
a label and recognizable shaped bottom on a bottle of
soft drink), as shown in Fig. 2. Parts can be compositions
themselves, yielding a hierarchical compositional model.
The compositional model, as shown in Fig. 2 is not
particularly useful, as it is completely rigid. In prac-
tice, geometrical parameters of the parts are modelled
as random vectors. In Figure 3 we show a hierarchical,
compositional model of a 3-part Coke bottle under the
assumption that the probability distribution of j-th part
position (x5, y;;) relative to the center (origin) of the

j-th composition is Gaussian:
Xij = [z yis]"

(1)
Xij ~ N(Nij7 3i5)

where X;; is a two-dimensional random vector, gener-
ated by the Gaussian distribution N> with mean vector

1-cap

2 - empty space

3 - body

4 - text

5 - logo

6 - bottom

7 - label/sticker

Figure 2: Concept of the compositional model — modelling of
the Coke bottle. The composition is shown on the left, each
part marked with a green rectangle. Names of the parts are
shown in the middle. A compositional hierarchical model is
shown on the right: darkest rectangles represent high level
parts 1, 2, 3. Of those, part 3 is a composition itself, containing
parts 6 and 7 (lighter). Part 7 is again a composition of parts 4
and 5 (lightest).

p;; and covariance matrix 3;;. The parameters of the
Gaussian distribution are obtained by learning on a suf-
ficiently large set of train data, from which vectors X;;
are extracted.

Figure 3: lllustration: three parts of a Coke bottle (parts
1, 2, and 3 from Fig. 2 could look something like this, if the
learning samples would feature coke bottles tilted slightly to
the right. Other parts are not shown. Ellipses show Gaussian
distributions of part displacements (z;;, y;;) relative to the
center of the composition (denoted as Composition 1).
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Compositional models can be used in the following
ways: d= kdr;‘;z
+ 1. Robust, explainable detection of partially oc- Xop = [mLk yLk] T
cluded objects, where the object (composition) is @)

detected even if not all its parts are visible.

« 2. Explanation (hallucination) of the missing part.
This is the functionality we use in the presented
work.

4.2. Model of a person on a boat

Human-Centered Deep Compositional (HCDC)
model [22] operates on parts that are itself deep
detections (detections, obtained by convolutional
neural network models, CNNs). This makes the model
explainable, as the parts are already categorized into
human-understandable categories.

We follow this example and use the detections
provided by an obstacle detector pretrained on MS
COCO [23]. We only retained the pertinent detection
classes: person, boat and surfboard. Additionally, we
treated the classes boat and surfboard as the same se-
mantic entity (referred to as boat in the remainder of the
text), since both of those classes almost always appear
simultaneously with the class person. The compositional
model that we use is shown in Fig. 4.

- Person

Figure 4: Model of a two-part composition we use in this
research — a person on a boat. The centroid of the person
detection is the origin of the composition coordinate system,
and two corners of a bounding box represent the boat. The
position of the corners is modelled using two Gaussian distri-
butions. To adjust the model to different scales, we use the
diagonal of the person’s bounding box, d.

In our case, the Eq. (1) changes, since we have two
separate Gaussian models for upper-left and bottom-right
corners of the boat bounding box, and that for each of N
scales.

Xpk = [Trk yRk]T
Xok ~ Now(ppy, Xik)
Xrr ~ Nre(Bpy: Zrk)

where subscripts L and R denote left-top or right-
bottom point of the boat bounding box, respectively, and
k denotes the scale index. Therefore, a total parameter
set of our 2D model consists of 2N Gaussian means and
2N 2D Gaussian covariance matrices.

4.3. Training the compositional model

Our training does not require any manual annotations.
Due to pretty good (but not perfect) performance of the
chosen detector (Yolov7 detects about 95% boats and even
higher percentage of persons) we use those cases where
both the boat and the person on it were detected, to
establish a model that can reasonably predict the position
and size of a boat in absence of detections.

Although we assume Gaussian model for probability
distributions N, and Mgk, we estimate each separate
distribution using expectation maximization (EM) algo-
rithm with 2-component Gaussian Mixture Model (GMM)
and retain the larger of the two components as either
Nvk or Ngg. Our preliminary testing has revealed that
using 2-component GMM results in more accurate fitting
of Gaussian model to the data, collecting the outliers in
the significantly smaller component.

4.4. Hallucination

To hallucinate the most likely bounding box of the (un-
detected) boat, we examine the bounding box of the de-
tected person, calculate its centroid and diagonal d, calcu-
late the scale index k and look up the relevant Gaussian
models N7, and NVgy obtained during the training. The
hallucinated bounding box points of a boat are deter-
mined at displacements x 1, and yr at which Nii and
Ngpi have their maximum values. Note that z 1, and y
are relative to the person’s centroid point.

5. USV safety-focused evaluation

To compare performance of object detectors, a generic
approach by counting false positives and false negatives,
with respect to some minimum intersection over union
(IoU) value is often used. However, when evaluating
the detectors in with actual application in mind, it is
often the case, that not all errors are equally important
or relevant. For example, USV benchmark [6] defines a
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Ground truth
Hallucination

Navigable channel widths <>

Sky

Figure 5: lllustration of the evaluation methodology. Note that the shore does not influence evaluation in any way, this is
an intentional simplification. Blue and green bounding boxes represent ground truth detections and output of our method
(hallucinations), respectively. All bounding boxes are vertically projected onto the horizontal (z) axis. All evaluation, including
loU is done in one dimension, along the horizontal axis. Arrows denote the widths of “navigable channels” after the projection

of the bounding boxes onto the horizontal axis.

so-called danger zone to evaluate more relevant obstacles
separately. The problem that we are addressing in this
work is increasing safety of the USV navigation, in cases
where actual boats are not detected. The challenge is,
how do we measure increase in safety?

Note that a crucial safety issue here is that the USV
may navigate in the areas that actually contain part of the
boat. Fig. 5 shows the situation with multiple detections
and corresponding hallucinations. The aim of the USV is
to proceed in the forward direction, but it has to avoid ob-
stacles. Therefore, it can proceed only through navigable
channels, marked with arrows in Fig. 5. To ensure safety,
navigable channels cannot contain any part of the boat
at any distance, and the problem can be compressed to
one-dimensional representation along the horizontal (x)
axis. However, if the hallucinations are too wide, there
may not be any navigable channel left in front of the
boat.

Therefore, we define the following two metrics:

« One-dimensional IoU value (referred to as IoU-
1D), calculated from the projections of actual
(ground truth) bounding boxes and hallucinated
bounding boxes, both projected downwards onto
the horizontal axis (evaluation line in Fig. 5). This
value should be as high as possible.

+ One-dimensional coverage (referred to as Cov-
1D) of the horizontal axis (evaluation line) with
projection of both ground truth bounding boxes
and hallucinated bounding boxes. If the coverage
of hallucinations becomes too high, then USV

may not have any possibility of advancing, and
regardless of the increase of safety, this solution
is not good. Coverage is obtained by dividing the
width of the evaluation line in pixels with the
sum of the pixels on the evaluation line, covered
by projected bounding boxes.

This evaluation protocol does not assume or require
complex obstacle avoidance maneuvers, and is not sensi-
tive to vertical displacement of bounding boxes.

6. Experiments

We recorded several hours of video on the Ljubljanica
river (sessions denoted LJU1, LJU2, and LJU3) in differ-
ent weather conditions, on Lake Bled (denoted BLE1),
and on the Adriatic Sea (near the coast, in several areas
between Koper and Portoroz), denoted ADR1. In each
case, we hired human workers who served as obstacles
in boats, kayaks, canoes and on paddleboards. The data
contains about 10 obstacles in the near vicinity of the
recording boat, captured in different configurations and
from different angles relative to the position of the sun (so
challenging backlit scenes were also captured). Videos
were recorded at 10 frames per second using Stereolabs
ZED 3D stereo camera', mounted between 1-1.5 meters
above the water surface (different watercraft were used
at different locations). In this experiment we only use the

!https://www.stereolabs.com
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left RGB images, the right RGB image and depth were
not used in any way.

6.1. Analysis of dataset contents

The training data was constructed by first obtaining pre-
dictions for all the relevant classes using Yolov7. The
compositions were then constructed from cases where
there was overlap between detections of class person and
either of the classes boat or surfboard.

Analysis of the detections provide some insight into
the problem of “invisible” boats and paddle boards, as
shown in Table 1.

Session (dataset) | LJU1 | LJU2 | LJU3 | BLE1 | ADR1
person only (%) 0.04 0.05 0.05 0.03 0.05
person+boat (%) 0.96 0.95 0.95 0.97 0.95

Table 1

Percentages of detected people without boats vs detected peo-
ple with boats among all detections for each of recording ses-
sions. Note that the percentage of missing boat detections
ranges from 3-5%. The videos contained negligible amount of
people on the shore (physically plausible detections without
boats).

6.2. Training

We decided to use session BLE1 for training of the Gaus-
sian distributions N7, and N gy, as it featured boats of
varying shapes and sizes. The training time using precal-
culated Yolov7 detections was negligible.

6.3. Testing

Free from requirements for manual annotation, we were
able to run the evaluation of our method on all images
from our dataset, For evaluation, we used only the de-
tections of people with corresponding boats. Boat de-
tections, obtained via Yolov7, were considered ground
truth, against which the hallucinations, obtained using
our compositional model, were tested. Person detections
without corresponding boats were not used, as these had
no usable ground truth. Table 2 shows the results.

Analysing the results, we can see that there is good
overlap between ground truth detections and hallucina-
tions, with IoU-1D ranging from 0.465 to 0.605 for the
same dataset on which the model was trained. Note that
IoU-1D of 0.5 means that the middle half of bounding
box projections overlap, while the 1/4 at each edge is
non-overlapping.

Coverage of hallucinations is not as high as coverage
of detections, and, most surprisingly, coverage of pure
person detections (e.g. in absence of any detected boats)
is not much lower than the coverage of hallucinations.

We examined the reason behind this and found that the
increase is not as high as expected due to obstacles which
are further away and have disproportionately wide per-
son detection bounding boxes, and due to differences
in the set of boats used for training and testing (note
the highest increase in Cov-1D from person detection
to hallucination when the training set BLE1 was tested).
Figure 6 shows an image where the result of our method
is poor.

Figure 6: Image on which the proposed method does not sig-
nificantly improve safety. Note the wide detections of persons
and an uncharacteristically long canoe.

7. Discussion

This paper presents a preliminary research on use of
hallucinations, provided by compositional models, in
water-borne obstacle detection and avoidance. The ex-
perimental design in this work has been subject to many
constraints, most notably the absence of proper ground
truth annotations. These issues will be addressed in fur-
ther work, towards a general framework to hallucinate
obstacles that are not directly observed by the sensors.

Since using an obstacle detector precludes us from de-
tecting unknown objects, combining their results with
either semantic segmentation or another method of
anomaly detection or a different sensor modality (such as
LIDAR) might help in producing a more general hazard
detection system that will perform hazard detection from
multimodal cues.

7.1. Underwater sensors

A state of the art in experimental autonomous road ve-
hicles relies heavily on multimodal sensor setup, with
sensors like LIDAR and RADAR [24, 25], which bear no
resemblance to human sensing. Therefore, an argument
could be made that instead of hallucinating the obstacles
and trying to emulate the skipper, one could detect the
hidden obstacles using proper underwater sensor setup.
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Session (dataset) LJjutl | LJuz | LJU3 | BLE1 | ADRI1
loU-1D 0.465 0.435 0.532 0.605 0.582
Ground truth Cov-1D 0.13 0.149 | 0.152 | 0.101 0.193
Hallucination Cov-1D 0.074 | 0.065 | 0.117 0.083 0.149
Person detection Cov-1D | 0.067 0.054 | 0.127 0.062 0.139

Table 2

Evaluation results using the model trained on BLE1 session. loU-1D is 1-dimensional loU on bounding box projections onto the
horizontal axis and Cov-1D is coverage of the horizontal axis with each type of bounding boxes. We included the projections
of pure person detection bounding boxes as well for comparison.

In practice, this results in fragile setup due to water tur-
bidity — USVs are expected to navigate safely even in
water that is dirty or muddy.

Note also that a paddleboard, as shown in Fig. 1, is a
very thin object at the boundary between air and water,
which is not comparable to the situations encountered in
autonomous driving (on the road), so it is unlikely that
additional (underwater) sensors will reliably detect it. In
fact, some watercraft may be completely submerged at
times, as can be seen in Fig. 7 which shows a fast-moving
athlete in a kayak.

i S

Figure 7: A submerged kayak that cannot possibly be reliably
detected using visual sensors.

7.2. Other examples of invisible hazards

Missing detections of boats and paddleboards are imme-
diately available in our waterborne datasets. However,
there are other scenarios where such an approach would
be useful, but for which there is currently insufficient
data to train the models. The main reason for this is that
these scenarios are to some extent hazardous to the USV
and represent edge cases in USV deployment. In Figure 8,
we present a common scenario that we have encountered
several times, but for which we currently do not have
enough data to properly test, let alone train. Plant de-
bris is common in continental waters and usually safe to
traverse. Often it covers the entire navigable area (e.g.,

leaves in the fall), so avoiding it at all times is not an op-
tion. However, debris may accumulate in shallow water
areas (it may not be debris, but aquatic plants sticking
out of the shallow water). So, if we encounter debris far-
ther from shore, it is not a cause for concern as it is most
likely floating. However, if it is found near land features
(e.g., trees, mud), then it usually means that the area is
dangerous, shallow, and not navigable. To detect this
case, we might model the shallow, non-navigable area as
a composition of debris and other land-based features.

As it can be seen in top right image in Fig. 8, it is some-
times difficult to determine whether the situation is a
hazard or not. The labeling of such situations cannot
be done by (untrained) labelers, but must be defined by
experienced skippers working in cooperation with com-
puter vision engineers. These compositions and their
parameters must be defined by hand for a small number
of available cases. The HCDC approach [22] has shown
that this is indeed possible for common, well known food
items. In this case, it will be used to insert concentrated
expert knowledge into the compositional hazard detection
model.
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