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Abstract
Detection and recognition of text from scans and other images, commonly denoted as Optical Character Recognition (OCR), is
a widely used form of automated document processing with a number of methods available. Yet OCR systems still do not
achieve 100% accuracy, requiring human corrections in applications where correct readout is essential. Advances in machine
learning enabled even more challenging scenarios of text detection and recognition "in-the-wild" – such as detecting text on
objects from photographs of complex scenes. While the state-of-the-art methods for in-the-wild text recognition are typically
evaluated on complex scenes, their performance in the domain of documents is typically not published, and a comprehensive
comparison with methods for document OCR is missing. This paper compares several methods designed for in-the-wild
text recognition and for document text recognition, and provides their evaluation on the domain of structured documents.
The results suggest that state-of-the-art methods originally proposed for in-the-wild text detection also achieve competitive
results on document text detection, outperforming available OCR methods. We argue that the application of document OCR
should not be omitted in evaluation of text detection and recognition methods.
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1. Introduction
Optical Character Recognition (OCR) is a classic problem
in machine learning and computer vision with standard
methods [1, 2] and surveys [3, 4, 5, 6] available. Recent ad-
vances in machine learning and its applications, such as
autonomous driving, scene understanding or large-scale
image retrieval, shifted the attention of Text Recogni-
tion research towards the more challenging in-the-wild
text scenarios, with arbitrarily shaped and oriented in-
stances of text appearing in complex scenes. Spotting
text in-the-wild poses challenges such as extreme aspect
ratios, curved or otherwise irregular text, complex back-
grounds and clutter in the scenes. Recent methods [7, 8]
achieve impressive results on challenging text in-the-wild
datasets like TotalText [9] or CTW-1500 [10], with F1
reaching 90% and 87% respectively. Although automated
document processing remains one of the major applica-
tions of OCR, to the best of our knowledge, the results of
in-the-wild text detection models were never comprehen-
sively evaluated on the domain of documents and com-
pared with methods developed for document OCR. This
paper reviews several recent Text Detection methods de-
veloped for the in-the-wild scenario [11, 12, 13, 7, 14, 8],
evaluates their performance (out of the box and fine-
tuned) on benchmark document datasets [15, 16, 17], and
compares their scores against popular Document OCR
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engines [18, 19, 2]. Additionally, we adopt publicly avail-
able Text Recognition models [20, 21] and combine them
with Text Detectors to perform two-stage end-to-end text
recognition for a complete evaluation of text extraction.

2. Related Work

2.1. Document OCR
OCR engines designed for the "standard" application do-
main of documents range from open-source projects such
as TesseractOCR [2] and PP-OCR [1] to commercial ser-
vices, including AWS Textract [18] or Google Document
AI [19]. Despite Document OCR being a classic problem
with many practical applications, studied for decades
[22, 23], it still cannot be considered ’solved’ – even the
best engines struggle to achieve perfect accuracy. The
methodology behind the commercial cloud services is
typically not disclosed. The most popular1 open-source
OCR engine at the time of publication, Tesseract [2] (v4
and v5), uses a Long Short-Term Memory (LSTM) neural
network as the default recognition engine.

2.2. In-the-wild Text Detection
2.2.1. Regression-based Methods

Regression-based Methods follow the object classification
approach, reduced to a single-class problem. TextBoxes
[25] and TextBoxes++ [26] locate text instances with
various lengths by using sets of anchors with different
aspect ratios. Various regression-based methods utilize

1Based on the GitHub repository [24] statistics.
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Figure 1: Comparison of detection results performed on documents from FUNSD dataset (cropped).

an iterative refinement strategy, iteratively enhancing
the quality of detected boundaries. LOMO [27] uses an
Iterative Refinement Module, which in every step re-
gresses coordinates of each corner of the predicted bound-
ary, with an attention mechanism. PCR [28] proposes a
top-down approach, starting with predictions of centres
and sizes of text instances, and iteratively improving the
bounding boxes using its Contour Localisation Mecha-
nism. TextBPN++ [8] introduces an Iterative Boundary
Deformation Module, utilizing Transformer Blocks with
multi-head attention [29] encoder and a multi-layer per-
ceptron decoder, to iteratively adjust vertices of detected
instances. Instead of considering vertices of the bound-
ing boxes, DCLNet [12] predicts quadrilateral boundaries
by locating four lines restricting the corresponding area,
representing them in polar coordinates system. To ad-
dress the problem of arbitrary-shaped text detection and
accurately model the boundaries of irregular text regions,
more sophisticated bounding boxes representation ideas
have been developed. ABCNet [30] adapts cubic Bezier
curves to parametrize curved text instances, gaining the
possibility of fitting non-polygon shapes. FCENet [31]
proposes Fourier Contour Embedding method, predict-
ing the Fourier signature vectors corresponding to the
representation of the boundary in Fourier domain, and
uses them to generate the shape of the instance with
Inverse Fourier Transformation.

2.2.2. Segmentation-based Methods

Segmentation-based Methods aim to classify each pixel
as either text or non-text, and generate bounding boxes

using post-processing on so obtained pixel maps. The
binary, deterministic nature of such pixel classification
problem may cause learning confusion on the borders
of text instances. Numerous methods address this issue
by predicting text kernels (central regions of instances)
and appropriately gathering pixels around them. PSENet
[32] predicts kernels of different sizes and forms bound-
ing boxes by iteratively expanding their regions. PAN
[14] generates pixel classification and kernel maps, link-
ing each classified text pixel to the nearest kernel. Cen-
tripetalText [33] produces centripetal shift vectors that
map pixels to correct text centres. KPN [34] creates pixel
embedding vectors, for each instance locates the central
pixel and retrieves the whole shapes by measuring the
similarities in embedding vectors with scalar product.
Vast majority of segmentation-based methods generate
probability maps, representing how likely pixels are to be
contained in some text region, and using certain binariza-
tion mechanism (e.g. by applying thresholding) convert
them into binary pixel maps. However, the thresholds
are often determined empirically, and uncareful choice
of them may lead to drastic decrease in performance. To
solve this problem, DBNet [13] proposes a Differentiable
Binarization Equation, making the step between proba-
bility and classification maps end-to-end trainable and
therefore letting the network learn how to accurately
binarise predictions. DBNet++ [7] further improves on
the baseline by extending the backbone network with an
Adaptive Scale Fusion attention module, enhancing the
upscaling process and obtaining deeper features. Text-
FuseNet [35] generates features on three different levels:
global-, word- and character-level, and fuses them to gain
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relevant context and deeper insight into the image struc-
ture. Instead of detecting words, CRAFT [11] locates text
on character-level, predicting the areas covered by single
letters, and links characters of each instance with respect
to the generated affinity map.

3. Methods

3.1. Text Detection
To cover a wide range of text detectors, we selected
methods from Section 2.2 with different approaches: for
regression-based methods, we included TextBPN++ as a
vertex-focused algorithm and DCLNet as an edge-focused
approach. From segmentation-based methods, we se-
lected DBNet and DBNet++ as pure segmentation and
PAN as an approach linking text pixels to corresponding
kernels. Finally, CRAFT was chosen as a character-level
method.

3.2. Text Recognition
The ultimate goal of text detection, especially in the case
of document processing, is to recognize the text within
the detected instances. Therefore, to evaluate the suitabil-
ity of popular in-the-wild detectors for document OCR,
we perform end-to-end measurements with the following
text recognition engines: SAR [20], MASTER [36] and
CRNN [21]. The open-source engines were combined
with the detection methods in a two-stage manner: the
input image was initially processed by a detector, which
returned bounding boxes. Afterwards, the corresponding
cropped instances were passed to recognition models. As
a point of reference, we compare both the detection and
end-to-end recognition results of the selected methods
with predictions of three common engines for end-to-end
document OCR: Tesseract [2], Google Document AI [19]
and AWS Textract [18].

3.3. Metric
To measure both detection and end-to-end performance,
we used the CLEval [37] metric. Contrary to metrics such
as Intersection over Union (IoU) perceiving text on word-
level, CLEval measures precision and recall on character
level. As a consequence, it slightly reduces the punish-
ment for splitting or merging problematic instances (e.g
dates), providing reliable and intuitive comparison of the
quality of detection and recognition. Additionally, the
Recognition Score evaluated by CLEval, approximately
corresponding to the precision of character recognition,
informs about the quality of the recognition engine specif-
ically on the detected bounding boxes.

4. Experiments

4.1. Training Strategies
DBNet [13], DBNet++ [7] and PAN [14] were fine-tuned
for 100 epochs (600 epochs in case of FUNSD) with batch
size of 8 and initial learning rate set to 0.0001 and decreas-
ing by a factor of 10 at the 60th and 80th epoch (200th
and 400th for FUNSD). Baselines, pre-trained on Syn-
thText [38] (DBNet, DBNet++) or ImageNet [39] (PAN),
were downloaded from the MMOCR 0.6.2 Model Zoo [40].
DCLNet [12] was fine-tuned from a pre-trained model
[41] on each dataset for 150 epochs with batch size of 4,
initial learning rate of 0.001, decaying to 0.0001. For each
dataset, TextBPN++ [8] was fine-tuned from a pre-trained
model [42] for 50 epochs with batch size of 4, learning
rate of 0.0001 and data augmentations consisting of flip-
ping, cropping and rotations. Given no publicly-available
training scripts for CRAFT, during the experiments, we
used the MLT model from the github repository [43]
without fine-tuning. All experiments were performed
using Adam optimizer with momentum 0.9, on a single
GPU with 11 GB of VRAM (GeForce GTX-1080Ti).

4.2. Detection Results
Results of the text detection methods selected in Section
3.1 on the datasets from Table 1 are presented in Table 2.
On FUNSD dataset, DBNet++ achieves both the highest
detection recall (97.40%) and F1-score (97.42%). The high-
est precision rate, 97.84% was scored by CRAFT. PAN
performed the weakest out of all considered in-the-wild
algorithms, scoring just 81.44% F1-score. Despite having
achieved better results on FUNSD, segmentation-based
approaches were outperformed by regression-based
methods on CORD and XFUND. TextBPN++ proved to
be the best performing algorithm on CORD in terms of
recall and F1-score, scoring 99.74% and 99.19%, respec-
tively. DCLNet, for which the best precision rate on
CORD (98.67%) was recorded, achieved superior results
on XFUND, outperforming the remaining methods with
respect to all three measures: precision - 98.22%, recall
- 98.17% and F1-score - 98.20%. Out of the considered
popular engines for end-to-end document OCR, AWS
Textract presented the best performance on the domain
of scans of structured documents – FUNSD and XFUND –
scoring 96.69% and 92.65% F1-score, respectively. Google
Document AI generalized remarkably better to distorted
photos of receipts from the CORD dataset, achieving
93.30% F1-score, surpassing the scores of AWS Textract
and Tesseract. The results show that in-the-wild detectors
fine-tuned on document datasets can outperform popular
OCR engines on the domain of structured documents in
terms of the CLEval detection metric. However, the re-
sults for the predictions of pre-trained detectors may not
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Table 1
Document datasets used in the experiments for text detection and recognition.

Dataset Training images Test images Document Types Language
FUNSD [15] 149 50 Distorted forms, surveys, reports English
CORD [16] 900 100 Photos of Indonesian receipts English

XFUND [17] 1043 350 Clean scanned forms Multilingual

Table 2
Comparison of the detection performance of the chosen methods on benchmark datasets, with respect to the CLEval metric.
"P", "R" and "F1" represent the precision, recall and F1-score, respectively.

Method FUNSD CORD XFUND

P R F1 P R F1 P R F1

PAN [14] 96.25 70.57 81.44 98.92 97.33 98.12 96.96 77.90 86.39
DBNet [13] 96.02 96.11 96.07 97.94 99.17 98.55 97.04 95.58 96.30

DBNet++ [7] 97.45 97.40 97.42 97.58 99.60 98.58 97.87 97.93 97.90
TextBPN++ [8] 96.63 95.59 96.11 98.65 99.74 99.19 97.88 94.29 96.05
DCLNet [12] 94.16 95.35 94.75 98.67 97.91 98.29 98.22 98.17 98.20
CRAFT [11] 97.84 95.72 96.77 94.25 88.46 91.26 89.75 93.02 91.36
Tesseract [2] 80.13 73.80 76.83 76.46 47.38 58.51 85.84 87.47 86.65

Document AI [19] 95.56 89.77 92.57 92.90 93.71 93.30 89.49 90.68 90.08
AWS Textract [18] 97.50 95.89 96.69 80.60 84.79 82.64 97.64 88.14 92.65

be fully representative due to differences in splitting rules.
E.g. Document AI creates separate instances for special
symbols, e.g. brackets, leading to undesired splitting
of words like "name(s)" into several fragments, lower-
ing precision and recall. On all experimented datasets,
all fine-tuned in-the-wild text detection models reached
high prediction scores, proving themselves capable of
handling text in structured documents. Qualitative anal-
ysis of detectors’ predictions revealed that the major
sources of error were incorrect splitting of long text frag-
ments (e.g e-mail addresses), merging instances in dense
text regions and missing short stand-alone text, such as
single-digit numbers.

4.3. Recognition Results
End-to-end text recognition results combining fine-tuned
in-the-wild detectors with SAR [20] and MASTER [36]
models from MMOCR 0.6.2 Model Zoo [46], and CRNN
[21] from docTR [45] are listed in Table 3. The XFUND
dataset was skipped for this experiment since it contains
Chinese and Japanese characters, for which the recog-
nition models were not trained. On FUNSD, the end-to-
end measurement outcomes followed the patterns from
detection: equipped with CRNN as the recognition en-
gine, DBNet++ proved to be the best tuned model in
terms of CLEval end-to-end Recall (93.52%) and F1-score
(92.23%), losing only to CRAFT in terms of precision.
Much higher F1-score (+2%) was measured for AWS Tex-
tract, whose end-to-end results outperformed all of the
considered algorithms. It is important to note that the

Recognition Score for AWS Textract reached almost 96%,
surpassing CRNN’s scores by c.a. 2%. This suggests that
the recognition engine used in AWS Textract, perform-
ing much more accurately on FUNSD than the CRNN
model, may have been a crucial reason for the good
results. When evaluated on CORD, models with Dif-
ferentiable Binarization scored the highest marks in all
end-to-end measures: recall (DBNet++), precision and
F1-score (DBNet); significantly surpassing the remaining
methods. Interestingly, despite obtaining the best recall
rate, DBNet++ did not beat the simpler DBNet in terms
of end-to-end F1-score. The predictions of regression-
based approaches, better than segmentation-based ones
when pure detection scores were measured, appeared to
combine slightly worse with CRNN. TextBPN++, how-
ever, remained competitive, achieving similar results
to DBNet and DBNet++. Recognition Scores of CRNN,
regardless the choice of in-the-wild detector, exceeded
93% on FUNSD and 98.5% on CORD, once again demon-
strating the suitability of applying these algorithms to
document text recognition. SAR model, not specifically
trained on documents, presented poorer performance:
the highest measured F1-scores on FUNSD and CORD
were 86.36% and 85.25%, respectively, both obtained by
the combination with TextBPN++. Fine-tuned SAR mod-
els achieved slightly higher F1-scores reaching 89.49%
on FUNSD (equipped with DBNet++ as the detector) and
93.77% on CORD (combined with TextBPN++ detections).
Despite gaining a noticeable advantage over the base-
line, fine-tuned SAR models did not surpass the perfor-
mance of the pre-trained CRNN. Similarly to SAR, the
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Table 3
Comparison of the recognition performance of the chosen text detection methods combined with MMOCR’s [44] SAR and
MASTER default models, fine-tuned SAR, and docTR’s [45] CRNN default model, on FUNSD and CORD, with respect to the
CLEval metric. "P", "R", "F1" and "S" represent the end-to-end precision, recall, F1-score and Recognition Score, respectively.

Recognition Detection FUNSD CORD

P R F1 S P R F1 S

PAN [14] 76.14 74.17 75.14 79.79 82.04 84.27 83.14 84.76
DBNet [13] 79.10 82.51 80.77 83.33 82.76 85.79 84.25 85.49

SAR [20] CRAFT [11] 83.75 85.16 84.45 85.92 79.62 76.93 78.25 86.37
(baseline) TextBPN++ [8] 84.90 87.87 86.36 88.86 83.56 87.00 85.25 86.58

DBNet++ [7] 80.04 83.53 81.75 82.85 82.95 86.66 84.76 85.89
DCLNet [12] 77.67 82.27 79.91 81.80 82.75 85.53 84.11 86.16

PAN [14] 86.37 76.61 81.20 90.23 87.73 88.95 88.34 90.59
DBNet [13] 87.48 88.07 87.77 91.90 91.12 94.00 92.54 94.02

SAR [20] CRAFT [11] 88.14 86.48 87.30 90.39 84.98 79.19 81.99 91.53
(fine-tuned) TextBPN++ [8] 88.12 88.32 88.22 92.16 91.46 96.21 93.77 94.77

DBNet++ [7] 89.15 89.83 89.49 92.13 90.40 93.83 92.09 93.54
DCLNet [12] 86.10 87.30 86.70 90.46 87.69 90.02 88.84 91.58

MASTER [36]

PAN [14] 77.50 74.58 76.01 81.10 90.25 92.12 91.17 93.16
DBNet [13] 80.30 83.11 81.68 84.55 91.94 94.31 93.11 94.62
CRAFT [11] 82.06 82.90 82.48 84.22 85.81 81.86 83.79 92.93

TextBPN++ [8] 82.10 83.93 83.00 85.96 91.77 94.79 93.26 94.78
DBNet++ [7] 81.33 83.99 82.64 84.13 91.39 94.63 92.98 94.48
DCLNet [12] 79.55 82.85 81.17 83.31 90.01 92.28 91.13 93.71

CRNN [21]

PAN [14] 90.31 87.14 88.70 94.00 95.70 96.52 96.10 98.65
DBNet [13] 89.07 91.56 90.30 93.24 96.00 97.51 96.75 98.67
CRAFT [11] 91.20 91.67 91.43 93.40 93.12 87.25 90.09 98.73

TextBPN++ [8] 89.94 91.80 90.86 93.86 95.35 97.71 96.52 98.48
DBNet++ [7] 90.97 93.52 92.23 93.71 95.43 97.85 96.62 98.51
DCLNet [12] 89.84 92.95 91.37 93.16 95.04 96.34 95.69 98.52

Tesseract [2] 73.84 73.84 69.09 88.48 73.96 44.33 55.43 93.55
Google Document AI [19] 90.83 92.03 91.42 94.80 88.06 90.97 89.49 98.61

AWS Textract [18] 93.61 95.46 94.53 95.78 84.53 82.13 83.32 96.63

pre-trained MASTER model [46] worked the best in com-
bination with TextBPN++, achieving F1 score of 83.00%
on FUNSD and 93.26% on CORD.

5. Conclusions
Text detection research has witnessed great progress in
recent years, thanks to advancements in deep machine
learning. The recently introduced methods widened the
range of possible applications of text detectors, making
them viable for in-the-wild text spotting. This shifted
the attention towards more complex scenarios, including
arbitrarily-shaped text or instances with non-orthogonal
orientations. With automated document processing
remaining one of the most relevant commercial OCR
applications, we stress the importance of determining
whether the state-of-the-art methods for scene text spot-
ting can also improve document OCR. Our experiments
prove that detectors designed for in-the-wild text spot-
ting can indeed be applied to documents with great suc-

cess. In particular, fine-tuning models such as DBNet++
or TextBPN++ yielded over 96% detection F1-score on
FUNSD, over 98% detection F1-score on CORD and over
96% detection F1-score on XFUND, with respect to the
CLEval metric, outperforming Google Document AI and
AWS Textract. Moreover, combining these detectors with
a publicly-available CRNN recognition model in a two-
stage manner consistently achieves over 90% CLEval
end-to-end F1-score, even without explicit fine-tuning
of CRNN. We hope the results will bring more attention
to evaluating future Text Detection methods not only in
the text-in-the-wild scenario, but also on the domain of
documents.
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