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Abstract

This paper proposes a methodology for learned compression for satellite imagery. The proposed method utilizes an image
patching and stitching approach to address the high resolution of satellite images. We present rate-distortion metrics
showing that this methodology outperforms JPEG2000, currently used on satellites. In addition, we demonstrate that using
satellite images to train the compression model leads to superior performance compared to using non-domain-specific data.
Furthermore, a detailed evaluation of the compression algorithm in a downstream classification task is conducted. The results
demonstrate that 77.83% classification accuracy is still achievable for highly compressed images with a bitrate of 0.02 BPPs
when the classification model is trained on images from the same compression model. The downstream classification task
evaluation highlights that the performance of the classification model is highly dependent on the type of compression applied
to the training data. When trained with learned compression images, the model can only classify images with an acceptable
level of accuracy (>77%) if they had also undergone learned compression. Likewise, a model trained with JPEG images can

only classify JPEG images with acceptable accuracy (>89%).
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1. Introduction

As remote sensing technology develops, satellites take
photos with increasing spatial, temporal, and spectral res-
olution. This leads to an increasing amount of produced
data per day, which is a challenge for data storage [1].
In addition to data storage, transferring satellite images
from satellites to terrestrial nodes is a bottleneck in this
process as well. Compression algorithms specialized for
the satellite image domain have been developed to allevi-
ate this problem [2, 3, 4, 5].

Since image compression is a ubiquitous and funda-
mental operation, it is a well-studied topic. Improve-
ments in image compression enable faster image data
transfer and reduced storage costs. The invention of the
discrete cosine transformation in 1972 by Nasir Ahmed
et al. [6] led to the definition of the JPEG-Format in 1992,
which is still dominant. Ballé et al. [7] showed in 2016
that using compression models trained by artificial neural
networks can outperform traditional image compression
algorithms like JPEG-Discrete Cosine Transformation in
terms of image quality and bitrate.

For a specific image domain, further enhancements
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in learned compression can be achieved by limiting the
training data to images from this domain. For example,
Tsai et al. [8] show that using domain-specific training
data can significantly enhance the compression perfor-
mance of video game images. Similarly, Wodlinger et
al. [9] demonstrate superior performance in stereo image
compression compared to other approaches by designing
a custom-built architecture and training it using domain-
specific data.

For satellite images following difficulty must be taken
into account: currently, 27 satellites with a spatial reso-
lution of less than 10 m per pixel are active, 19 of which
have been launched in the last 20 years [10]. This results
in increasing file sizes per satellite image [11] which
has to be considered when processing such images on
neural network hardware accelerators. Even though a
simple method for handling this is dividing the image
into processable patches and compressing each patch in-
dependently, this leads to stitching artifacts on the border
between two patches in the decompressed image.

This work examines learned image compression in the
context of satellite photography:

« We propose a methodology to alleviate border
artifacts when stitching patches of compressed
images.

+ The proposed method is evaluated on a classi-
fication downstream task (see Figure 1) using
the "Functional Map of the world"-satellite im-
age data set published in 2017 by John Hopkins
University Applied Physics Laboratory [12] .

+ Furthermore, we investigate the influence of
domain-specific training data on the rate- dis-
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Figure 1: Separation of the dataset used in this work: Subset of fMoW have been used to train the compression. Subset
of fMoW have been compressed. The compressed images themselves are separated into a train and into validation set for

classification training

tortion metric and the classification downstream
task.

+ We show that even with compression ratios as low
as 0.02 BPP, a classification accuracy of 77.83%
can be achieved as long as domain-specific data
is utilized for training.

2. State of the art

Lossy image compression is the process of reducing the
size of digital image data without sacrificing its overall
quality. This differs from lossless image compression,
which does not permit any information loss during the
compression process.

2.1. Traditional Image Compression

A.]. Hussain et al. [13] conducted an exhaustive survey
on the subject of lossy image compression. The authors
separate the compression approaches into predictive cod-
ing, transform coding, vector quantization, and neural
network approaches.

JPEG, the most popular lossy image codec, is based
on transform coding, which uses the Discrete Cosine
Transformation to convert an image from pixel-space to
frequency-space [6]. The method utilizes the fact that
the human visual system is less susceptible to variations
in high-frequency components. By applying wavelet
transformations on the image, JPEG2000 improves on
that to achieve better rate-distortion metrics [14].

More recently, Fabrice Bellard developed the BPG for-
mat (Better Portable Graphics) that outperforms JPEG
and JPEG2000 in terms of rate and distortion [15]. This
format relies on the intraframe encoding of HEVC [15].

2.2. Learned Image Compression

Recently, image compression models based on artificial
neural networks have outperformed traditional compres-
sion methods in terms of rate and distortion. Jamil et
al. [16] provide a survey on that subject. According to
the findings of this survey, autoencoders are the most
common learning-driven lossy image compression archi-
tectures. These models utilize an encoder to transform
image data into a low-dimensional latent space. A de-
coder is then employed to reconstruct the original image
from this encoding. The seminal work of this approach is
from Balle et al. [7]. They learn a probability distribution
of the latent space jointly with the encoder and decoder
networks trained to reconstruct the original image. Sub-
sequent works employ hyperpriors and auto-regressive
context models to decorrelate the spatial information in
the latent space [17].

Similarly, Toderici et al. [18] show that Recurrent Neu-
ral Network (RNN) architectures can be used for learned
image compression. Their model leverages feedback
loops to iteratively compress an image to the desired
bit rate.

Furthermore, Generative Adversarial Networks
(GANs) have also been used in image compression.
According to Jamil et al. [16], GAN compression
outperforms traditional image compression algorithms
in terms of visual quality, albeit with the disadvantage of
higher deployment costs.

2.3. Satellite image compression

Indradjad et al. [19] compare four different approaches
for satellite image compression with transform codings: a
wavelet approach by Delaunay et al. [20], bandelets [21],
JPEG 2000 [14], and a discrete wavelet transformation
method by the CCSDS (Consultative Committee for Space
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Data Systems) [2]. Of these approaches, JPEG 2000 yields
the highest peak signal-to-noise ratio (PSNR) as well
as the second shortest compression and decompression
times.

More recently, de Oliviera et al. [4] investigated neural
networks for the compression of satellite images. An
autoencoder with learned hyper-prior is utilized to learn
compression models for satellite imagery. The proposed
method outperforms the CCSDS wavelet compression [2]
currently used on French satellites in terms of rate and
distortion.

Bacchus et al. [3] investigate the use of learned meth-
ods for onboard satellite image compression, to address
high memory and complexity constraints in this domain.
The authors also employ a hyperprior-based architecture
and incorporate data augmentations as a preprocessing
step. Their method performs better than JPEG2000, and
the authors concluded that its relatively low inference
time makes it well-suited for use on satellites.

3. Methodology

This section provides an overview of the methodology
proposed in this work. It begins with a brief introduc-
tion to learned image compression, followed by an ex-
planation of how the technique is adapted to suit high-
resolution satellite images.

3.1. Learned Image Compression

This work is based on the compression model by Balle et
al. [17]. Figure 2 shows an overview of the architecture.
The model has an autoencoder structure, and the distribu-
tion of the quantized latent pg is modeled using a learned
hyperprior g, and a context model gcr, that predicts the
parameters of a Gaussian distribution A/ (u, o). The au-
toregressive component utilizes already decoded pixels
for decoding further pixels. This yields superior rate-
distortion results, with the disadvantage that decoding
has to be done iteratively and not in parallel.

We directly train the model with the trade-off between
the distortion D of the original image and the compres-
sion rate R:

L=D+X-R (1)

Here A controls the trade-off between rate and dis-
tortion. For the distortion D the Mean Squared Error
(MSE) is used, which computes the averaged pixel-wise
quadratic difference between original image and distorted
image:

(2)
The compression rate R is estimated by the cross-
entropy between the entropy model distribution pg and

D = Eanp, ||z — &|13

the actual marginal distribution m(y), where y denotes
the latent encoding. Similarly, the rate of the hyperprior
z is calculated which leads to the following definition
for the rate-loss R:

R = Eqrp, [~ 108, g (9)] + Eanp, [—log, ps(2)]

rate (latents)

rate (hyper-latents)

®)

3.2. Stitching

As discussed in the introduction, a limitation of satellite
imagery is that image samples have resolutions of up
to 14798 x 14802 pixels, which causes issues for the
training and inference on neural network hardware ac-
celerators such as GPUs. Since dividing the input into
patches and processing the patches independently of
each other leads to visible artifacts on the borders be-
tween the patches in the stitched images, our approach
resolves this issue by compressing overlapping patches.
For the stitched image, the average value of both patches
(or four patches in corners) is used for the overlapping
regions. Figure 3 illustrates the overlapping regions of a
1496 x 1496 image with a patch size of 256 x 256 pixels.
A step size of 248 pixels in either the X or Y dimension
is employed, resulting in an overlapping region of 8 pix-
els. A disadvantage of this method is that it leads to the
pixels in the overlapping regions being compressed mul-
tiple times, i.e., 5.14% of the total pixels in the previous
example.

In Figure 4 the influence of this blending process can
be seen. As a result, the boundaries of each patch are less
visible in the blended image on the right.

4. Evaluation

This section provides an overview of the evaluation pro-
cess and presents the results of this work.

Firstly, the utilized data set is described in detail, and
how it was employed in this work. Subsequently, the
results of the proposed compression algorithm on the
data set are highlighted and discussed. Finally, the results
of the downstream classification task on the compressed
images are presented.

4.1. Dataset

The dataset used in this work is the Functional Map
of the world (fMoW). It was created at the John Hop-
kins University Applied Physics Laboratory in Laurel,
Maryland (United States) and is publicly available at
https://github.com/fMoW/dataset [12]. This dataset was
compiled to facilitate research in computer vision for
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Figure 3: 1496 x 1496 image divided into 36 patches (256 x
256 pixels) with an overlapping region of 8 x 256 pixels be-
tween two patches.

remote sensing applications. It includes over 1 million
images of objects taken from satellites, categorized into
63 categories, such as airports, tunnel openings, zoos, and
towers. Christie et al. [12] highlight the importance of ob-
taining a geographically distributed data set to minimize
geographical bias.

Overall the dataset contains about 628,000 training
images and about 100,730 images for validation. The pho-
tographs are provided as compressed JPEG- and lossless
TIFF-color images. Each object has been photographed
in a variety of environmental settings (weather, time,
season). Since this work explicitly focuses on high-
resolution satellite images, only images with a resolution
of at least 1024 x 1024 pixels are considered.

Component Symbol
Input Image T
Encoder f(z;0e)
Latents Yy
Latents (quantized) g
Decoder 9(9; 0a)
: 3 Hyper Encoder In(Y; One)
F?Ecntt‘;:)"z)sd ; Hyper-latents z
Model |  Hyper-latents (quant.) E
; Hyper Decoder gn(2; 0na)
3 Context Model gem (y<i§ 9cm)
Entropy Parameters Gep(+;0ep)
Reconstruction z

The partitioning of the data set used in this work is
shown in Figure 1. For compression training, 1,289 im-
ages from the fMoW train set, uniformly distributed over
all 63 categories, are used (train-compress). These 1,289
images are from 1,038 objects. As such, for some objects,
there are multiple images taken under different environ-
mental conditions.

Another set, denoted as the (val-compress), consists of
1,929 images from 1,038 objects from the fMoW valida-
tion set. The val-compress serves two purposes: one is
evaluating the compression, and another is evaluating
the downstream classification task. For the latter, the val-
compress is split again into 1,551 images for classification
training (train-class) and 378 images for classification
validation (val-class).

4.2. Compression Evaluation

With the parameter A in Equation 1 the trade-off between
rate and distortion can be controlled, i.e. increasing the
A leads to a smaller MSE but therefore more BPP. To
evaluate our model for different bitrates, we train the
model with different values for the parameter lambda. In
Figure 5 the compression results with bitrates ranging
from 0.003 BPP to 0.68 BPP are shown for an example
image. The BPP of the compressed image is calculated
directly by dividing the file size of the encoded image by
the amount of pixels in the respective image.

The Peak-signal-to-noise-ratio (PSNR) metric is used
to evaluate the distortion. The distortion is calculated
using the MSE between the compressed and the corre-
sponding uncompressed images. The PSNR is defined
as:

255
PSNR = 10 - I — 4
0810 ( MSE) (4)
As depicted on the Rate-Distortion-Curve in Figure 6,
the results indicate that the proposed learned compres-
sion methodology outperforms JPEG and is also superior
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. without Blending

Figure 4: In the left image, simple patching without blending is shown. In this case the connection line between two patches
can be seen. In the right image the patches are blended. The connection lines are denoted with arrows in the images.

Table 1
Results of domain specific training and mon domain specific
training

PSNR  BPP
ImageNet trained 328 0.84
FMoW trained 3292 0.67

to the JPEG2000 compression format, which is frequently
used in satellite applications.

To verify that training the compression model with
domain-specific satellite images improves the down-
stream classification task, another compression model
was trained on 1,749 non-domain-specific samples from
the ImageNet data-set.

The results in Table 1 show that the domain-specific
compression model trained with satellite images outper-
forms the model trained with ImageNet samples. For a
PSNR of 33 it yields a lower bit rate of 0.67 BPP compared
to 0.84 BPP achieved by the domain-agnostic model.

5. Classification Evaluation

In addition to the evaluation in terms of image quality,
in this section, compressed quality is represented by the
accuracy of a classification downstream task, i.e., iden-
tifying objects in satellite images. As mentioned in the
Section 4.1, compressed and uncompressed versions of
the val-compress set are used, with 1,554 images used
for training (train-class) the classification model, and 375
images used to validate the model (val-class).

A dual path network' [22] is utilized for this evalua-
tion. For the evaluation of the classification downstream

!https://github.com/fMoW/first_place_solution

task, classification models have been trained with the
following 4 training sets:

« train-class compressed by the learned compres-
sion model with 0.02 BPP

« train-class compressed by the learned compres-
sion model with 0.67 BPP

« train-class compressed by the learned model that
was trained with 1,749 non-domain specific im-
ages (ImageNet [23]) with 0.84 BPP

« train-class compressed in JPEG format with
0.77 BPP

Each of these classification models has been used to
validate data sets in different compression scenarios:
JPEG data sets (0.31 BPP, 0.76 BPP, 1.55 BPP), Learned-
compression-compressed (LC) ~ datasets  (0.02 BPP,
0.67 BPP, 1.07 BPP), dataset retrieved from ImageNet-
trained learned Compression (0.84 BPP) and one without
compression. The result for this classification validations
are shown in Table 2. The columns denote the data set
the classifier was trained on, the rows denote the data
set that was classified during validation.

The results show that a classification model works best
when classifying images that were compressed with the
same algorithm (JPEG or learned compression) as the
images on which it was trained, i.e., the JPEG-trained
classifiers classified JPEG images with accuracies over
89%. In contrast, the JPEG-trained classifier only achieves
an accuracy of up to 35.21% on images compressed by
learned compression. Similarly, the accuracy of the LC-
trained classifiers was at least 77% when classifying LC
images (except for very low bitrate of 0.02 BPP), and no
more than 39.38% when classifying JPEG-compressed
images.
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(a) Original image
24.00 BPP

(b) LC 0.003 BPP (c)LC 0.12BPP (d) LC 0.35BPP () LC 0.63 BPP

(f) JPEG 0.06 BPP (g) JPEG 0.14 BPP (h) JPEG 0.44 BPP (i) JPEG 0.68 BPP

Figure 5: Differences between an original image, JPEG compressed versions of this images, and results of our learned
compression models (LC), with given BPP.

Table 2
Classification accuracy for datasets with varying compression distortion; the columns denote classifiers trained with various
image compression formats; the columns denote the data set, that was compressed; LC= Learned Compression

Validated Classifier trained on images compressed with:

with: LC0.02BPP  LC0.67BPP  LC ImageNet 0.84 BPP  JPEG 0.77 BPP
LC 0.02 BPP 77.83% 27.12% 10.58% 12.91%

LC 0.67 BPP 25.57% 80.67% 15.67% 32.89%

LC 1.07 BPP 26.9% 78.81% 16.63% 35.21%

LC ImageNet 0.84 BPP 14.94% 14.67% 78.92% 11.22%
JPEG 0.31 BPP 14.41% 35.81% 11.22% 89.81%
JPEG 0.77 BPP 16.59% 38.07% 11.85% 91.55%
JPEG 1.55 BPP 15.34% 39.38% 14.32% 91.55%
Uncompressed 15% 39.52% 12.97% 91.29%

The ImageNet-trained compression model demon- LC-compressed ones trained with satellite images. This
strates that the training data is also crucial for the down- suggests that traditional compression methods lead to a
stream classification task. It classified 78.92% of the more versatile encoding that is not as dependent on the
images created by the same compression model, while specific domain.
other datasets, even with high bitrate, could not attain
an accuracy greater than 16.63% for any other evalua-
tion. It fails to classify all other data sets, including the
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Figure 6: Rate distortion graph for JPEG, JPEG2000 and proposed learned compression methodology evaluated on satellite

images (val-compress dataset).

6. Conclusion

In this work, we propose a satellite compression method-
ology that outperforms traditional methods (JPEG,
JPEG2000) in terms of rate and PSNR. We show that im-
ages that exceed the memory of typical neural network
hardware accelerators can be compressed by feeding in
patch-wise parts of the image. To remove artifacts at
the connection line between two patches, the connection
region is smoothed by compressing overlapping patches
and combining the pixels in these regions. The proposed
methodology offers superior performance compared to
JPEG, and JPEG2000, commonly used for satellite imag-
ing. We assess the effects of compression on the perfor-
mance of an object classification downstream task. We
demonstrate that a classification model can learn to clas-
sify images with an accuracy of 77.83% even for images
compressed with a bitrate as low as 0.02 BPP. Further-
more, we show that using differently encoded images
for training and inference can deteriorate classification
accuracy significantly. As such, classification models
trained with JPEG images only achieve acceptable results
when tested on JPEG images. Similarly, classification
models trained with images compressed with learned
compression models fail when tested with JPEG images.
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