
3D Trajectory Registration for Sensor Calibration

Tekla Tóth1,*,†, Gábor Valasek1,† and Levente Hajder1,†

1Department of Algorithms and Their Applications, Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary

Abstract
Automatic sensor calibration is ubiquitous for robots and autonomous vehicles. Traditional target-based calibration methods
typically require multiple registrations of an object in the field of view. However, by moving the object continuously while
recording, the 3D positions of the target generate a path that may improve the calibration quality.

In this work, we propose a novel curve-based trajectory registration method to enhance calibration accuracy with spherical
and checkerboard targets. This approach supplements the existing target position point set with estimated intermediate
points after applying spline fitting techniques to the measurements. The curvature of the movement is aligned between the
point sets resulting in reduced error between the registered point clouds and more accurate extrinsic calibration parameters.
We validate these properties in indoor and outdoor real-world scenarios.

Keywords
sensor calibration, 3D trajectory, movement estimation, interpolation, pointset alignment

1. Introduction
The alignment of two or more point sequences occurs
in various computer vision, computer graphics, and sur-
face modeling problems [1]. Generally, state-of-the-art
target-based sensor calibration can estimate the extrin-
sic parameters between e.g., a LiDAR sensor, and a dig-
ital camera from a small number of input data pairs.
Both the sphere-based method of Tóth et al. [2] and
the checkerboard-based calibration of Zhou et al. [3] ap-
ply point set registration on some detected feature points
to find the sought parameters. The methods can find
the positions of a sphere center or the edges and corners
of a checkerboard pattern in 3D from the sensor data
with different modalities. The camera and the LiDAR
take snapshots simultaneously while the target is moved
around in the scene. In the final step, the original pipeline
of these methods applies the point pair registration (PPR)
of Arun et al. [4]: the detected pairwise positions are
registered. This approach can be applied both between
planar and spatial point sets.

Our goal is to improve object-based calibration pro-
cesses via the directed continuous movement of the target.
Instead of treating each calibration image pair indepen-
dently and using point pairwise registration on them, we
process the estimated trajectory points of the human-
controlled movement (see in Fig. 2) as point clouds for

26th Computer Vision Winter Workshop, Robert Sablatnig and Florian
Kleber (eds.), Krems, Lower Austria, Austria, Feb. 15-17, 2023
*Corresponding author.
†

These authors contributed equally.
$ teklatoth@inf.elte.hu (T. Tóth); valasek@inf.elte.hu (G. Valasek);
hajder@inf.elte.hu (L. Hajder)
� http://cv.inf.elte.hu/ (L. Hajder)
� 0000-0002-7439-0473 (T. Tóth); 0000-0002-0007-8647
(G. Valasek); 0000-0001-9716-9176 (L. Hajder)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

each sensor device. Then we use point cloud registration
methods [5, 6, 7] to compute the rigid body motion be-
tween the devices. This requires sufficiently large input
data sets.

Our main insight is to expand the point clouds by
inferred trajectory points. These are obtained by fitting
an interpolating spline to the captured trajectory data
and evaluating this spline at a user-adjustable frequency
that is higher than the sampling rate. This assumes a
temporal and spatial coherence between the calibration
images and we show that it improves calibration accuracy.
The proposed process is visualized in Fig. 1. We evaluate a
spherical realization of the proposed method empirically
for camera-LiDAR calibration in Section 3.

The motivation for our work was to improve the multi-
modal sensor calibration of a test vehicle (see Fig. 3) with
a reduced camera data rate. In particular, our setup pro-
vided a 2-4 FPS (frames per second) video stream which
resulted in a sparse trajectory sampling with about 10-
20 centimeters between consecutive points. An example
image sequence is presented in Fig. 2. Our idea is to ap-
proximate the trajectory with curve segments to get a
more detailed path containing synthetic positions. Dur-
ing the measurement, synchronization errors occur due
to the LiDAR turnaround time. This means that the end-
points of the paths are not necessarily aligned, but the
common parts of the curves are, as much as possible.
Regardless of the endpoint misalignments, the interior of
the path itself may be robustly inferred; therefore, we can
interpolate the curve between the measured data points
and add some synthetic intermediate points. This tech-
nique can be also applied in the case of surfaces defined
by sparse point set [8].

1

mailto:teklatoth@inf.elte.hu
mailto:valasek@inf.elte.hu
mailto:hajder@inf.elte.hu
http://cv.inf.elte.hu/
https://orcid.org/0000-0002-7439-0473
https://orcid.org/0000-0002-0007-8647
https://orcid.org/0000-0001-9716-9176
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Tekla Tóth et al. CEUR Workshop Proceedings 1–7

Figure 1: Schematic image of the proposed trajectory registration pipeline. The detailed process is discussed in Alg. 2.

Figure 2: An input image sequence from the camera. The sphere center moves around 10-20 𝑐𝑚 from one frame to the next
regarding these images.

Figure 3: Camera-LiDAR setup of the test vehicle for the
real-world tests. During the experiments, one camera was
calibrated to the LiDAR. Expanding the proposed approach,
multi-sensor calibration can be applied for all five cameras
and the LiDAR.

1.1. Camera-LiDAR Synchronisation
We provide an overview on the synchronization system
between the camera and the LiDAR as shown in Fig. 4. A
Velodyne VLP-16 LiDAR device is spinning with a 1200
RPM (rotation per minute) while an Arduino Triggerbox
triggers the camera with 4 FPS. If one trigger sign arrives,
the camera mounted on the same vehicle exposes for a
varying duration, at most for 0.04 seconds. Then the
picture is taken by a global shutter, and the system trig-
gers the LiDAR to save a synchronized turnaround. The

LiDAR saves the data packages of every 15° rotation slice.
When it gets the trigger, it finishes the current chunk of
data, labels it as the end of the scan to be saved, and iden-
tifies the last 360° rotation as one complete synchronized
turnaround to the current image. However, in the case
of a moving object, the worst case is when the object
appears at the beginning of the point cloud, which may
cause an error 0.05 𝑠 at maximum. If the target object
moves with a typical 0.2–0.4𝑚/𝑠 velocity, it causes 1–2
𝑐𝑚 error. Therefore, the point pairwise registration may
be inaccurate, while the proposed solution tries to deal
with this particular problem.

2. Proposed method
This section introduces the evaluated variations of the
proposed pose estimation described in Fig. 1 using in-
terpolated points on the estimated trajectory and point
cloud trajectory registration. Let 𝒫ℒ and 𝒫𝒞 denote the
point sets of estimated sphere centers from LiDAR data
and camera images, respectively. The final task is to find
the rigid transformation matrix T =

[︀
R|t

]︀
constructed

by a rotation matrix R and a translation vector t. In
this paper, Rℒ𝒞 and tℒ𝒞 describe the south rotation and
translation from the camera frame to the LiDAR frame.
In the particular case of sphere-based estimation, 𝑛 ≥ 4
point pairs are required.

First, let us consider the point pair solution as shown
in Alg.1, based on the method of Arun et al. [4]. The point
set registration is defined as a minimization problem:

argmin
Rℒ𝒞 ,t

𝑛∑︁
𝑖=1

⃦⃦⃦
pℒ
𝑖 −Rp𝒞

𝑖 − tℒ𝒞
⃦⃦⃦2

2
, (1)

2

Tekla Tóth et al. CEUR Workshop Proceedings 1–7

15° rot.

Ex
po

su
re

 2Frame 1
Readout

max. 0.04 s

0.05 s
 (full turnaround)

t (s)

LiDAR (20 Hz)

Camera (4 FPS)

Trigger Box
0.25 s

Exp
os

ure
 1

Saved
Synchronized
Turnaround 1

Global
Shutter

Trigger
Sign 1

Trigger
Sign 2

Frame 2
Readout

Saved
Synchronized
Turnaround 2Global Shutter

End of Saved
Scan

Figure 4: Hardware synchronization of the real camera-LiDAR system. The varying exposure time causes an unpredictable
noise which motivates us to find a more robust solution for the point set registration during the calibration process.

where pℒ
𝑖 and p𝒞

𝑖 denotes the 𝑖-th point pair of the Li-
DAR and the camera data. The translation is eliminated
by choosing the point set barycenters as the coordinate
system origins in the two images. The rotation can be
derived using singular value decomposition (SVD) on
the matrix H constructed from the point sets. If the
point pairs are perfectly synchronized and noiseless, this
method guarantees optimal results. However, in the pres-
ence of noise, such as due to synchronization errors as we
described in Sec. 1.1, Eq. (1) no longer provides optimal
solutions.

The improvements we propose are described in Alg. 2.
The initial step is the pre-filtering of the point sets be-
cause noisy data may occur. This is based on scaled
median absolute deviation:

𝑚𝑖 = 𝑠 · median (|𝑥𝑖 − median(x)|) , (2)

where 𝑥𝑖 ∈ x is an array of data, and 𝑠 is the scale. As
the approach focuses on the trajectories and not on the
pairwise synchronized data, if any of the measurement
data (either LiDAR or camera) is filtered out because of
noise, the corresponding data may remain in the other
point set, in contrast to the point pair registration. Then
the algorithm has 2 main steps: (i) estimating the tra-
jectory of the movement and (ii) registering the point
clouds. The next subsections present all the realizations
of these two steps that we evaluate in this paper.

2.1. Trajectory estimation
For trajectory estimation, the estimated 3D sphere posi-
tions can be interpreted as control points. To model the
movement, the two main questions are the choice of the

interpolation method and the sampling frequency to add
new synthetic points to the point sets.

To find the best method, the following requirements
must be met: the internal control points have to be in-
terpolated while the segments tightly follow the knots
without self-intersection between the points. Moreover,
the final segment sequence has to be continuous and easy
to evaluate at any point.

Linear interpolation (LI). A naive solution is the
linear interpolation between the neighboring points of
the measurement to reconstruct the path with line seg-
ments. Derivatives with a large magnitude of the curve
are not expected. As rapid changes in the trajectory are
not expected, the line-based approach is a good initial
step; however, its precision depends on the target object
movement speed and complexity. If two adjacent control
points are denoted by p𝑖 and p𝑖+1 where 𝑖 ≤ 𝑛− 1, 𝑛 is
the number of the points, and 𝑡 ∈ [0, 1] is an independent
parameter, the interpolation is

c(𝑡) = 𝑡 · p𝑖 + (1− 𝑡) · p𝑖+1. (3)

Catmull–Rom spline (CRS). The second approach
is a curve-based solution applying cubic centripetal
Catmull–Rom spline [9]. The Catmull-Rom spline pa-
rameterization produces curves that move toward the
next control point and has small derivatives around
control points. The advantages of the centripetal knot
parametrization are that it fulfills the aforementioned
requirements, e.g., no self-intersections occur [10] in
contrast to the uniform or the chordal parameteriza-
tion. The control points are denoted by p𝑖, and knots
𝑡𝑖, 𝑖 = 0, 1, 2, 3 are also predefined. The derivatives are

3

Tekla Tóth et al. CEUR Workshop Proceedings 1–7

Algorithm 1 Pose estimation with point pair registration – PPR [4]

Input: sphere centers from LiDAR data 𝒫ℒ = {pℒ
𝑖 ∈ R3 | 𝑖 = {1, . . . , 𝑛}, 𝑛 ≥ 4}; sphere centers from camera

images 𝒫𝒞 = {p𝒞
𝑖 ∈ R3 | 𝑖 = {1, . . . , 𝑛}, 𝑛 ≥ 4}

Output: rotation matrix Rℒ𝒞 ∈ R3×3 ; translation vector tℒ𝒞 ∈ R3×1

1: tℒ𝒞 := 𝒫𝒞 − 𝒫ℒ ◁ The difference between the centers of gravity
2: H :=

∑︀𝑛
𝑖=1 p

ℒ
𝑖 (p

𝒞
𝑖)

𝑇

3: USV𝑇 := SVD(H) ◁ Singular value decomposition of H
4: Rℒ𝒞 := VU𝑇

5: return Rℒ𝒞 , tℒ𝒞

Algorithm 2 Pose estimation with point cloud registration

Input: sphere centers from LiDAR data 𝒫ℒ = {pℒ
𝑖 ∈ R3 | 𝑖 = {1, . . . , 𝑛}, 𝑛 ≥ 4}; sphere centers from

camera images 𝒫𝒞 = {p𝒞
𝑖 ∈ R3 | 𝑖 = {1, . . . , 𝑛}, 𝑛 ≥ 4}; 𝑑 > 0 sampling interval on the trajectory spline

approximation
Output: rotation matrix Rℒ𝒞 ∈ R3×3 ; translation vector tℒ𝒞 ∈ R3×1

1: 𝒫ℒ,𝒫𝒞 := 𝑝𝑟𝑒𝑓𝑖𝑙𝑡𝑒𝑟(𝒫ℒ,𝒫𝒞) ◁ Based on scaled median absolute deviation in Eq. 2
2: 𝒫ℒ* := 𝑎𝑑𝑑𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠(𝒫ℒ, 𝑑) ◁ Linear interpolation, Catmull–Rom spline [9],
3: 𝒫𝒞* := 𝑎𝑑𝑑𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠(𝒫𝒞 , 𝑑) ◁ or Kochanek–Bartels spline [11]
4: t,R := 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑𝑠(𝒫ℒ*,𝒫𝒞*) ◁ ICP [5, 6] or CPD [7]
5: return Rℒ𝒞 , tℒ𝒞

given as

m𝑖 =
p𝑖+1 − p𝑖−1

𝑡𝑖+1 − 𝑡𝑖−1
. (4)

Based on the points p𝑖 and the derivatives m𝑖 calculated
by (4), the Hermite curve is fitted data pair-wise. The
equation of the spline is written as

c(𝑡) =
𝑡2 − 𝑡

𝑡2 − 𝑡1
b1 +

𝑡− 𝑡1
𝑡2 − 𝑡1

b2, (5)

where

b1 =
𝑡2 − 𝑡

𝑡2 − 𝑡0
a1 +

𝑡− 𝑡0
𝑡2 − 𝑡0

a2,

b2 =
𝑡3 − 𝑡

𝑡3 − 𝑡1
a2 +

𝑡− 𝑡1
𝑡3 − 𝑡1

a3,

a1 =
𝑡1 − 𝑡

𝑡1 − 𝑡0
p0 +

𝑡− 𝑡0
𝑡1 − 𝑡0

p1,

a2 =
𝑡2 − 𝑡

𝑡2 − 𝑡1
p1 +

𝑡− 𝑡1
𝑡2 − 𝑡1

p2,

a3 =
𝑡3 − 𝑡

𝑡3 − 𝑡2
p2 +

𝑡− 𝑡2
𝑡3 − 𝑡2

p3.

The parameter 𝑡 ∈ [𝑡1, 𝑡2] interpolates between p1

and p2. If the point coordinates are denoted by p𝑖 =[︀
𝑥𝑖, 𝑦𝑖, 𝑧𝑖

]︀
, then the knot parameterization of CRS is

𝑡𝑖+1 = 𝑙𝛼 + 𝑡𝑖, (6)

where

𝑙 =
√︀

(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2 + (𝑧𝑖+1 − 𝑧𝑖)2,
(7)

and the scale 𝛼 = 0.5 describes the centripetal spline.

Kochanek–Bartels spline (KBS). The third trajec-
tory approximation curve we evaluate is the Kochanek–
Bartels spline [11] which is a generalized version of the
Catmull–Rom spline extended by three parameters: the
tension 𝒯 ∈ [−1, 1], the bias ℬ ∈ [−1, 1] and the conti-
nuity 𝒞 ∈ [−1, 1]. The derivative calculation is modified
in the following way. The derivatives of the end-points
of the 𝑖-th segments are as follows

m𝑖 =
(1− 𝒯)(1 + ℬ)(1 + 𝒞)

2
(p𝑖 − p𝑖−1)+

(1− 𝒯)(1− ℬ)(1− 𝒞)
2

(p𝑖+1 − p𝑖), (8)

m𝑖+1 =
(1− 𝒯)(1 + ℬ)(1− 𝒞)

2
(p𝑖+1 − p𝑖)+

(1− 𝒯)(1− ℬ)(1 + 𝒞)
2

(p𝑖+2 − p𝑖+1). (9)

The final curve segment can be defined as a cubic
Hermite spline between the internal control points p𝑖

and p𝑖+1, for any 𝑡 ∈ [0, 1] as

𝑐(𝑡) =(2𝑡3 − 3𝑡2 + 1)p𝑖 + (𝑡3 − 2𝑡2 + 𝑡)m𝑖+

(−2𝑡3 + 3𝑡2)p𝑖+1 + (𝑡3 − 𝑡2)m𝑖+1 . (10)

Sampling interval. Regardless of the applied inter-
polation method in the second and third steps of Alg. 2,
the sampling interval along the trajectory approximation
spline has to be given. The Euclidean distance between
p𝑖 and p𝑖+1 points is denoted by 𝑑𝑖. The line or curve
segment c𝑖(𝑡) interpolates the end points p𝑖 and p𝑖+1.
If 𝑑𝑖 > 𝑑, we add additional positions to the trajectory.

4

Tekla Tóth et al. CEUR Workshop Proceedings 1–7

Point clouds after registration

PPR [4]

ICP [6]

CPD [7]

Figure 5: 3D sphere center trajectories after registration with point pair registration (PPR), iterative closest point (ICP) and
coherent point drift (CPD) algorithms. In this case, no interpolated positions were added.

To this end, we evaluate the curve segment at every 𝑡
step distance of 𝑑/𝑑𝑖, and insert those into the trajectory
path. This, however, yields trajectory point sets with
different sizes; hence, point pair registration cannot be
applied between them in the previous form.

2.2. Trajectory registration
After the spline fitting, the point pairs lost importance
due to the quasi-continuous point set and varying sam-
pling between the control points. Classical point cloud
registration methods can be applied to dense 3D paths.

One of them is the iterative closest point (ICP) algo-
rithm [5, 6]. The revised version improved the efficient
closest point computation [6] using k-d tree. The other
one is the coherent point drift (CPD) algorithm [7]. We
tested the rigid version of the method.

3. Tests and results
We examined whether the registration results could be
more precise using the new approach, and what method is
the most suitable among the alternate versions. Further-
more, we tested the parameter setting for the sampling
interval. The tests were implemented in MATLAB. To
compare the results, we computed the root mean square
error (ℛℳ𝒮ℰ) of the Euclidean distance between the
aligned point clouds. The sensors of the vehicle (see
in Fig. 3 and the synchronization in Sec. 1.1) captured
camera-LiDAR video sequences to test real-world scenar-
ios.

Figure 6: Estimated 3D sphere center trajectories before
registration. The original calibration method provides sub-
centimeter precise 3D positions.

The input of the algorithms is the 3D point sequences
of sphere centers. The test input for illustration is visual-
ized in Fig. 6 containing 30 positions per sensor which
means a 7.5 sec. long video sequence in an outdoor envi-
ronment in a parking lot. We processed this data feed as
written in [2]. The sphere centers from images were esti-
mated by ellipse detection, and then projecting it into 3D
using the known radius of the sphere. The LiDAR-based
sphere localization used a fix-point iteration method [12].

At first, we compared the trajectory registration meth-
ods discussed in Sec. 2.2 without estimating the move-

5

Tekla Tóth et al. CEUR Workshop Proceedings 1–7

𝑑 Trajectory estimation

0.1 𝑐𝑚

0.5 𝑐𝑚

1 𝑐𝑚

Figure 7: Estimated 3D sphere center trajectories after linear interpolation (LI), fitting Catmull–Rom spline (CRS), and
Kochanek–Bartels spline (KBS) with varying sampling frequency 𝑑. The error rate is displayed in Tab. 1.

Interpolation ℛℳ𝒮ℰ w.r.t. sampling interval 𝑑 (cm)
method 0.1 0.25 0.5 0.75 1.00

LI 0.53 0.53 0.55 0.58 0.61
CRS [9] 0.63 0.63 0.64 0.67 0.70
KBS [11] 0.65 0.65 0.67 0.69 0.72

Table 1
Test results of ℛℳ𝒮ℰ (in centimeters) for varying sampling
interval and trajectory interpolations give subcentimeter er-
rors for all three interpolation method. In case of sampling by
𝑑 ≤ 0.25 cm, the error rate and the point trajectory density
is acceptable.

ment and any interpolated points. In Fig 5, the results
for the test case in Fig. 6 are plotted. The ℛℳ𝒮ℰ of
the ICP algorithm is 0.0155 𝑚 with 0.0114 𝑚 standard
deviation while the PPR and CPD algorithms gave the
same results, 0.0110 𝑚 with 0.0083 𝑚 standard devia-
tion. Based on the experiments and the fact that applying
PPR with point clouds of different sizes is not feasible,
we recommend using the CPD.

We analyzed the interpolation methods and whether
the 𝑑𝑖-based sampling gives the sought ideal density. We
examined several setups in the same example in Fig. 7
and Fig. 1. In conclusion, one position per 0.25 𝑐𝑚 is
a sufficient sampling parameter. In this particular case,
linear interpolation was suitable for the problem due to
the stretched curvatures in the movement. Nonetheless,
other scenarios require more adaptive approaches like
CRS and KBS. Furthermore, the compared calibration
results in Fig. 8 on the right suggest that the translation

Figure 8: Test results of trajectory interpolations are applied
to show the estimated rigid transformation in a schematic
figure. The viewing frustum of the camera is in the LiDAR
reference frame with the different interpolation methods with
𝑑 = 0.25 𝑐𝑚 sampling. The real-world camera is the bottom
left one with perspective lenses in Fig. 3 on the left.

of LI is more accurate, but the rotation is expected as in
the case of CRS and KBS.

Based on the test scenarios, the proposed settings of
proposed Alg. 2 are the following. Tuning the sampling
interval 𝑑 to 0.25 𝑐𝑚 gives sufficiently accurate results;
besides, more dense sampling has no significant effect.
Due to a linear-like input scenario, the linear approach
performs the best in the exhibited use case, but the results
are similarly acceptable with CRS and KBS. Finally, trajec-

6

Tekla Tóth et al. CEUR Workshop Proceedings 1–7

tory registration using CPD is the most effective choice.
Applying this settings, the ℛℳ𝒮ℰ of the analyzed case
was reduced from 0.0110 (PPR, no interpolated trajec-
tory) to 0.0053𝑚 (CPD, 𝑑 = 0.25 𝑐𝑚, LI).

Synthetic tests provide the opportunity for direct com-
parison of the estimated calibration parameters to ground
truth data. Based on early-stage results, the main open
question is the best interpolation method for trajectory
estimation which largely depends on the specific sce-
nario. Paths with greater curvature give a better result
for the rigid transformation with CRS and KBS. During
the further refinement of the paper, we will analyze in
more depth how the synthetized movement affects the
precision of the proposed methods.

4. Conclusions
This paper argued how trajectory registration could im-
prove extrinsic sensor calibration algorithms if we can
extract 3D positions from the input data, e.g., based on a
specific target object. The novelty of the method is the
controlled path of the object and the generated dense
point set by spline fitting and interpolation followed by
point cloud registration. The algorithm guarantees sam-
ple continuity and speeds up the measurement, as one
video sequence is sufficient. The method handles the
noise in the input images or the LiDAR scans indepen-
dently owing to the point cloud-based approach which
makes it more robust to the outliers.

There are some open questions regarding to the ob-
ject path and the setup of the measurements. We would
like to validate the better accuracy of the calibration via
sythetic tests and analyze whether any ideal trajectory
exist which makes the results more accurate. Moreover,
we examine the effect of the noise in the 3D positions.
Besides the spherical setup, chessboard-based approach
could be also analyzed where an additional problem is
the interpolation of the rotation, as not only one position
but the four corner points can be detected in every frame.
In the future, another application of the project can be
the trajectory estimation of autonomous vehicles using
multi-sensor systems.

References
[1] A. Hartey, A. Zisserman, Multiple view geometry

in computer vision (2. ed.), Cambridge University
Press, 2004. doi:10.1017/CBO9780511811685.

[2] T. Tóth, Z. Pusztai, L. Hajder, Automatic lidar-
camera calibration of extrinsic parameters using
a spherical target, in: 2020 IEEE International Con-
ference on Robotics and Automation, ICRA 2020,
Paris, France, May 31 - August 31, 2020, IEEE, 2020,

pp. 8580–8586. doi:10.1109/ICRA40945.2020.
9197316.

[3] L. Zhou, Z. Li, M. Kaess, Automatic extrinsic calibra-
tion of a camera and a 3d lidar using line and plane
correspondences, 2018 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS)
(2018) 5562–5569.

[4] K. S. Arun, T. S. Huang, S. D. Blostein, Least-
squares fitting of two 3-d point sets, IEEE
Transactions on Pattern Analysis and Machine In-
telligence PAMI-9 (1987) 698–700. doi:10.1109/
TPAMI.1987.4767965.

[5] P. J. Besl, N. D. McKay, A method for registration of
3-d shapes., IEEE Trans. Pattern Anal. Mach. Intell.
14 (1992) 239–256. URL: http://dblp.uni-trier.de/db/
journals/pami/pami14.html#BeslM92.

[6] Z. Zhang, Iterative point matching for registration
of free-form curves and surfaces, Int. J. Comput.
Vision 13 (1994) 119–152. URL: https://doi.org/10.
1007/BF01427149. doi:10.1007/BF01427149.

[7] A. Myronenko, X. Song, Point set registration: Co-
herent point drift, IEEE Transactions on Pattern
Analysis and Machine Intelligence 32 (2010) 2262–
2275. doi:10.1109/TPAMI.2010.46.

[8] R. Knothe, S. Romdhani, T. Vetter, Combining pca
and lfa for surface reconstruction from a sparse set
of control points, in: Proceedings of the 7th Interna-
tional Conference on Automatic Face and Gesture
Recognition, FGR ’06, IEEE Computer Society, USA,
2006, p. 637–644. URL: https://doi.org/10.1109/FGR.
2006.31. doi:10.1109/FGR.2006.31.

[9] E. E. Catmull, R. Rom, A class of local interpolating
splines, Computer Aided Geometric Design (1974)
317–326.

[10] C. Yuksel, S. Schaefer, J. Keyser, On the parameteri-
zation of catmull-rom curves, in: 2009 SIAM/ACM
Joint Conference on Geometric and Physical Mod-
eling, SPM ’09, Association for Computing Machin-
ery, New York, NY, USA, 2009, p. 47–53. URL: https:
//doi.org/10.1145/1629255.1629262. doi:10.1145/
1629255.1629262.

[11] D. H. U. Kochanek, R. H. Bartels, Interpolating
splines with local tension, continuity, and bias
control, SIGGRAPH Comput. Graph. 18 (1984)
33–41. URL: https://doi.org/10.1145/964965.808575.
doi:10.1145/964965.808575.

[12] T. Tóth., L. Hajder., Robust fitting of geomet-
ric primitives on lidar data, in: Proceedings of
the 14th International Joint Conference on Com-
puter Vision, Imaging and Computer Graphics
Theory and Applications - Volume 5: VISAPP„
INSTICC, SciTePress, 2019, pp. 622–629. doi:10.
5220/0007572606220629.

7

http://dx.doi.org/10.1017/CBO9780511811685
http://dx.doi.org/10.1109/ICRA40945.2020.9197316
http://dx.doi.org/10.1109/ICRA40945.2020.9197316
http://dx.doi.org/10.1109/TPAMI.1987.4767965
http://dx.doi.org/10.1109/TPAMI.1987.4767965
http://dblp.uni-trier.de/db/journals/pami/pami14.html#BeslM92
http://dblp.uni-trier.de/db/journals/pami/pami14.html#BeslM92
https://doi.org/10.1007/BF01427149
https://doi.org/10.1007/BF01427149
http://dx.doi.org/10.1007/BF01427149
http://dx.doi.org/10.1109/TPAMI.2010.46
https://doi.org/10.1109/FGR.2006.31
https://doi.org/10.1109/FGR.2006.31
http://dx.doi.org/10.1109/FGR.2006.31
https://doi.org/10.1145/1629255.1629262
https://doi.org/10.1145/1629255.1629262
http://dx.doi.org/10.1145/1629255.1629262
http://dx.doi.org/10.1145/1629255.1629262
https://doi.org/10.1145/964965.808575
http://dx.doi.org/10.1145/964965.808575
http://dx.doi.org/10.5220/0007572606220629
http://dx.doi.org/10.5220/0007572606220629

	1 Introduction
	1.1 Camera-LiDAR Synchronisation

	2 Proposed method
	2.1 Trajectory estimation
	2.2 Trajectory registration

	3 Tests and results
	4 Conclusions

