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Abstract
Image captioning is a deep learning task that involves computer vision methods to extract visual information from the image
and also natural language processing to generate the result caption in natural language. Image captioning models, just like
other deep learning models, need a large amount of training data and require a long time to train. In this work, we investigate
the impact of using a smaller amount of training data on the performance of the standard image captioning model Oscar. We
train Oscar on different sizes of the training dataset and measure its performance in terms of accuracy and computational
complexity. We observe that the computational time increases linearly with the amount of data used for training. However,
the accuracy does not follow this linear trend and the relative improvement diminishes as we add more data to the training.
We also measure the consistency of individual sizes of the training sets and observe that the more data we use for training
the more consistent the metrics are. In addition to traditional evaluation metrics, we evaluate the performance using CLIP
similarity. We investigate whether it can be used as a fully-fledged metric providing a unique advantage over the traditional
metrics; it does not need reference captions that had to be acquired by human annotators. Our results show a high correlation
between CLIP with the other metrics. This work provides valuable insights for understanding the requirements for training
effective image captioning models. We believe our results can be transferred to other models, even in other deep-learning
tasks.
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1. Introduction
Image captioning is a task in computer vision that in-
volves generating a textual description of an image. The
goal is to provide a comprehensive and human-like de-
scription of the content of an image, which can be useful
for a variety of applications, such as enabling individu-
als with visual impairments to better understand visual
information, improving the accuracy and relevance of
image search results, etc. It is a complex task because
it requires the identification and interpretation of visual
information, as well as the generation of grammatically
correct and fluent sentences. This requires a combined ef-
fort of computer vision and natural language processing
methods.

The scientific community has been interested in this
task for over a decade [1]. The methods used for this task
were relying on hand-crafted features and rule-based
algorithms. Recent advances in machine learning and
artificial intelligence have enabled the development of
more effective image captioning models, which are able
to generate high-quality captions for a wide range of
images.
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An important feature of image captioning is that there
is not only one correct caption for an image. This is be-
cause different individuals may consider different aspects
of an image to be important, and they may therefore de-
scribe the image in different ways. Because of this, there
is not one ideal evaluation metric that can be used to
measure the quality of a generated caption, as different
metrics may be better suited for evaluating different at-
tributes of the caption.

The general problem of deep learning is that it re-
quires a large amount of data and the training process
can be computationally intensive. In this work, we inves-
tigate the relationship between the size of the training
dataset and the performance of a standard image caption-
ing model, Oscar [2]. We train Oscar on different sizes
of the training dataset and measure the performance by
means of accuracy and also computational complexity.
We expect this dependency to have linear behavior, where
increasing the size of the training dataset will result in
a corresponding increase in computational time. This
research is important because it can help us understand
the limitations of deep learning models and the com-
putational resources required to train them effectively.
Additionally, our results can provide valuable insights
for future research on image captioning and other appli-
cations of deep learning.

Our contribution in this work is an experiment that
confirms the expected behavior of the Oscar model, i.e.,
linear dependence. We also provide insight into the re-
lationship between the size of the training dataset and
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its performance on selected metrics. Furthermore, we
measure the consistency of the data for each of the met-
rics used, and we expect that smaller subsets of the data
will have higher variance than larger subsets. Our re-
sults will help to better understand the requirements for
training effective image captioning models and the po-
tential trade-offs between dataset size and performance.
Additionally, our findings may be useful for researchers
and practitioners who are interested in optimizing the
training of deep learning models in general.

In addition to using state-of-the-art evaluation metrics,
we also evaluate our image captioning methods on CLIP
(Contrastive Language-Image Pre-training) similarity [3].
We investigate whether CLIP can be used as a full-fledged
evaluation metric for image captioning. We find that it
has a major advantage over traditional metrics: it does
not require reference labels from annotators. This means
that CLIP can be used to evaluate image captioning mod-
els in an unsupervised or self-supervised manner, which
can be useful in situations where annotated data is not
available or is too expensive to obtain.

2. Related Work

2.1. Datasets
Image captioning models are trained on large datasets
consisting of pairs of images and captions. These datasets
may differ in terms of the domain they cover, the number
of image-caption pairs they contain, and the number of
captions per image.

One well-known dataset for image captioning is
Flickr30k [4], which includes approximately 31,000 im-
ages of everyday scenes, each described by five inde-
pendent annotators, resulting in 155,000 image-caption
pairs. Another popular dataset is COCO Captions [5],
which contains over 164,000 images of everyday scenes,
with five annotations per image, for a total of over
820,000 image-caption pairs. The Conceptual Captions
dataset [6] comprises images collected from a large num-
ber of web pages, with one caption per image extracted
from the alt-text HTML attribute. This dataset contains
over 3,000,000 image-caption pairs. Conceptual12m [7]
is a similar dataset, also extracted from web pages, with
a total of over 12,000,000 image-caption pairs.

Each of these datasets has its own advantages and
disadvantages. For instance, the Flickr30k dataset has a
good consistency and is well-suited for evaluation due to
the multiple reference captions provided for each image.
It is a valuable feature because a single image can often
be described in multiple ways, and it is useful to have a
diverse set of captions for each image to better capture
the range of possible descriptions. However, the quality
of datasets containing images collected from the internet,

such as Conceptual Captions and Conceptual12m, may
depend on the filtering applied during collection, and
their consistency may be harder to guarantee. These
datasets, however, offer a larger number of images and
a greater variance. As a result, state-of-the-art image
captioning models often utilize a combination of multiple
datasets in order to achieve the best performance. In this
work, we chose to use the COCO Captions dataset for our
experiments due to its suitable size for training and also
dividing into subsets. The COCO Captions dataset also
has a sufficient number of images to allow for a robust
evaluation of the model’s performance.

2.2. Evaluation
The evaluation of image captions is a challenging task
due to the inherent subjectivity of language and the mul-
tiple ways in which an image can be correctly described.
Most evaluation metrics for image captioning compute
the difference between a candidate caption and a refer-
ence caption provided by human annotators. Traditional
metrics, such as BLEU [8], ROUGE [9], METEOR [10], and
CIDEr [11], are based on the positions of n-grams in the
candidate and reference captions. More advanced met-
rics, such as SPICE [12], measure the semantic similarity
between the captions using graph-based representations.

Individual metrics may be suitable in different situa-
tions. For example, BLEU is a simple and inexpensive
metric to compute, but it does not perform well when
compared to other metrics [13]. On the other hand, CIDEr
is considered to be the best-performing metric that com-
pares n-grams in candidate and reference captions. How-
ever, it requires the entire dataset to be computed, making
it computationally expensive for larger datasets. SPICE
is a popular metric that compares the semantics of the
captions rather than their syntax. However, it requires a
complex model to accurately capture semantic relation-
ships, making it computationally expensive.

In tasks of image generation, the Fréchet inception dis-
tance (FID) [14] is used to evaluate the quality of images
generated by a generative model, such as a generative
adversarial network (GAN) [15]. Similarly, CLIP [3] can
be used to assess the similarity between an image and
text. CLIP is a deep learning model developed by OpenAI
that is able to encode the image and text into a common
semantic space. The cosine similarity can then be used
to compute the agreement between the input text and
the image. Also, diffusion models for generating images
use CLIP [16] to evaluate the generated image based on
text input. In image captioning, CLIP can be used to
evaluate the generated caption. Although CLIP has not
been considered a standard evaluation metric for image
captioning, in this study we present it as such. In this
study, we present it as a potential fully-fledged metric
that thoroughly assesses the semantic quality of candi-
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1% sub01
1% sub02
1% sub03
1% sub04
1% sub05
1% sub06
1% sub07
1% sub08
1% sub09
1% sub10

a group of brown cows standing in a field
a group of cows that are standing together.
a group of cows are standing in the grass.
a herd of black and white cows in a field.
a group of cows stand together in a grassy area.
a herd of cows standing in a field.
a group of cows grazing on a field.
a group of brown cows laying in a field
a couple of cows standing together in a field.
two cows in a field with a fence surrounded by green grass.

25% sub01
25% sub02
25% sub03
25% sub04
25% sub05
25% sub06
25% sub07
25% sub08
25% sub09
25% sub10

a cow that is laying down in the grass.
a cow is standing in a field with another cow behind it.
a cow is standing in a field with another cow.
a cow with a red ear tag standing in a field.
a black and white cow standing in a field.
a cow is standing in the grass with another cow behind it.
a cow is standing in a field with another cow behind it.
a cow is standing in a field of grass.
a cow is standing in a field with other cows.
two cows are laying down in a field.

Figure 1: Examples of generated captions for the same image. On the left side, there are captions from different models
trained on the 1% subset of data. On the right, there are captions from models trained on the 25% subset. We see that there is
greater variability of the captions from the 1% subset, while the semantics are mostly correct.

date captions. We compute the correlation between CLIP
and other metrics and investigate whether CLIP can be
used in this manner. A previous research study [17] has
conducted similar experiments, but focused on comput-
ing the correlation with human judgment and comparing
it to correlations with other metrics, whereas we compute
correlations with other metrics directly.

2.3. Image Captioning Methods
Recent advances in image captioning have seen the
widespread adoption of deep learning techniques. Early
methods used convolutional neural networks (CNNs) as
encoders, such as the model proposed by [18]. More re-
cent approaches have used Faster R-CNN [19] for ob-
ject detection in images, leading to improved perfor-
mance. The latest methods employ transformer ar-
chitectures [20], which have achieved state-of-the-art
performance on a variety of tasks. Among the best-
performing methods are transformer-based methods Os-
car [2], VinVL [21] and OFA [22], which use multimodal
input. mPLUG [23] is another image captioning method
that uses two unimodal encoders, one for images and
one for text. These encoders are then combined using a
cross-modal skip-connected network, which consists of
multiple skip-connected fusion blocks.

3. Experiments
In this work, we investigate the performance and effi-
ciency of the image captioning method Oscar [2]. Our mo-

tivation for using this specific method is that we have pre-
viously used it in our own experiments and found it to be
a convenient method to use. While it may not currently
be the best-performing model, Oscar is a transformer-
based method and we believe that the results of our exper-
iments may be generalizable to other transformer-based
or deep-learning models in the field.

To assess the performance of Oscar, we conducted two
main experiments. The first experiment involved mea-
suring the time needed to train the model using various
amounts of data while tracking the performance on a set
of chosen evaluation metrics. In addition to traditional
metrics, we also evaluated the model using CLIP simi-
larity [3]. In the second experiment, we measured the
correlation between the various metrics used in order
to determine the potential use of CLIP as a fully-fledged
metric in the image captioning field.

3.1. Method
Our experiments are based on the training and evalu-
ation of the image captioning model Oscar [2]. Oscar
is a transformer-based model, which uses a multimodal
input. The input consists of feature vectors and tags of
objects detected in the source image by an external object
detector. The output is the predicted caption describing
the source image.

The authors of Oscar provide a demonstration dataset
of feature vectors and object tags that can be used as
input to Oscar, but do not specify the method by which
these object detections are obtained. In order to generate
captions for custom images outside of the demonstration

3



Tomáš Železný et al. CEUR Workshop Proceedings 1–8

dataset, we developed a full pipeline that takes a source
image as input and produces a caption as output. Accord-
ing to [2], Oscar’s input is a 2054-dimensional vector for
each detected object, where the first 2048 dimensions are
image features extracted from a detection network and
the remaining 6 values contain the coordinates and size
of the bounding box for the detected object. We used the
Faster R-CNN detection network implemented in the De-
tectron2 [24] framework as the object detector. We used
the R50-C4 backbone, which meets the requirements of
having a 2048-dimensional vector in the final layer. We
use the feature vector from this layer together with the
predicted class as the input to Oscar. The Faster R-CNN
model was pre-trained on the COCO dataset [25] and is
used without any further fine-tuning for our task. The
quality of our pipeline is definitely restricted by the qual-
ity of the detector. In our case, we are able to detect only
80 possible classes (COCO classes), which may hinder
the expressivity of the model.

Analysis of the demonstration dataset provided by
Oscar revealed that there are always at least 10 detections
per image, with confidence scores higher than 0.2. Based
on this finding, we configured the object detector in our
pipeline to generate detections with confidence scores
higher than 0.2, and to include detections with lower
confidence scores if there are fewer than 10 detections in
total. This ensures that the input to Oscar matches the
format of the demonstration dataset.

3.2. Dataset
In this work, we conducted experiments using the COCO
Captions [5] dataset. It consists of 164,062 images with
5 captions each, divided into the train, validation, and
test sets. The annotation for the test set is not publicly
available, so we redistributed the original train+val sets
into our own train+val+test sets for evaluation on the
COCO Captions dataset.

The demonstration dataset provided by Oscar also
consists of images from the COCO Captions dataset,
which is split into train+val+test sets that originally be-
longed to the original train+val COCO Captions dataset.
We decided to follow this distribution, resulting in final
train+val+test sets of 5,000+5,000+113,287 images.

3.3. Impact of Different Volumes of Data
on Model Performance

In this experiment, we evaluate the performance of the
Oscar image captioning model on the COCO Captions
dataset. As described in Section 3.2, the dataset was split
into training, validation, and test sets, with the valida-
tion and test sets remaining unchanged for evaluation
purposes.
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Figure 2: Relationship between average time elapsed per
epoch and the subset size used for training. We see that the
measured data confirm the expected behaviour, i.e. linear
dependence.

a dog laying on top of a bed.
a dog is laying on a bed in a room.
a dog sitting on a bed next to a person.
a dog sitting on a bed with clothes and a book.
a dog sitting on a bed with a blanket and a pillow.

1 %
10 %
25 %
50 %

100%

Figure 3: Examples of captions generated from the best mod-
els of each subset of the data. We can see the improvement of
the caption as we add more data.

To assess the effect of training data size on model per-
formance, we selected various amounts of data from the
training set to train Oscar. The sizes of the training sub-
sets were 100%, 50%, 25%, 10%, and 1% of the original
train set. For each subset size, multiple random selec-
tions were made from the full training set to measure the
consistency of the selected data. The number of random
selections for each subset size is shown in Table 1. The
number of data selections was chosen to provide a suffi-
cient number of samples to measure variance while also
considering the computational resources available.

The Oscar model was trained using various sizes
of training subsets for a total of 30 epochs, and the
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1 10 25 50 100
Size of subset [%]

0.167

0.197

0.227

0.257

0.286

0.316
BLEU-4

0.602

0.696

0.791

0.886

0.981

1.076
CIDEr

0.2600

0.2657

0.2713

0.2769

0.2826

0.2882
CLIP

Figure 4: Relationship between the size of the training set used to train Oscar [2] and the score of BLEU-4, CIDEr and CLIP
metrics obtained by evaluating trained Oscar on the test set. We use different axis for each metric to better visualize the trends
in individual metrics for a clearer comparison. The variance of individual sets of given sizes is visualized by boxplots. We can
see that the upper quartile of the smaller set does not intersect with the lower quartile of the larger set. Note that there is no
variance for the 100% split because there was only one selection.

Table 1
Number of selections per subset size.

Subset size 100 % 50 % 25 % 10 % 1 %
Selections 1 5 10 10 10

elapsed time was recorded. Training was conducted using
NVIDIA GeForce GTX 1080 Ti GPUs. The relationship
between elapsed time and training subset size is shown
in Figure 2. As expected, this relationship follows a linear
dependence between data size and computational time.

During training, the model was evaluated on the vali-
dation set after every 5th epoch, and the best-performing
checkpoint was saved. The CIDEr metric was used for
this evaluation because it has been found to correlate
well with human judgment [17] and Oscar uses it as its
default output score. After training, the best-performing
checkpoint was selected based on its performance on the
validation set and then evaluated on the test set. The
resulting score on the test set is shown in Figure 4.

In order to assess the consistency of evaluation re-
sults, we measured the variability of the metric scores
for each subset size. The variability is visualized in the
figure using boxplots, which allow us to see the variance
of different metrics across the individual subsets. The
non-overlapping quarters of the boxplots indicate that
there is a statistically significant difference in the scores
depending on the subset size. This highlights the impor-
tance of carefully considering the subset size in order to

obtain reliable results. For qualitative assessment of this
experiment see Figures 1 and 3.

3.4. Evaluating Image Captioning with
CLIP

In the second experiment, we investigate whether CLIP
similarity can be used as a fully-fledged metric for evalu-
ating image captioning tasks. Our analysis of the data, as
depicted in Figure 4, revealed that CLIP exhibits behavior
similar to that of other metrics. To further investigate
this relationship, we calculated Pearson’s correlation co-
efficient between all metrics across all subsets of the data.
The resulting correlations are presented in Figure 5.

Our findings show that all metrics are highly corre-
lated. This indicates the correct, consistent, and expected
behavior of all the metrics. In addition, we observed that
the BLEU, METEOR, ROUGE, and CIDEr metrics tend to
be on average more correlated with each other than with
SPICE or CLIP. This trend is likely due to the fact that
the former group of metrics compares the placement of
n-grams in candidate and reference captions, while the
latter two metrics do not consider syntactic content but
rather focus on semantics.

The main takeaway is that CLIP is a viable metric for
image captioning evaluation which does not need refer-
ence captions. This outcome is essential since it enables
hypothetical training of a captioning system without ref-
erences in an unsupervised manner.
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Figure 5: Pearson’s correlation coefficient matrix computed pair-wise for all used metrics. We see that all the metrics highly
correlate.

4. Conclusion
In our work, we conducted several experiments to ana-
lyze the training of the image captioning method Oscar.
First, we trained the method on different sizes of training
data. We measured the elapsed time of the training loop
and the performance on given metrics. The training dura-
tion has a linear relationship with the volume of data that
is used. Furthermore, we have measured the behavior
of individual metrics based on the size of the training
data. We measured the consistency of the data for indi-
vidual subsets. We experimentally show that the models
trained on smaller subsets have a higher variance of all
the evaluation metrics than the models trained on larger
sets. We observe that the scores converge to some value.
However, the improvement of the individual metrics is
not linearly dependent on the amount of data used for
training. As we add more data for training, the improve-
ment diminishes. This is affected by multiple phenomena:
The first one is the capacity of the model itself, hence
the convergence to a non-perfect value of the metrics.

The second one is the quality of the dataset. We chose
COCO Caption for multiple reasons. Because we believe
it has good consistency - it contains scenes of everyday
life with a limited variety of objects and because it has
5 annotations per image. Another reason is that it has
good size - it is big enough to make an adequate 1% split
from it, but it is also small enough for 36 training runs
of 30 epochs to be computed in reasonable time on our
GPUs. Lastly, the quality of the detector producing the
detections and feature vectors affects the performance.

Based on our output, one can now decide to reduce the
training data volume if the goal is to achieve a specific
minimum score of a metric. It can be assumed, that the
behavior will be similar to other models and datasets.

In our second experiment, we evaluated the correlation
between various state-of-the-art metrics and the CLIP
metric, which we believe, can be used as a fully-fledged
metric for image captioning with its huge advantage - it
does not need any reference captions. Our results showed
that all the metrics including CLIP are highly correlated.
This supports CLIP’s potential use as a fully-fledged met-
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ric for image captioning. Previous research [17] has also
investigated the CLIP metric, focusing on the correlation
with human judgment and comparing it to the correla-
tion of other metrics. In comparing those results to ours,
we found that the ranking of the correlation of individual
metrics to human judgment corresponds to the ranking
of the correlation of other metrics with CLIP.
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