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Abstract
3D scanning of real-world objects has become an integral step of many manufacturing processes and digital image processing
applications. Despite the impressive progress in modern 3D scanning technology, the produced 3D models often suffer
from defects due to occlusions, poor light conditions, special surface reflection properties, scanner displacements, imperfect
algorithms, etc. Point cloud completion is a standard post-processing step aiming at removing or smoothing such irregularities.

In this article, we propose a novel method for damage completion of 3D objects possessing reflection symmetry. Such
symmetries are identified by matching local shape features such as curvatures and edges in mesh and point cloud representa-
tions of the objects. We describe the pipeline of our method, justify its steps, and evaluate its performance on the ModelNet40,
a Princeton 3D object dataset. The results demonstrate comparable improvement in the damaged 3D object completion to
popular neural network-based and symmetry-based approaches.
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1. Introduction
Advances in modern 3D scanning technology have led
to a significant boost in computer vision post-processing
tools for 3D models. One of the standard tasks of 3D
scanning is completing the obtained 3Dmodels that suffer
from poor light conditions, occlusions, surface reflection,
etc. This completion task has been approached in many
different ways, in particular, using neural networks pre-
trained on certain object classes. Although such methods
show good results for new objects from these classes,
their performance on previously unseen object types
drops significantly. Therefore, alternative algorithms
capable of completing previously unseen objects are of
vital importance.

In this paper, we suggest a novel approach to 3Dmodel
completion based on the geometric features of mirror-
symmetric objects. Since this type of symmetry is typi-
cal in man-made environments, such an assumption is
not very restrictive. Finding plane symmetry in approxi-
mately symmetric 3D models is the most important step;
we then use it to complete any damages and holes which
could occur during scanning or were already present in
the real-life scanned object (e.g., in archaeological find-
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ings that often suffer from significant time damage).
The main idea is that in mirror-symmetric objects, all

local shape features are also symmetrically distributed.
For instance, the principal curvatures of symmetric
points are the same, and the principal directions enjoy
the same symmetry; likewise, all linear edges in symmet-
ric objects can be split into symmetric pairs. The search
for global mirror symmetries can be based on pairs of
points with similar curvatures and/or edges. Each such
pair creates a potential symmetry plane, and the majority
vote determines the best mirror symmetry. The latter
is then used to compare and combine the object and its
mirror image and thus complete the missing or damaged
parts.
That approach demonstrated competitive results in

comparison to a known traditional symmetry-based
method of point cloud completion and three deep learn-
ing method. More details on the methods for comparison
are given in the following sections.

2. Related work
As mentioned above, damages in 3D objects can be re-
paired by using missing information from their symmetri-
cally transformed images. There are two main directions
for symmetry plane detection in 2D/3D data: classical
and deep learning approaches. In this paper, we aim to
extend the classical approach as more robust for previ-
ously unseen objects and thus review the corresponding
algorithms first.

One of the approaches for symmetry-based point cloud
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completion is discussed in [1], where the authors pro-
pose a three-step algorithm consisting of symmetry plane
estimation via Principal Component Analysis (PCA), it-
erative improvement of the symmetry plane via Iterative
Closest Point (ICP), and, finally, hole detection and filling.
The paper [1] has served as motivation for the current
work, in which we tried to make symmetry plane search
more geometry-aware and preserve the robustness and
light weight of the algorithm (cf. Section 4.2 for perfor-
mance comparison).
The principal idea of our geometry-aware symmetry

detection is based on the paper [2]. In this paper, Mi-
tra et al. used the so-called signatures of the geometric
shapes represented by principal curvatures, principal di-
rections, and normal vectors to detect local symmetries
in the objects. We borrow the idea of matching local
geometries from [2] but also add edge-based symmetry
detection to the pipeline to include man-made objects of
predominantly planar shape. The edge detection method
in point clouds suggested by Ahmed et al. in [3] uses
very simple and clear geometric arguments, and we have
implemented it in our algorithm.
The paper [4] by Mitra et al. is a detailed report on

different symmetry detection and application methods
for 3D objects. They include symmetry detection meth-
ods for meshes and/or point clouds: graph-based ap-
proaches, RANSAC-based verification (e.g., sliding dock-
ers approach in [5]), multidimensional scaling (e.g., in-
trinsic structure detection in [6]), voting for a symmetry
transform (e.g., partial intrinsic reflection symmetries
extraction in [7]), etc.

Recently, deep learning algorithms have become state-
of-the-art solutions in different areas, especially for com-
puter vision tasks. Various neural networks were pro-
posed for symmetry detection, data completion, segmen-
tation, classification, and other tasks for processing 3D
data. Examples of successful solutions include but are
not limited to [8], [9], [10], [11] etc.
The authors of MSN (Morphing and Sampling Net-

work) thoroughly describe their model in [12]. Their ap-
proach to point cloud completion consists of two stages.
Firstly, they use an auto-encoder to predict the completed
object by morphing the unit squares into a collection of
surface elements. Secondly, they merge that output with
the original damaged object and feed a subset point cloud
to a residual network. After that second stage, they ob-
tain the final completed point cloud. The approach in
[13] is also based on residual networks. They use 3D
grids as an intermediate representation of point clouds
and introduce two novel gridding layers. This approach
allows using 3D convolutions on the unordered and ir-
regular point cloud data. The authors of [14] introduce
PoinTr – a transformer encoder-decoder model. They
represented point clouds as unordered groups of points
with position embeddings and added a geometry-aware

block for modelling local geometries to the transformer.
We compare the performance of our method to the per-

formance of one traditional [1] and three deep learning
[12], [13], [14] methods.

3. The completion algorithm
The pipeline of the proposed method consists of the fol-
lowing steps (discussed below in more detail):

1. 3D model representation: triangle mesh, point
cloud and principal curvatures.

2. Finding symmetry planes using the curvature-
based algorithm.

3. Finding symmetry planes using the edge-based
algorithm.

4. Mean Shift Clustering and determining the best
symmetry plane.

5. Using the best symmetry plane for 3Dmodel com-
pletion.

As a pre-processing step, we scale the meshes of 3D
objects to boost the parameter tuning and to make the
final results statistically interpretable.

3.1. Principal curvatures and principal
directions of the 3D model

The input of our method is a (scaled) triangular 3D mesh
of an object, which is used to calculate the principal curva-
tures and directions. Principal curvatures at a surface
point characterize locally extremal surface bending in
the respective principal directions in the tangent plane.
Principal curvatures and directions describe well the ap-
proximate local surface shape. For example, principal
curvatures of a small absolute value represent a rela-
tively flat surface, while greater curvatures correspond
to saddle-like or ellipsoid-like behavior. Abrupt changes
of principal curvatures indicate a possible edge.

Under mirror symmetry, the pairs of symmetric points
share the same curvatures, while their principal direc-
tions and normals are mirror symmetric. As suggested
in [2], this can be used to detect the mirror symmetry:
we cluster the points with equal (up to a threshold) prin-
cipal curvatures, single out those pairs of points that
have compatible principal directions, and then calculate
potential plane symmetry for each compatible pair. If
this plane symmetry passes the patch symmetry check
(i.e., if the plane mirrors these points into one another
along with some of their neighborhoods), we approve it
to participate in the further majority voting for the most
optimal plane.
We use the principal_curvature function from

the libigl library [15] to calculate the principal curvatures
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Figure 1: Overview of the main pipeline steps.

of the mesh. As suggested in [16], this function first fits
locally a quadratic polynomial

f(x, y) = ax2 + 2bxy + cy2 + dx+ ey (1)

to the surface and then computes the principal curva-
tures and directions as eigenvalues k1, k2 and eigenvec-
tors d1,d2 of the corresponding shape operator (a 2× 2
matrix) explicitly given in terms of the parameters a to e.
Observe that signs of the principal curvatures depend on
the surface orientation: if d1 and d2 are interchanged,
then the curvatures k1, k2 become −k2,−k1. We, there-
fore, order the principal curvatures so that k1 ≥ |k2|.
We would like to mention that the

principal_curvature function does not allow
small triangle clusters (i.e., sets of triangles connected in
a mesh). Therefore, before computing curvatures, we
extract information about triangle clusters in the mesh
and delete the clusters of size less than 10.

3.2. Curvature-based algorithm
Curvature-based algorithm uses principal curvature
information to match potentially symmetric points on
the point cloud representing the 3D object. It proceeds
in the following steps:

1. Data preparation
2. Curvature-based point clustering
3. Within-cluster symmetry plane detection and val-

idation

The result of these steps is an array-like structure of
approved planes that take part in the final best symmetry
plane voting described in Section 3.4.

3.2.1. Data preparation

Given a 3D mesh with vertices xi, i = 1, . . . , n, we
form the point cloud and then create a k-d tree for fast

neighborhood search in later stages. Also, for each ver-
tex xi, we calculate the corresponding principal curva-
tures k(i)

1 , k
(i)
2 and save the results in a separate file as

a dictionary with keys xi and principal curvatures as
values.

3.2.2. Curvature-based point clustering

Candidates for symmetry planes are collected by detect-
ing symmetric patches in the point cloud. We start with
two compatible points, determine their symmetry plane,
and then verify if it matches some neighborhoods of these
points. Since symmetric patches have symmetric local
shapes, we run through point pairs with close principal
curvatures. We cluster the vertices of the point cloud
with similar curvatures using the Mean Shift algorithm.
To speed up bandwidth estimation for the Mean Shift al-
gorithm, we fix the quantile at 0.005 and use only point
samples of size 500; we also enable the bin_seeding op-
tion for the Mean Shift algorithm to decrease its running
time.

3.2.3. Within-cluster symmetry plane detection
and validation

For each cluster, we iterate through all point pairs A
and B and first check that their principal curvatures

Figure 2: Curvature-based algorithm diagram. For demon-
stration purposes, only a couple of point pairs are shown
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(𝑘1,𝐴, 𝑘2,𝐴) and (𝑘1,𝐵 , 𝑘2,𝐵) are approximately equal,
in the sense that⃒⃒⃒

𝑘1,𝐴
𝑘1,𝐵

− 1
⃒⃒⃒
≤ 𝜀1,

⃒⃒⃒
𝑘2,𝐴
𝑘2,𝐵

− 1
⃒⃒⃒
≤ 𝜀1, (2)

with some predefined curvature closeness threshold 𝜀1; if
|𝑘1,𝐵 | ≤ 𝜀1 or |𝑘2,𝐵 | ≤ 𝜀1, then we require instead that
|𝑘1,𝐴| ≤ 𝜀1 or |𝑘2,𝐴| ≤ 𝜀1, respectively.

For each point pair𝐴,𝐵 that has passed the above test,
we draw the median perpendicular plane 𝜋 and represent
it via its Hough coordinates—the unit normal vector n
and the (signed) distance 𝑑 to the origin. The mirror
reflection 𝑆𝜋 is then given by

𝑆𝜋(x) = (𝐼3 − 2nn⊤)x+ 2𝑑n, (3)

where 𝐼3 is the 3×3 identity matrix. We fix the direction
of n so that its first non-zero entry is positive; the signed
distance 𝑑 is then the scalar product of d and the vector
−−→
𝑂𝐶 from the origin 𝑂 to the midpoint 𝐶 of 𝐴 and 𝐵.
In the next step, we perform the patch symmetry

validation of 𝑆𝜋 . We form patches 𝑃𝐴 and 𝑃𝐵 of the
points 𝐴 and 𝐵 consisting of their closest 𝑚 = 200
points of the point cloud. Then we mirror reflect 𝑃𝐴 to
get 𝑃 ′

𝐴 = 𝑆𝜋(𝑃𝐴) and check if adding it to 𝑃𝐵 does
not significantly change the geometry of the latter. We
transform 𝑃 ′

𝐴 ∪ 𝑃𝐵 into a mesh, recalculate the cur-
vatures (𝑘′

1(x), 𝑘
′
2(x)) of each point x ∈ 𝑃𝐵 in this

larger mesh, and compare them with the initial curva-
tures (𝑘1(x), 𝑘2(x)). If the mean squared error (MSE)

mse(𝜋) =
1

𝑚

∑︁
x∈𝑃𝐵

(︀
|𝑘′

1(x)−𝑘1(x)|2+|𝑘′
2(x)−𝑘2(x)|2

)︀
(4)

does not exceed some threshold 𝐾 , then the potential
symmetry plane 𝜋 is validated, gets the weight 𝑤(𝜋) :=
1/mse(𝜋), and is passed to the final majority vote.

To speed up the algorithm, we keep an array of planes
that have already been rejected, and if a new plane 𝜋 is
very close to one in the array, we skip the patch symmetry
step and update the array with 𝜋. To transform point
clouds into meshes, we used the Ball Pivoting algorithm
from the Open3D library [17].

3.3. Edge-based algorithm
Many man-made objects have edges or planar parts, for
which curvatures are not well-defined or are uninfor-
mative. However, the edge lines in mirror-symmetric
objects are also symmetric and can be used for symmetry
detection. The edge-based algorithm exploits this and
proceeds as follows:

1. Data preparation and parameters tuning
2. Edge point detection and clustering
3. Line fitting and expansion
4. Finding symmetry planes

Figure 3: Edge-Based algorithm diagram.

3.3.1. Data preparation and parameter tuning

Here we work directly with the point cloud representa-
tion of the 3D object. The point cloud is obtained from
the mesh using the Poisson Disc Sampling algorithm
implemented in the Open3D library [17].
The edge-based algorithm requires several parame-

ters; most remain default (see Section 4.3). However, the
following need to be tuned for each model:

• quantile in the edge point clustering affects the
number of clusters and thus the number of fitted
lines;

• line closeness threshold 𝜀2 sets tolerance within
which two lines are considered parallel or inter-
secting and thus influences mirror symmetry pre-
cision;

• line expansion option leads to improvement in
some models;

• edge detection threshold parameter 𝜆 can be left
at the default value for most 3D objects, but, in
some cases, a smaller value (allowing more edge
candidates) leads to better performance.

3.3.2. Edge point detection and clustering

In the first step, we iterate over points in the point cloud
and apply the detection algorithm of [3] to find potential
edge points. The algorithm is based on the observation
that if the surface is smooth around its point p, i.e., can
be represented in local coordinates via (1), then the differ-
ence between p and the centroid of 𝑘 nearest neighbors
(kNN) of p is of the second order of the 𝑥𝑦 span of these
neighbors.
Following this observation, we fix 𝑘 = 200, denote

by 𝒩 (p) the kNN of p, by c(p) the centroid of 𝒩 (p),
introduce the spacing parameter

𝑟 := min
q∈𝒩 (p)

‖p− q‖, (5)

and declare p a potential edge point if

‖p− c(p)‖ > 𝜆𝑟 (6)

with edge detection threshold parameter 𝜆. In that case, p
is added to the list of potential edge points.

4



Daria Omelkina et al. CEUR Workshop Proceedings 1–8

In the next step, we apply the Mean Shift cluster-
ing algorithm to detect clusters in the set of potential
edge points, which will be fitted to lines. We enable
bin_seeding for speed-up and use a predefined set of the
quantile parameters for bandwidth estimation.

3.3.3. Line fitting and expansion

For each cluster of potential edge points of size at least 3,
we run RANSAC with the LineModelND least square
estimation [18] to fit a line. The algorithm returns a
point on the fitted line and its unit direction vector. We
save the number of inliers for each fitted line to be used
as weights during the final symmetry plane voting. To
ensure reproducibility, we set 100 as a predefined random
state in RANSAC.

If the line expansion option is on, for each fitted line ℓ,
we calculate the largest distance 𝛿 from ℓ to its inliers
from the respective potential edge points cluster, then
find all the points of the point cloud that are within 𝛿-
neighbourhood of ℓ, join them to the inlier set, and refit
the line ℓ to this enlarged inlier set using LineModelND.
Line expansion often helps in cases where edge detec-
tion is not accurate and some of the points on edges are
missing.

3.3.4. Finding symmetry planes

At this point, we have a set of lines fitted to the edges of
the 3D object, each parametrized by one of its points and
unit direction vector d. Now we iterate through all line
pairs, for those that are parallel or intersect, construct
the corresponding symmetry planes, and skip pairs of
skew lines.
Assume that given are the lines ℓ1(𝑂1,d1) and

ℓ2(𝑂2,d2); we set q =
−−−→
𝑂1𝑂2 and perform the following

steps.

1. Coplanarity check: The lines ℓ1 and ℓ2 are consid-
ered coplanar if the mixed product of the vectors
d1, d1, and q is sufficiently small, in the sense
that

|(d1 × d2) · q| < 𝜀2‖q‖ (7)

with line closeness threshold 𝜀2. Otherwise, the
lines are considered skew and thus are skipped.

2. Parallel lines: The lines ℓ1 and ℓ2 are parallel if
their direction vectors d1 and d2 are collinear up
to some tolerance, e.g., if

|d1 · d2| > 1− 𝜀2; (8)

to make sure the lines do not coincide, we require
that also ‖q‖ > 𝜀2 and

|d1 · q| < (1− 𝜀2)‖q‖. (9)

If the lines ℓ1 and ℓ2 have been declared parallel,
then their symmetry plane 𝜋 is determined by
its point 𝐶 that is the midpoint of 𝑂1 and 𝑂2

and the unit normal vector n that is collinear to
q−(q ·d1)d1; the distance 𝑑 from the plane 𝜋 to
the origin in the Hough parametrization is then
𝑑 = (

−−→
𝑂𝑂1 +

−−→
𝑂𝑂2) · n/2.

3. Intersecting lines: Once the lines ℓ1 and ℓ2 have
been found coplanar, not coincident, and not par-
allel, they are considered intersecting. Then there
are two symmetry planes through the intersec-
tion point 𝐷 and with the unit normal vectors
n collinear to d1 + d2 or d1 − d2, respectively.
We identify 𝐷 as the midpoint of the interval
𝐷1𝐷2 of the shortest length when 𝐷1 ∈ ℓ1
and 𝐷2 ∈ ℓ2. We find 𝐷1 = 𝑂1 + 𝑠1d1 and
𝐷2 = 𝑂2+𝑠2d2 by noting that the vector

−−−→
𝐷1𝐷2

must be orthogonal to d1 and d2, so that

(q+ 𝑠2d2 − 𝑠1d1) · d1 = 0, (10)

(q+ 𝑠2d2 − 𝑠1d1) · d2 = 0. (11)

Solving this linear system for 𝑠1 and 𝑠2, we find
𝐷1,𝐷2, their midpoint𝐷, and thus the two sym-
metry planes.

Symmetry planes 𝜋 constructed this way get their
weights 𝑤(𝜋) equal to the smaller inlier numbers for the
lines ℓ1 and ℓ2. After all symmetry planes have been
found, we start the final symmetry plane voting.

3.4. Voting for the best symmetry plane
In the previous two steps, we constructed lists of poten-
tial symmetry planes for the 3D object using curvature-
based and edge-based approaches. The best symmetry
plane can now be chosen in three different ways: among
the curvature-based planes only, among the edge-based
planes only, or the best in the combined list. In the latter
case, some preprocessing is needed to eliminate the effect
of different scales of plane weights generated by the two
methods.

The first option is to take 𝑛 best symmetry planes from
each list, where 𝑛 is the smaller of two sizes, and the
planes are ordered by their weights, from the largest
to the smallest one. The second option is to rescale the
weights for the curvature-based planes so that the total
weights in both sets become equal. Experiments show
that for some 3D objects, the first option is better, while
for others—the second one, so we try both during the
grid search of parameters.

Given the list of potential symmetry planes, we apply
the Mean Shift clustering algorithm to determine the
largest cluster. As a pre-processing step, we rescale the
Hough coordinate 𝑑 for the planes to

�̃� := 𝑑/(max |𝑑|) (12)

5
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so that it should lie within the interval [−1, 1]. The rea-
son is that the normal vectors of the planes are of the unit
norm while their distances 𝑑 to the origin are typically
on the scale from −104 to 104 and thus would dominate
during the voting. As before, we use the Mean Shift clus-
tering with the enabled bin_seeding option and estimate
the bandwidth using the predefined quantile parameter
set.
Now we choose the biggest cluster ℒ and take its

weighted average as the best symmetry plane:

n* = 𝑐

∑︀
𝜋∈ℒ 𝑤(𝜋)n(𝜋)∑︀

𝜋∈ℒ 𝑤(𝜋)
, �̃�

*
=

∑︀
𝜋∈ℒ 𝑤(𝜋)𝑑(𝜋)∑︀

𝜋∈ℒ 𝑤(𝜋)
;

(13)
we then rescale �̃�

*
to its actual value 𝑑* = �̃�

* ·(max |𝑑|),
cf. (12).

3.5. Model completion
After the best hypothetical mirror symmetry 𝑆𝜋 for the
point cloud 𝒞 has been chosen, we use it to fill in the miss-
ing or damaged parts of 𝒞 following the steps described
in [1]. We form the mirrored object 𝒞′ := 𝑆𝜋(𝒞), and
for each point p in 𝒞′ decide if it should be added to 𝒞.
We do that if and only if there are no points of 𝒞 among
the 𝑘 = 6 nearest neighbors of p in the combined point
cloud 𝒞∪𝒞′. To speed up the kNN search, a k-d tree from
this combined point cloud is constructed beforehand.

If the ground truth model 𝒞0 is available, we can decide
on the quality of completion using the Chamfer distance
between 𝒞0 and the completed 𝒞; otherwise, some other
measures are used (see Section 4.2).

4. Algorithm evaluation results

4.1. Dataset
The suggested completion algorithm described in Sec-
tion 3 uses both mesh representation of objects as well
as point clouds created from these meshes. We chose
the Princeton ModelNet40 3D object dataset [19] for al-
gorithm evaluation. It offers objects in 40 different cat-
egories. We selected 5 objects from each category that
visually seemed symmetric. In this 200-object dataset,
we transformed every mesh into a point cloud (of 50,000
points each) so that each original undamaged object is
represented both by a mesh and a point cloud.
To make 3D objects suitable for the completion task,

we inflicted damage to each of the meshes. From each
object, a random number (between 1 and 10) of randomly
placed regions of random size totaling approximately
15% of the original size was removed; in addition, for the
curvature computing algorithm to work, we removed all
small triangle clusters. Before damaging, each mesh was
scaled to have approximately a unit surface area; this

Figure 4: Comparing different approaches to object comple-
tion: [13], [14], [12], [1], ours.

makes the resulting metrics better comparable. In some
cases, we performed subdivision of triangles of original
meshes to create more realistic damages.

4.2. Results and analysis
We evaluated the developed algorithm on the generated
dataset. For each object, we used a grid search with a time
limit to find optimal parameters for solo and combined
versions of the algorithm (see Section 4.3). With those
optimal parameters, we ran the algorithm to produce
the symmetry planes and the corresponding completion
metrics and saved the best results for solo and combined
algorithms. We used following metrics for result evalua-
tion:

1. The Chamfer distance between the original un-
damaged object and the completed object. This
metric tells us how well the damaged object was
completed by our algorithm.

2. Improvement rate metric shows how much better
is completion 𝒞* relative to leaving the object
𝒞 uncompleted. When we get 0 it means that
there was no completion, positive values indicate
successful completion, and negative shows that
during completion, points were added in places
where they originally did not belong, and the
object was deformed to some extent. With 𝐶𝐷
standing for the Chamfer distance and 𝒞0 the
original (undamaged) object, this value is

100 * (1− 𝐶𝐷(𝒞, 𝒞0)/𝐶𝐷(𝒞*, 𝒞0)). (14)

Statistics, such as mean, median, minimum, and maxi-
mum values of the improvement rate, are presented in
Table 1. It should be noted that for testing, we used
models pretrained on ShapeNet, which were available
to us; thus, it can be expected that methods that require
training, showed smaller improvement metrics than tra-
ditional methods, meant for unseen data. In general, our
algorithm performed similarly to the traditional method
from [1].

6
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Completion Method
Statistics of Improvement rate (in %)

(without skipping) (skipping results ≤ 0%)
Mean Median Min Max Mean Median Min Max

MSN [12] -224.2 -187.5 -1031.8 22.9 6.5 3.8 1.6 13.7
PoinTr [14] -9.2 -6.4 -103.7 36.9 10.8 8.6 0.1 36.9
GRNet [13] -10498 -4690 -118744 -8.1 - - - -

Symmetry-Based [1] -2751.4 0.5 -132980 85.5 27.2 23.8 0.1 85.5

Our
Edge-based -202.1 -29.4 -1389 71.8 22.5 20.6 0.1 71.8

Curvature-based -386.8 5.3 -24147 85.6 27.1 24.8 0.2 85.6
Combined -177.0 -9.4 -13893 82.1 26.4 25.3 0.1 82.1

Table 1
Comparison of methods: statistical results with the improvement rate metric.

4.3. Parameter tuning
There are several parameters that control different as-
pects of the method. Some can only slightly alter preci-
sion, while others significantly affect the performance of
the algorithm. To fine-tune the most important parame-
ters for each object, we performed a grid search over a
set of predefined choices established in numerous exper-
iments on different meshes from several datasets; here is
the resulting list:

• Curvature closeness threshold 𝜀1 controls the
strictness of the comparison of curvatures of two
points. The smaller it is (e.g., 0.001), the fewer
points will be used to create symmetry planes, but
the accuracy can be better. Usually, the real-world
data contain noise and damages, so it is better to
use a less strict threshold (e.g., 0.1) and mostly
rely on a symmetry plane check on a neigh-
boring patch of the points. Predefined range:
10−8, 10−3, 10−3, 0.01, 0.05, 0.07, 0.1, 0.8, 1.

• Surface patch closeness threshold defines how
strict the patch symmetry verification is. We
mirror reflect a neighbourhood (the kNN with
𝑘 = 200) of the point 𝐴, superimpose it with
a neighbourhood of its symmetric candidate 𝐵,
and detect a change in the geometric shape. The
threshold bounds from above the MSE of curva-
tures in the neighbourhood of 𝐵 and thus con-
trols the number of planes that pass. Predefined
range: 0.001, 0.01, 0.05, 0.08, 0.1, 0.5, 0.8, 1,
1.2, 1.5, 1.8, 2, 2.5, 3.

• Number of neighbours in edge detection (200 by
default) gives the size of a neighbourhood of a
point p to determine if it is an edge point or not.

• Edge detection threshold parameter 𝜆 (default 3
or 0.1 ) determines which points are regarded as
edge points. Smaller 𝜆 softens the condition and
increases the number of edge points.

• Edge points clustering quantile for bandwidth esti-
mation is used during Mean Shift clustering for

edge detection. Small quantiles create more edge
clusters but slower computation; too big quan-
tiles lead to fewer clusters andmake the algorithm
less accurate. Predefined range: 0.001, 0.00525,
0.007, 0.01, 0.0125, 0.025, 0.03, 0.035, 0.0375,
0.05, 0.07, 0.075, 0.1, 0.125, 0.15, 0.2.

• Line closeness threshold 𝜀2 decides when points
are considered coplanar and direction vectors
collinear (absolute tolerance). Predefined range:
0.0001, 0.001, 0.003, 0.007, 0.01, 0.025, 0.0375,
0.05, 0.075, 0.1, 0.525, 0.7, 1, 1.5, 2.

• In RANSAC and linear model for line fitting, we
used a default value 10 for error and limitedmax-
imum number of iterations by 1000.

• The boolean Enabling/disabling line expansion de-
termines if the algorithm will perform an addi-
tional refitting step for each line or not.

• Symmetry plane clustering quantile for bandwidth
estimation, used during Mean Shift clustering for
best symmetry plane detection; should not be too
big as otherwise plane averaging over the largest
cluster will suffer from noise. Predefined range:
0.0005, 0.001, 0.005, 0.008, 0.01, 0.015, 0.02,
0.05, 0.08, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 0.7, 0.8,
1, 1.1, 1.5, 2, 2.5.

Predefined sets of parameters, which we used for the
grid search, were established through numerous experi-
ments, including manual fine-tuning, modified bisection
search, incrementing, etc. The grid search was then per-
formed on each object from the dataset.

5. Conclusions
In this paper, we proposed, described, and evaluated a
four-stage pipeline (curvature matching, edge matching,
symmetry plane voting, object completion) of solving the
completion task for previously unseen 3D objects pos-
sessing global mirror symmetry. This method uses the
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local geometries of an object represented by principal
curvatures and/or edges. We presented the results by solo
algorithms (based on curvatures matching or on edges
matching) and a combined algorithm (that performs the
voting on a combined set of weighted planes) on the part
of the ModelNet40 dataset with random occlusions. The
approach demonstrates competitive results in compari-
son with the best deep learning and a symmetry-based
method.

Limitations of the proposed method are that

(a) the object must possess a mirror symmetry;
(b) if missing parts are mirror symmetric or have a

large intersection with their mirrored image, the
object cannot be reconstructed by the algorithm;

(c) when the symmetry plane is found rather poorly
(e.g., due to incomplete parameter tuning), then
the completion is performed poorly as well;

(d) there is a significant number of parameters, some
of which must be fine-tuned for each separate
object, making our method less robust.
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