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Abstract
Object detection and semantic segmentation with the 3D LiDAR point cloud data require expensive annotation.
We propose a data augmentation method that takes advantage of already annotated data multiple times. We
propose an augmentation framework that reuses real data, automatically finds suitable placements in the
scene to be augmented, and handles occlusions explicitly. Due to the usage of the real data, the scan points of
newly inserted objects in augmentation sustain the physical characteristics of the LiDAR, such as intensity
and raydrop. The pipeline proves competitive in training top-performing models for 3D object detection and
semantic segmentation. The new augmentation provides a significant performance gain in rare and essential
classes, notably 6.65% average precision gain for “Hard” pedestrian class in KITTI object detection or 2.14
mean IoU gain in the SemanticKITTI segmentation challenge over the state of the art.
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1. Introduction
Accurate detection and scene segmentation are
integral to any autonomous robotic pipeline.
Perception and understanding are possible thanks to
various sensors, such as RGB cameras, radars, and
LiDARs. These sensors produce structural data
and must be interpreted for the proper function
of critical safety systems. We focus on LiDARs.
Recently, the most promising way to process LiDAR
data is to train deep neural networks [1, 2, 3] with
full supervision, which requires a large amount of
annotated data.

The manual annotation process is very time
and resource-consuming. For example, to perform
semantic segmentation on LiDAR point clouds, one
needs to accurately label all the points in the scene
as a specific object class. As a result, there is
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not enough annotated data to train large neural
networks. Data augmentation is a way to effectively
decrease the need for more annotated data by
enriching the training set with computed variations
of the data. This type of augmentation is usually
achieved with geometrical transformations, such
as translation, rotation, and rescale applied to the
already labeled samples [4, 5, 6, 7].

In general, 3D point cloud augmentations [4,
8] have been much less researched than image
augmentation techniques [5, 7, 9, 10]. For example,
the aforementioned 3D point cloud augmentations
only enrich the geometrical features of the training
samples but do not create new scenarios with the
previously unseen layout of objects. The lack of
modeling a realistic class population of the scenes is
still a bottleneck of augmentation techniques. This
problem can be addressed by augmentation that
uses simulated virtual data and scene configurations.
However, the effect of such data on training is
low due to nonrealistic physical and visual features
compared to real data.

We focus on improving the learning of 3D
perception networks by enhancing LiDAR data
in autonomous driving scenarios with data
augmentation. Depth information allows for per-
object manipulation when augmenting the point
clouds [8]. We take advantage of the spatial position
of annotated objects and place them in different
scenes while handling occlusions and class-specific
inhabitancy, see Figure 1.
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Figure 1: We show examples of our augmentation method
in 3D object detection and semantic segmentation. First,
we insert objects one by one and then simulate their
visibility to model realistic occlusions. Note the details of
the scene (circled) and the detection of occluded orange
points. After removal, we see the final augmented version
of the point cloud in the last row

Our method segments the road and sidewalks for
class-specific insertion. Next, the method exploits
the bounding boxes of objects to avoid collisions.
Compared to state-of-the-art LiDAR-Aug [8], which
is suitable only for object detection, our bounding
box generation allows augmenting the semantic
segmentation datasets and simulates realistic
occlusions throughout the spherical projection. The
inserted augmentations come from the same dataset
and are placed at the same distance, ensuring
natural reflection values and point distribution,
including ray dropouts. We evaluate the proposed
method on tasks of 3D object detection and
semantic segmentation. Our contribution is twofold:

• We present a new augmentation framework
suitable for both 3D object detection and
semantic segmentation.

• We propose a novel way to model occlusions
and physically consistent insertion of objects
for augmentation.

We demonstrate the usefulness of our method
on autonomous driving benchmarks and show

improvement, especially in rarely represented
classes. The codes for our method are publicly
available1.

2. Related Work
2.1. Data Augmentation
One of the first approaches to augmenting LiDAR
data was GT-Aug, which was published within the
3D detection model SECOND [11]. GT-Aug adds
samples from the ground-truth database, which
is precomputed before the training phase. The
samples are randomly selected and inserted into the
scene as is. If a collision occurs, the added object
is simply removed. The visibility and occlusion
handling of added scan points or the inserting
strategy is not taken into account. Global data
augmentations (Gl-Aug) [4] such as rotation, flip,
and scale are commonly used in 3D point-cloud
neural networks. These augmentations provide a
different geometrical perspective, which supports
the neural network with more diversity of training
samples. An attempt to automate the augmentation
strategy was proposed in [12], which narrows the
search space based on previous training iterations.
The state-of-the-art LiDAR-Aug [8] enriches the
training data to improve the performance of the 3D
detectors. Additional objects are rendered on the
basis of CAD models. Simulations of intensity and
raydrops are not discussed in the article. LiDAR-
Aug [8] also simulates occlusion between additional
objects and the rest of the scene, unlike GT-
Aug [11]. Recent method [13], similar to our one,
also focuses on inserting objects into point clouds.
The main difference between the methods is in the
real visibility simulation. Approach [13] upsamples
the number of points in the sample, which are then
projected into a range image, where visible points
are selected and then sparsed. From our point
of view, this approach does not consider possible
raydrop on objects located between the ego and the
inserted sample. It can cause parts of the inserted
sample to be falsely visible because some LiDAR
beams could drop out from the obstacle and create
holes in the range image.

2.2. Data Simulators
The recent progress in computer vision brought large
neural networks with a large number of learnable
parameters, often unable to reach a saturation
point with the size of current training sets. These

1https://github.com/ctu-vras/pcl-augmentation
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models require training on a very large number
of annotated examples. Commonly used solutions
include synthetically generated data [14] or using
game simulators such as Grand Theft Auto V,
which was used to generate images for the semantic
segmentation of ground truth [15]. Some simulators
built on Unreal Engine, for example, Carla [16] are
also used in autonomous driving research. However,
the gap between real and synthetic data remains a
great challenge [14]. One of the approaches to deal
with the difference and portability to the real world
is [17, 18], which can produce more realistic LiDAR
data from simulation by learning GAN models.

2.3. 3D Perception Tasks
Learning in the LiDAR point cloud domain poses
challenges, such as low point density in regions at
the far end of the FOV, the unordered structure of
the data, and sparsity due to the sensor resolution.
Three common approaches to aggregation and
learning the LiDAR features are voxel-based models
[19, 11], re-projection of data into 2D structure
[20, 21], and point cloud-based models [2, 3]. To
show the ability to generalize, we evaluate our
proposed method based on different model feature
extractors and on two tasks of 3D object detection
and semantic segmentation.

One of the key aspects of our approach is placing
the object in a realistic position by estimating
the road for vehicle and cyclist insertions and the
sidewalk for pedestrian insertion. Recent research
has shown, that a fast, fully convolutional neural
network can predict the road from the bird’s eye
view projection of the scene [22]. However, this
method does not handle occlusions, i.e. it does
not predict the road behind obstacles, e.g. vehicles.
Non-learnable methods proposed in [23, 24] can
separate ground from non-ground points, which
can be further improved by utilizing the Jump-
Convolution-Process [25]. All these methods (and
other established types like RANSAC, PCA, and
height thresholding) filter out all ground points
regardless of class road or sidewalk. In our setup,
we need to distinguish them, so we rely on the
segmentation network learned from the dataset.

3. Method
Our augmentation method places additional objects
into an already captured point cloud. The objects
must be placed in adequate locations; therefore,
the road and pedestrian area must be estimated
(in Subsection 3.1). The method avoids collisions

between additional objects and objects that are in
the original point cloud. We analyze overlapping
bounding boxes. Therefore, we need to create
bounding boxes for semantic datasets that come
without object boxes (in Subsection 3.2). More
details on placing additional objects are given in
Subsection 3.3. Lastly, the method handles realistic
occlusions between objects (in Subsection 3.4). The
overview of the proposed method is visualized in
Figure 2.

3.1. Road Estimation
To place the new objects, we need to know
where they realistically appear in the scene. This
information may be given by HD maps [26, 27] if
included in datasets; however, KITTI dataset [28]
does not provide them. We estimate valid roads
and sidewalk areas for both tasks according to the
pipeline described in Figure 3. First, we pseudo-
label 3D points by Cylinder3D [2], a state-of-the-art
semantic segmentation neural network, which was
pre-trained on the SemanticKITTI dataset [29]. The
resulting predictions are then projected onto the 2D
LiDAR (𝑥, 𝑦) ground plane, discretized with a cell
size resolution of 1 × 1 meter. Then we divide the
space in the scene for the road (cyclist placement)
and the sidewalk (pedestrian placement) as follows:

Road: To obtain a continuous road area, a
morphological closing is used on the projection. We
use a disk seed with a dimension of three.

Pedestrian area: The estimate is based on the
assumption that pedestrians are supposed to walk
along the road border. Cells closer than two pixels
from the border of the road estimate are processed
and subsequently dilated. We use a disk seed with
a dimension of two.

SemanticKITTI contains poses of each point
cloud in sequence. Therefore, road and sidewalk
labels can be transformed into a global coordinate
system and accumulated in space. The accumulated
sequence of road and sidewalk labels leads to a
more accurate estimation of the placement areas
in the 2D LiDAR (𝑥, 𝑦) ground plane projection.
Accumulating multiple scans in one frame densifies
the LiDAR point cloud and naturally reduces the
need for morphological operations.

3.2. Creating of Bounding Boxes
For a collision-free placement of objects, the
bounding boxes are required. The bounding box
is parameterized by the center coordinates (𝑥, 𝑦, 𝑧),
size dimensions (𝑙, 𝑤, ℎ), and heading angle (yaw).
For object detection in the KITTI dataset, the

3
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Figure 2: Overview of the proposed pipeline. We process the data in order to estimate all possible placements, all
bounding boxes in the scene, and augmenting objects from different frames. The possible placement of augmenting
objects is a conjunction of the same depth as the cut-out object (yellow circle) and a suitable area from the map of
possible insertions (green). Occlusion handling is performed in spherical projection. The result is re-projected to the
scene to the 3D augmented point cloud.

bounding boxes are already provided as ground-
truth labels. However, the SemanticKITTI dataset
contains only the semantic label of the class together
with the instance of the object (each object in
one frame has a different instance). We mitigate
the absence of the bounding boxes by separating
individual objects from the scene based on an
instance and estimate bounding boxes, see Figure 4.
In case of the absence of instance labels, we would
cluster the semantic segmentation points to get the
instances via density-based clustering. In the case
of close-by segmentation, more than one instance
can be inserted without damaging the consistency
of our approach.

Modeling the bounding boxes is divided into three
steps:

Wrapping: Object-labeled 3D Lidar points are
projected to the ground plane. The 2D projected
points are wrapped in a convex hull.

Smallest area: Assume the convex hull consists of
𝑛 points. We construct 𝑛 − 1 rectangles so that two
neighboring points on the convex hull compose one
side of the rectangle. The remaining sides of the
rectangle are added to achieve the smallest area.

Refinement: Too few points may represent some
objects. They are scanned at a great distance or are
significantly occluded by closer objects. Bounding
boxes may also be distorted by occlusions. We
analyze the heights, widths, and lengths of the
bounding boxes in the KITTI dataset for classes
“Car”, “Pedestrian”, and “Cyclists”, which we use
in Semantic KITTI. We obtain the distributions
for each class and parameter. For each random
variable, we calculate the lowest decile. The lowest
decile values are the minimum threshold values
of the bounding box. The maximal values of
bounding boxes are set as the maximal values for
the corresponding dimension that occurred in the

KITTI data set.
For bicycle, motorcycle, motorcyclist, and truck

objects in the SemanticKITTI dataset, we do not
have corresponding statistics for bounding box
dimensions since they are not present in KITTI.
Therefore, the limits were hand-crafted from the
first 100 generated samples from SemanticKitti. We
also used the first decile, but with a 10% margin of
safety.

3.3. Placing of Objects
Placing one or multiple objects requires knowing
the bounding box dimensions and yaw angles. Only
points within the bounding boxes are used to
augment different frames of the dataset. For the
semantic segmentation datasets (task), these points
are further filtered to have an appropriate label. In
the case of the object detection datasets, points that
are pseudo-labeled as the road or sidewalk classes
are removed to ensure that the cutout point cloud
contains only the object points.

To maintain the most realistic augmentation, our
method places the object at the same distance with
the same observation angle. It can be achieved by
rotating its point cloud by the vertical z-axis of
the frame origin. This way, realistic object point
density and LiDAR intensity are maintained due
to the preserved range between the sensor and the
object. It also keeps the same observation angle.
Then, we consider the collision-free location of the
insertion:

Location: Objects must be fully located on
the appropriate surface. We place vehicles and
cyclists on the streets and pedestrians on sidewalks.
Thought pedestrians can move on the streets as well,
we do not observe this occurance in the evaluation
datasets and therefore do not consider it during
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Figure 3: Rich map generating. Road maps are created
from points’ positions and labels. Semantic datasets
already contain labels for each road point, in the case of
the detection dataset, labels are pseudo-labeled by neural
network [2]. We then project segmented points into a 2D
bird’s eye view and acquire road and sidewalk maps by
morphological operations on the 2D projection, namely
closing for the road and dilation of road boundary for the
sidewalk–pedestrian area.

insertion. For each appropriate position, the z
coordinate of the object is adjusted to ensure that
the object touches the surface according to the road
prediction level.

Collision avoidance: At first, the sole bounding

Figure 4: Creation of the bounding box in Bird’s Eye View
around the car. First, a convex hull is constructed around
points; then we fit a bounding box to estimate position
x, y, dimensions length, width, height, and orientation
yaw. The z is estimated as if the object touches the road
without intersecting it.

box belonging to the object is cut from the scene
and placed in the augmented frame on the road
level. For the insertion of vehicles and cyclists, the
bounding box must not contain any point other than
road; same for pedestrians and the pedestrian area.
Then, we check whether the inserted bounding box
overlaps with each of the original boxes from the
augmented scene and skip insertion when it does.

3.4. Occlusion Handling
By inserting objects into the scene, we model
consistent occlusions in the point cloud from newly
added points. We consider the occlusion of a newly
inserted object by original points closer to the
LiDAR sensor, as well as the occlusions caused
by the inserted object itself.

Data projection: The occlusion handling uses
a spherical projection, similarly to [20], to solve
realistic visibility after the additional object is
placed. The spherical projection stores the minimal
distance between the sensor and the points projected
to the corresponding pixel. To correct the holes in
the object, the projection is morphologically closed
by a rectangular seed of dimension 5×3 (5 rows and
three columns). The pixels closed by the seed are
assigned the depth computed from the neighboring
pixels as an average of the depths in that seed area.
Morphological closing is computed separately for
the scene and object.

5
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Algorithm 1 Occlusion handling
Input: Scene point-cloud 𝒫, Scene projection, Object point-cloud,
Object projection
Output: success, Scene point-cloud
1: point_counter ← 0
2: success ← False
3: for each pixel in object’s spherical projection do
4: if distance of object is smaller then in scene then
5: Remove scene points in pixel (they are occluded)
6: Add points projected to object s. p. pixel to scene
7: point_counter ← point_counter + nbr of added

points
8: end if
9: end for

10: if point_counter > minimal point for class then
11: success ← True
12: end if
13: return success, Scene

Removing occluded points: The algorithm goes
through every pixel in the spherical projection.
Every pixel contains information about the distance
of the point. All scene points more distant than
the inserted point are removed since they would be
naturally occluded by the added object. as they
are occluded by the placed object. Consequently,
all object points, which were projected in the
same pixel, are added to the scene point cloud.
The algorithm also returns boolean values, which
represent if the number of added sample points
exceeds the threshold for a given class. We used
this to prevent super hard cases, with only, e.g.,
three visible points from the object. A pseudocode
of the algorithm is shown in Algorithm 1.

4. Experiments
In this section, we show the experimental evaluation
of our method on KITTI and SemanticKITTI
datasets with comparison to other types of data
augmentation such as Global Augmentation [4],
Ground Truth insertion[11] and LiDAR-Aug [8]. We
experiment with two neural networks for each task.

4.1. Datasets and Perception Tasks
3D object detection: We use the KITTI 3D object
detection benchmark. The data set consists of 7,481
training scenes and 7,518 testing scenes with three
object classes: “car”, “pedestrian”, and “cyclist”.

The test labels are not accessible, and access to
the test server is limited. Therefore, we followed
the methodology proposed by [8] and divided the
training data set into training and validation parts,
where the training set contains 3,712 and the
validation 3,769 LiDAR samples [30]. The split of
the dataset into training and validation was made
consistent with the standard KITTI format, i.e.,
with regard to avoiding having similar frames and

scenes in both sets. The evaluation was carried out
on a validation set, where the labels are available,
as was done in [8, 28]. For object detection, we
consider all possible classes, i.e., cars, pedestrians,
and cyclists.

A metric for conducting an evaluation is the
standard average precision (AP) of 11 uniformly
sampled recall values. We use the IoU threshold
50%; true positive predictions are considered
bounding boxes with ground-truth overlaps greater
than 50% for pedestrians and cyclists. For
cars, the 70% threshold was used. We denote
AP for “Pedestrian” as APPed50(%), APCyc50(%)
for “Cyclist” and APCar70(%) for “Cars”. The
difficulties of the predictions are divided based
on the sizes of the bounding box, occlusion, and
truncation into “Easy”, “Moderate”, and “Hard”,
as required by the [28] benchmark.

Semantic segmentation: We use the
SemanticKITTI [29] benchmark. The dataset is an
extension of the original KITTI [28] benchmark
with dense point-wise annotations provided for each
360∘ field-of-view frame. The dataset generally
offers 23,201 3D scans for training and 20,351 for
testing. The training data set was divided into
training and validation parts with 19 annotated
classes.

Standard IoU = TP/(TP + FP + FN), the
intersection over union, was used for comparison.
Performance is evaluated for each class, as well as
the average (mIoU) for all classes.

4.2. 3D Perception Models
We tested the augmented data on two 3D object
detection models, each based on a different type
of feature extractor backbone. PV-RCNN [31] is
a 3D object detection model that combines a 3D
voxel convolutional neural network with a pointnet-
based set abstraction approach [32]. The second
is PointPillar [1], which encodes the point cloud in
vertical pillars. The pillars are later transformed
into 3D pseudo-image features.

For segmentation task, we use Cylinder3D [2] and
SPVNAS [3] multiclass detector. Cylinder3D [2]
is the top-performing architecture on the Semantic
KITTI dataset with public codes. SPVNAS [3]
achieves significant computation reduction due to
the sparse Point-Voxel convolution and holds the
fourth place on the competitive SemanticKITTI
leaderboard right behind Cylinder3D [2].

Each neural network was set to the default
parameters proposed by the authors of the
architectures, with its performance reported on
KITTI 3D benchmark and SemanticKITTI. We
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Table 1
Semantic segmentation on SemanticKITTI. Comparison of our method with the global augmentation baseline. Both
methods are evaluated using SPVNAS [3] and Cylinder3D [2] architectures. The reported results are averaged over
five runs for SPVNAS, and only one run was performed for Cylinder3D due to the large training time. The augmented
categories are denoted by * for SPVNAS and by ** for Cylinder3D. We observe a performance gain in each of them
except for one: trucks. Improvement is especially notable in the motorcyclist class, which contains only a few training
examples in the dataset with only global augmentations.
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trained each neural network three times for object
detection and five times for semantic segmentation.
Average performance was considered as the final
score of the method.

4.3. Augmentations
All augmentations were trained with the same
hyperparameters to ensure a fair comparison
between methods. The approach of GT-Aug was
performed with information of the precomputed
planes, which is an approximation of the ground
from the KITTI dataset. This step should ensure
that the inserted objects lie on the ground. For our
proposed augmentation method, we add objects
with a zero-occlusion KITTI label only (Easy).
Some cases are naturally transformed into other
difficulties (Moderate and Hard) by newly created
occlusions.

For global augmentation of the scenes, we
used uniformly distributed scaling of the scene in
the range [0.95, 1.05], rotation around the z-axis
(vertical axis) in the range [−45∘, 45∘] and random
flipping over the x-axis from the point cloud as in
[4, 8].

The maximum number of added objects in
semantic segmentation was set to 10 per scene,
and the object class is selected randomly (uniform
distribution) each time of the insertion.

4.4. Evaluation
We compare our method (Real3D-Aug) with copy-
and-paste augmentation (GT-Aug) [11] and with
state-of-the-art LiDAR-Aug augmentation [8]. In
the Real3D-Aug multiclass (mc), we added 4.7
pedestrians and 6.7 cyclists on average per scene.

All methods were trained with global augmentations
[4] if not stated otherwise.

In Table 2 we show the results of LiDAR-Aug
with PV-RCNN. The numbers are taken from
the original paper due to the unpublished codes
and the lack of technical details about their CAD
model and ray-drop characteristic. In the original
article, LiDAR-Aug was trained under unknown
hyperparameters and was not applied to the cyclist
category. Our method surpasses the LiDAR-Aug in
the pedestrian class by a large margin despite all the
difficulties. Both GT-Aug and Real3D-Aug achieve
significant performance improvement. Real3D-Aug
achieves a significant improvement with PV-RCNN
in the pedestrian class, where we achieve 15.4%,
10.96%, and 7.87% improvement in Easy, Moderate,
and Hard difficulty, and GT-Aug achieves 7.52%,
3.74%, and 0.48% improvement compared to the
model without (w/o) any object augmentation. Our
method also slightly improves the performance on
the car, but Lidar-Aug and GT-Aug overcome the
method.

Table 2
Object detection results with PV-RCNN. Our method
achieves the best results in the categories “pedestrian”
and “easy cyclists”. (mc) abbreviates multiclass

APCar 70(%) APPed 50(%) APCyc 50(%)
Method Easy Mod Hard Easy Mod Hard Easy Mod Hard

w/o Object-Aug 87.77 78.12 76.88 65.92 59.14 54.51 76.80 59.36 56.61
GT-Aug [11] 89.17 81.92 78.78 65.69 59.33 54.78 88.30 72.55 67.79
LiDAR-Aug [8] 90.18 84.23 78.95 65.05 58.90 55.52 N/A N/A N/A
Real3D-Aug (mc) 88.70 78.63 78.09 73.57 66.55 62.17 92.69 65.06 63.43

In Table 1 we show the results for SPVNAS [3]
and Cylinder3D [2] architecture. In the semantic
segmentation task, we increased the mean IoU for
both networks.

We are not comparing with GT-Aug [11] and

7
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LiDAR-Aug [8] in the semantic segmentation
task. The methods above were not designed
for segmentation, whereas our method allows for
augmenting both tasks.

In the semantic segmentation task for SPVNAS,
we achieve an increase of 2.14 in mean IoU compared
to the common augmentation technique [4], see
Table 1. We observe an increased IoU of all classes
added, except for the truck category. With the
Cylinder3D network, the increment can be seen
in the IoU of all added classes. Our method also
increases the performance on not augmented classes
since we add more negative examples to other
similar classes.

4.5. Ablation Study of Object Detection
In Tables 3 and 4 we show the influence of adding
a single object to the scene in comparison to
GT-Aug. Each configuration is named after the
added class, and the lower index indicates the
average number of objects added per scene. We
can see that, in the case of PointPillar, adding
only one class decreases performance in the other
classes. We suspect that it is caused by similarities
between classes. For example, pedestrians and
bicycles are simultaneously present in the class
“cyclist”. Therefore, it is beneficial to add both
classes simultaneously. In the case of PV-RCNN,
the addition of one class improves the performance
of both.

Table 3
Real3D-Aug Object detection results with PointPillar
architecture based on number of inserted classes.

Augmentation APPed 50(%) APCyc 50(%)
Easy Mod Hard Easy Mod Hard

GT-Aug 54.52 49.04 45.49 77.64 61.30 58.15
Real3D-Aug (Ped1) 55.72 51.30 47.47 46.33 33.84 32.47
Real3D-Aug (Cyc1) 46.87 44.17 41.77 72.65 52.71 49.04
Real3D-Aug (mc) 55.50 52.00 49.03 76.82 52.74 50.18

Table 4
Real3D-Aug object detection results with PV-RCNN
based on the number of inserted classes.

Augmentation APPed 50(%) APCyc 50(%)
Easy Mod Hard Easy Mod Hard

GT-Aug 65.69 59.33 54.78 88.30 72.55 67.79
Real3D-Aug (Ped1) 70.96 66.63 61.14 78.97 63.47 57.31
Real3D-Aug (Cyc1) 65.63 59.14 57.47 82.79 63.69 62.39
Real3D-Aug (mc) 73.57 66.55 62.17 92.69 65.06 63.43

5. Conclusion
We propose an object-centered point cloud

augmentation technique for 3D detection and
semantic segmentation tasks. Our method improves
performance on important and rarely occurring
classes, e.g. pedestrian, cyclist, motorcyclist,
and others. Our method is self-contained and
requires only 3D data. All augmentations can be
preprocessed, so it does not increase the training
time. One way to further improve the method
is to incorporate a more informative selection of
placements based on the uncertainty of the detection
model.
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