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Abstract
This work addresses the problem of lossy compression of volumetric images consisting of individual slices such as those
produced by CT scans and MRI machines in medical imaging. We propose an extension of a single-image lossy compression
method with an autoregressive context module to a sequential encoding of the volumetric slices. In particular, we remove
the intra-slice autoregressive relation and instead condition the entropy model of the latent on the previous slice in the
sequence. This modification alleviates the typical disadvantages of autoregressive contexts and leads to a significant increase
in performance compared to encoding each slice independently. We test the proposed method on a dataset of diverse CT scan
images in a setting with an emphasis on high-fidelity reconstruction required in medical imaging and show that it compares
favorably against several established state-of-the-art codecs in both performance and runtime.
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1. Introduction
Medical imaging is a set of techniques and processes that
produce images of the interior of the body for the pur-
pose of clinical analysis, medical intervention, or visual
representation of the function of the internal organs. Ex-
amples of common types of imaging systems are x-rays,
computed tomography (CT) scans, magnetic resonance
imaging (MRI), or ultrasound (US). Medical imaging has
become a staple tool not only for medical diagnosis and
treatment but also a crucial component of research, as it
allows researchers and physicians to establish a knowl-
edge base of normal anatomy and physiology to make it
possible to identify abnormalities and study the effects of
medical intervention. For these reasons, the amount of
image data produced in healthcare and medical research
is huge and increasing [1], as are the requirements for
efficient transmission and especially storage.

Image compression methods are designed for exactly
that – to enable more efficient coding of image data with
little or no loss in visual quality. The first successful im-
age compression techniques were developed in the early
1990s and some of those are still being widely used today,
such as for example the well-known JPEG method [2].
In recent years the development of novel compression
methods for image and video accelerated, in line with the
growing amount of streamed image and video data. Mod-
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Figure 1: Illustrative example of a single uncompressed slice
from the CT scan test set [6] used for performance evaluation.

ern image compression codecs such as BPG [3], AVIF [4],
or WebP [5] typically appear as by-products of a video
codec development – the intra-frame component is ex-
tracted from the video codec and used as a standalone
image codec.

For mainstream everyday use in applications such as
image or video streaming, video calls, online gaming and
so on the goal is for the reconstructed image to appear
“natural and artefact-free” on first glance while achiev-
ing high enough compression ratios to make the above
mentioned applications feasible. General-purpose video
codes are therefore developed for and tested mainly on
natural sequences, screen content, or synthetic scenes
(eg. [7]) and typically benchmarked in perceptually lossy
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range of < 40dB reconstruction PSNR (eg. [8]). simi-
larly for image codecs. In the case of medical imaging
the fundamental requirement is that the reconstruction
error must not alter the subsequent clinical analysis. The
reconstructed image must remain true to the original up
to imperceptible “noise” void of any structure. We argue
that using an established and straightforward objective
metric such as PSNR for measuring the reconstruction
error is the right approach here to ensure that the recon-
structed image is truly nearly identical to the original
when the reconstruction error is near zero. In our subjec-
tive tests (on HDR display) we find that we are not able
to distinguish between the original and reconstructed
images above 55dB PSNR, so that is approximately our
target quality range. On the other hand, bellow 50dB we
could identify loss of subtle structure in some images.
Having the images analyzed by medical experts is unfor-
tunately too resource-intensive and beyond the scope of
this work.

Another solution common in practice is using only
lossless compression but such methods never achieve
anywhere near as high compression ratios (by order of
magnitude) as lossy methods – for example the study [9]
finds that on medical data the traditional lossless codecs
hardly achieve compression ratios over 4:1, while on the
test set the proposed method has average ratio over 40:1
at PSNR > 55dB. Proper research into lossy methods
is therefore surely justified.

The traditional approach to image compression are
hand-designed codecs that are implemented as hard-
coded algorithms, based on human experience and in-
tuition (see Sec. 2). As with many problems in image
processing and computer vision in the last decade, av-
enues are being explored on how to learn optimal codecs
from data. Modern research in learned image compres-
sion started with the works of Toderici et al. [10] as the
first fully learned method applicable to large images and
outperforming some established traditional codecs. A
surge of interest in learned image compression came af-
ter the seminal works of Ballé et al. [11, 12] and Minnen
et al. [13]. These works laid the groundwork for further
research and it can be argued that most state-of-the-art
(SOTA) methods nowadays are extensions of these meth-
ods.

The core structure of a learned method typically con-
sists of an autoencoder which transforms the input and
produces a latent representation of the image which will
constitute the bitstream. This representation is then quan-
tized so that it can be passed to an entropy coder which
losslessly converts the discrete representation to an ac-
tual bitstream. The third integral component is an en-
tropy model of the latent, i.e. a probability distribution
model of the symbols (after quantization) of the latent
representation, as this is required by the entropy coder.
This pipeline can be trained end-to-end in an unsuper-

vised manner and the minimized loss is the sum of two
terms: The distortion in the image reconstruction and
the entropy (i.e. expected bitrate) of the latent. The en-
tropy coder is used off-the-shelf and is not subject to
training. One of the great advantages of learned image
compression is that the training is relatively simple and
cheap which makes it possible to adapt a method for a
particular modality, such as medical images, whereas for
conventional hand-designed codecs such adaptation is
not feasible.

The proposed method extends [13] to volumetric med-
ical data consisting of individual slices, i.e. a sequence of
2D images. This type of data is acquired for example by a
CT scan (see Fig. 1 for an example) or in an MRI. The in-
dividual slices are encoded in order. The transform from
image data to the latent representation is done for each
slice independently, but in the entropy estimation step
the probability model of each slice (except the first) is
conditioned on the previous slice, which enables a more
accurate estimation of latent distribution since neighbor-
ing slices typically have high mutual information. This
allows for higher compression ratios with no loss in the
reconstruction quality. On the decoding side, the im-
ages are decoded in the same order, so that the previous
slice is again available when decoding the next. Note
that the proposed method works with already digitized
uncompressed images in normalized intensity range (typ-
ically 8bit-16bit), it doesn’t in any way enter the process
of image generation by the above mentioned imaging
techniques.

We show in the experimental section that this rela-
tively simple addition outperforms considerably the base-
line approach in which all slices are processed completely
independently by a single image compression method.
Additionally, compared to processing the full volume at
once our approach requires a fraction of time and mem-
ory (in practice, it would be necessary to split the volume
into small chunks and compress those separately any-
way). We tested the method on a dataset consisting of
CT scans of various human body parts and the proposed
approach is competitive even compared to established
standards such as JPEG, BPG, AVIF, and even VVC-intra.

2. Related work
For a long time, lossy image and video compression was
a problem solved exclusively in the traditional way by
hand-designed methods. Some of these methods, such
as for example H.264 [14] or H.265 [15] video codecs or
JPEG image compression [2], are now in widespread use
in many areas of industry, research, or everyday life. Rel-
atively recently, the first learned codecs appeared that
were able to challenge some of the traditional methods.
Arguably the biggest rise of interest started after the

2



Jan Kotera et al. CEUR Workshop Proceedings 1–9

works of Ballé et al. [11, 12] and later Minnen et al. [13],
which laid the foundation for learned image compression.
These works formulated the main rate-distortion objec-
tive in a learnable way, presented a model containing the
three fundamental components now present in the vast
majority of learned codecs – the autoencoder for image
transform, and the hyper-prior and the context module
for entropy estimation – and provided the solution for
dealing with the discrete quantization in training. Subse-
quent methods increased the performance for example
by richer/larger model architecture (e.g. using attention-
like modules) [16], improved context modules [17, 18, 19],
richer entropy model (e.g. Gaussian mixtures) [16], or
different simulation of quantization [20, 21].

Recently, a promising research direction is coercing
the reconstruction to better satisfy the expectations of
the human visual system even at the expense of objective
(e.g. PSNR) quality. This can be achieved for example by
augmenting the loss by a term that better models human
perception (such as LPIPS [22]) [19], or by training the
decoder in an adversarial manner as in GANs [23, 24].
Such approaches can achieve significant bitrate savings
but unfortunately are not suitable for medical data, where
the reconstructed image must be objectively undistorted
and not just look natural.

Literature on learned compression for medical images
is relatively scarce, this area is still dominated by more tra-
ditional approaches such as compression in the wavelet
domain [25]. Probably the closest match for the pro-
posed method is the lossless compression of 3D volumes
by Chen et al. [26]. In our work, however, we focus on
lossy compression. Other works propose partitioning
the image into relevant (for the diagnosis) and less rele-
vant regions and apply different compression ratios there
[27]. Learned lossy compression for 2D medical images
is investigated for example in [28].

3. Method
The proposed approach is based on the single image
compression method by Minnen et al. [13], which we
extend for multi-slice volumetric images. The method
[13] consists of three main components:
• An encoder/decoder which performs the transform

between the input image space and the latent repre-
sentation (commonly called “latent”).

• A hyper-encoder/decoder (called hyper-prior) which
analyzes the latent and stores a small piece of side
information into the bitstream that is used later to
estimate the parameters of the probability distribution
of the latent (the entropy model).

• A context module that processes the image latent in
an autoregressive fashion (i.e. causally) and is also a
part of the entropy model parameter estimation.

The encoding and decoding branches of the pipeline are
connected only via the bitstream which stores the latent
and hyper-latent representation of the image. To this end
the latents must be quantized, for which scalar integer
rounding is used, because the entropy coder that con-
verts the values into their corresponding bit codes can
only operate on discrete data (continues values cannot
be stored in the bitstream).

The advantage of the context module is that the en-
tropy parameters can be very accurate and image-specific,
the disadvantage is that the autoregressive processing
does not play well with the parallel processing common
in deep learning. For each new pixel to be decoded the
entropy parameters must first be estimated, the pixel de-
coded and only then can the decoding move to the next
pixel. As a result, a usually parallelized operation such
as convolution cannot be computed for the whole image
at once but pixel by pixel in alternation with the entropy
coder. Another disadvantage is that the context prevents
using the so-called mean-subtracted quantization, which
will be specified in the next section. We get rid of these
drawbacks in the proposed method by replacing the au-
toregressive context from [13] with an analogous module
that runs on the previous slice in the sequence.

Model details The input to our method is a sequence
of 2D slices 𝑥0, . . . , 𝑥𝑁−1 (superscripts denote slices,
subscripts pixel indices) which are processed in order.
The transforms to and from the latent representation de-
noted 𝑦𝑖 are done for each slice independently but the
entropy model, i.e. the probability distribution 𝑝𝑦(𝑦

𝑖) of
the quantized latent 𝑦𝑖 (hat denotes quantization oper-
ation), is conditioned on the latent of the previous slice
𝑦𝑖−1. This helps decrease the entropy of 𝑦𝑖 and therefore
the necessary bitrate while avoiding the disadvantages
of an autoregressive context model. It is done as follows:
Instead of running the context model on the currently
encoded slice in an autoregressive fashion, we run it on
the (quantized) latent 𝑦𝑖−1 of the previous slice. During
decoding, the slices are processed in the same order so
𝑦𝑖−1 has already been decoded in full and is available
when 𝑦𝑖 is being decoded and the entropy model can
again use information from the previous slice. This ap-
proach does not require autoregressive processing but
can instead be done in parallel for the whole slice with-
out waiting for each new pixel to be decoded. In other
words, the context module is autoregressive in the slice
sequence but that does not restrict any 2D operations
contained within one slice such as convolutions – instead
of decoding individual pixels we can decode whole slices
in parallel.

We model the distribution 𝑝𝑦(𝑦
𝑖) of the quantized

latent 𝑦𝑖 by a per-dimension 𝑗 (i.e. spatial pixel and
channel) independent Laplace distribution with mean
and scale parameters (𝜇𝑖

𝑗 , 𝜎
𝑖
𝑗). These two parameters
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Figure 2: Overview of the proposed compression pipeline. Connectors: Green are operations performed only in encode,
red are operations performed only in decode and blue are operations performed both in encode and decode. Checkboard
denotes the bitstream. Procedure: The input image is passed through an encoder, producing the latent 𝑦𝑖. The latent is
concatenated with the latent of the previous slice, 𝑦𝑖−1, and passed through the hyper-encoder, producing the hyper-latent
𝑧𝑖. This hyper-latent is quantized to 𝑧𝑖 and stored using fixed entropy model 𝑝(𝑧). Parameters of the image-adaptive entropy
model 𝑝(𝑦𝑖) are estimated by a context that processes the previous slice’s latent 𝑦𝑖−1, and hyper-decoder that processes
the hyper-latent 𝑧𝑖. These two are concatenated and passed through an entropy module to produce the entropy parameters
(𝜇𝑖, 𝜎𝑖). The latent 𝑦𝑖 is stored in the bitstream. In decode the hyper-decoder, context, and entropy module have to run again
because the parameters (𝜇𝑖, 𝜎𝑖) are required for decoding of 𝑦𝑖 from the bitstream; for this the latent of the previous slice
𝑦𝑖−1 is already available. The decoded latent 𝑦𝑖 is passed through the decoder to produce the reconstructed image �̂�𝑖.

are estimated adaptively for each image 𝑖 and each pixel
𝑗 (incl. channels) of the latent by the hyper-prior and
the context module. For quantization of the latent we
use integer rounding with mean-subtraction, meaning
that the value is first offset by the estimated mean of its
distribution before being rounded, (image index omitted)

𝑦𝑗 = ⌊𝑦𝑗 − 𝜇𝑗⌉+ 𝜇𝑗 , (1)

where ⌊·⌉ is integer rounding. This improves perfor-
mance because then quantization doesn’t change the
mean of the distribution, but it requires that the entropy
parameters of the latent are estimated before the latent is
quantized. In particular, both of the entropy estimation
modules (hyper-prior and context) must operate on non-
quantized values 𝑦𝑖, otherwise an implicit relation would
arise. This is difficult to achieve in a single-image autore-
gressive context model and for example the quantization
in [13] does not use mean-subtraction, but since in the
proposed method the context module uses the previous
slice, using mean-subtraction is possible.

The full procedure of processing a slice 𝑥𝑖 is illus-
trated in Fig. 2. The image is passed through an encoder
𝐸, producing the latent 𝑦𝑖 = 𝐸(𝑥𝑖). The latent is con-
catenated with the latent of the previous slice, 𝑦𝑖−1, and
passed through the hyper-encoder 𝐸ℎ, producing the

hyper-latent 𝑧𝑖 = 𝐸ℎ([𝑦
𝑖−1, 𝑦𝑖]). This hyper-latent

is quantized, 𝑧𝑖 = 𝑄(𝑧𝑖), so that it can be stored in
the bitstream. The parameters of the entropy model
of the quantized latent 𝑦𝑖 are estimated as follows. A
context module 𝐶 processes the previous slice’s latent
𝑦𝑖−1 and hyper-decoder 𝐷ℎ processes the hyper-latent
𝑧𝑖. These two are concatenated and passed through an
entropy module 𝐸𝑝 to produce the final entropy parame-
ters (𝜇𝑖

𝑗 , 𝜎
𝑖
𝑗) = 𝐸𝑝([𝐶(𝑦𝑖−1), 𝐷ℎ(𝑧

𝑖)])𝑖𝑗 for each pixel
𝑗 of the latent. With these parameters available the la-
tent can be quantized and stored in the bitstream and the
encoding proceeds to the next slice.

During decoding, operations responsible for estimat-
ing the entropy model 𝑝𝑦(𝑦𝑖) have to be executed again
because the entropy model is required by the coder to
decode 𝑦𝑖 from the bitstream. The hyper-latent 𝑧𝑖 is de-
coded first and since the latent of the previous slice 𝑦𝑖−1

is already decoded and available, the estimation of the
entropy parameters (𝜇, 𝜎) proceeds as during encoding.
Having those, 𝑦𝑖 can be decoded and passed through the
decoder 𝐷 to finally produce the reconstructed image
�̂�𝑖 = 𝐷(𝑦𝑖). The decoding then proceeds to the next
slice.

What remains to specify is the entropy model 𝑝𝑧(𝑧)
of the hyper-latent 𝑧, since that is also processed by the
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entropy coder and stored in the bitstream. We model it
by per-channel Laplace distribution, meaning that each
channel of 𝑧𝑖 has its own mean and scale parameters
(𝜇, 𝜎) but those are spatially constant so that the model
is not tied to a fixed image resolution. These parameters
are subject to training but fixed once the model has been
trained (i.e. unlike 𝑝𝑦(𝑦) it is not image-adaptive). For
quantization of 𝑧 we again use mean-subtracted rounding
in a similar fashion as in Eq. (1).

Details of the model architecture are concisely sum-
marized in Tab. 1.

Training details In training we optimize the rate-
distortion loss 𝐿 (image indices omitted)

𝐿 = E𝑥∼𝑝𝑥 [− log2 𝑝𝑦(𝑦)] + E𝑥∼𝑝𝑥 [− log2 𝑝𝑧(𝑧)]

+ 𝜆 · 2552 · E𝑥∼𝑝𝑥

[︀
‖𝑥− �̂�‖22

]︀
,

(2)

where 𝜆 controls the rate-distortion tradeoff (determines
approximate target bitrate) and 𝑝(𝑥), the distribution of
uncompressed images, is evaluated by batch averaging.
The first two terms on the right-hand side are approxi-
mate (theoretical) bitrates required by the entropy coder
to encode the latents. These are used in training as an esti-
mate of the actual bitrates because the non-differentiable
entropy coders are removed from training.

Our description of 𝑝𝑦(𝑦) and 𝑝𝑧(𝑧) so far was some-
what simplified. The Laplace parametric density is used
only as a model to conveniently parametrize the discrete
distribution over the symbols after quantization. In the
actual evaluation, however, we have to account for the
whole interval corresponding to each discrete value be-
cause of quantization. This is done by integrating the
parametric density over the corresponding interval, for
example

𝑝𝑦(𝑦
𝑖
𝑗) =

∫︁ 𝑦𝑖
𝑗+

1
2

𝑦𝑖
𝑗−

1
2

𝑃𝑦𝑖
𝑗
(𝑡)𝑑𝑡, (3)

where 𝑃𝑦𝑖
𝑗

is the continuous Laplace density model

parametrized by (𝜇, 𝜎) corresponding to 𝑝𝑦(𝑦
𝑖
𝑗), the dis-

crete distribution of 𝑦𝑖
𝑗 . In practice, this is done by using

the cumulative distribution function of the Laplace den-
sity.

In each training iteration we randomly sample a small
subset of 𝑛 consecutive slices from each image in the
batch and process those through the model as a small
volume. For the first slice 𝑥0 of this subset we calculate
the latent 𝑦0 = 𝐸(𝑥0) using an auxiliary single-image
model which shares the same encoder with the multi-
slice model. For 𝑥1, . . . , 𝑥𝑛−1 we proceed as described
above and these slices are used to evaluate the loss in
Eq. (2). The first slice 𝑥0 is excluded from optimization
of the multi-slice model but is used to train the auxil-
iary single-slice model used for compression of the first

Table 1
Model architecture details. conv is a Conv2D layer with kernel
size 𝑘, stride 𝑠 and output channels 𝑐. transpose is a simi-
larly specified ConvTranspose2D. GDN and IGDN are the
generalized divisive normalization layer [11] and its inverse,
respectively. PReLU is the parametric ReLU [30].

Encoder: conv k5 s2 c192 → GDN → conv k5 s2 c192 →
GDN → conv k5 s2 c192 → GDN → conv k5 s2 c192
Decoder: transpose k5 s2 c192 → IGDN → transpose k5 s2
c192 → IGDN → transpose k5 s2 c192 → IGDN → transpose
k5 s2 c1
Hyper-encoder: conv k3 s1 c192 → PReLU → conv k5 s2
c192 → PReLU → conv k5 s2 c192
Hyper-decoder: conv k5 s2 c192 → PReLU → conv k5 s2
c288 → PReLU → conv k3 s1 c384
Context: conv k5 s1 c384
Entropy module: conv k1 s1 c768 → PReLU → conv k1 s1
c576 → PReLU → conv k1 s1 c384

slice in each volumetric series. This model has the same
encoder/decoder as the multi-slice model and the same
architecture (not weights) of the hyper-prior but does
not include the context and entropy module – the hyper-
decoder directly predicts the (𝜇, 𝜎) parameters of the
latent entropy model. In validation and testing, we use
this auxiliary model to compress the first slice of the vol-
ume and then proceed sequentially with the multi-slice
model.

The quantization operation must be approximated dur-
ing training because it has zero gradient almost every-
where. For both the latents 𝑦 and hyper-latents 𝑧 we use
the straight-through quantization [29], which performs
integer rounding in the forward pass but acts as identity
in the backward pass. For evaluation of the bitrate in
the entropy models, however, we simulate quantization
by additive uniform noise from the (− 1

2
, 1
2
) range. This

way the hyper-decoder and decoder get the more real-
istic integer-rounded values (with mean-subtraction as
in Eq. (1)) but the entropy estimation is calculated using
the uniform noise simulation, which reportedly leads to
better performance [20].

4. Results
Dataset We trained and tested the method on the
Pediatric-CT-SEG dataset of CT-scan images of various
organs downloaded from the Cancer Imaging Archive
[6] (patient and acquisition parameters specified therein).
We chose this dataset for its diverse content. The dataset
consists of 359 volumetric images each with a different
number of slices ranging from 41 to 1104. We randomly
selected 10 of the volumetric images for testing (2184
slices in total) and the rest for training. The 2D slices
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are 12bit grayscale images with a resolution of 512×512,
originally stored uncompressed at 16 bits per pixel (bpp).
An example slice from the dataset is in Fig. 1.

Training We trained the model on random spatial
crops of size 256×256 and tested it on full-resolution
images. For training, we randomly chose 𝑛 = 3 consecu-
tive slices as a good compromise between training speed
and exploiting the sequential processing. We trained with
batch size 8 using the Adam optimizer [31] with an initial
learning rate of 1𝑒− 4 for 1M iterations after which we
decreased the learning rate to 1𝑒− 5 for another 200k it-
erations. We trained a new model for 6 values of 𝜆 in the
range from 0.032 to 3.2, which on the test set results in
0.05 to 0.65 bits per pixel, thus achieving a compression
ratio of 25:1 to 320:1 with respect to the original images.

Benchmark methods We compare the performance
of the proposed method with a baseline learned single-
image compression model and a number of established
traditional image compression methods. The single-
image baseline is a learned model with the same archi-
tecture as the auxiliary model we use to compress the
first slice and was trained on the same train set. Compar-
ison with this method shows performance gain from the
proposed sequential processing and the context module.
The traditional methods are a broad selection ranging
from well-known and established codecs commonly used
in practice to the state-of-the-art prototype. Such com-
parison therefore well positions the proposed method
in the landscape of existing methods and gives insight
into its properties in potential use in practice. Below we
briefly describe each of the methods used in the com-
parison and optionally its configuration, afterwards we
provide commentary on the results summarized in Fig. 3
and Tab. 2.

Baseline is a learned single-image compression model
with the same architecture as the proposed method but
without the context and entropy module (the hyper-
decoder directly predicts the entropy parameters). It
is trained on the same train set as the proposed and uses
the same training schedule. JPEG [2] is a well-known
widely used compression method developed in the 90s.
Although used for medical data and having the advan-
tage of being very fast both in encode and decode, it is
arguably not a very suitable method for such use as its
performance is relatively low by today’s standards. We
use the implementation in pillow. BPG [3] is essen-
tially a single-image wrapper of the intra-frame compres-
sion of the HEVC (also known as H.265) video codec.
Although not widespread, it is one of the top methods
currently available for everyday use. We used the jctvc
encoder via the public BPG library configured to 12bit in-
ternal bitdepth. AVIF [32] is a single-image format of the
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Figure 3: Rate-distortion performance of the proposed and
benchmark methods on the test set of CT-scan images.

AV1 video codec (essentially AV1-intra), one of today’s
top codecs from those that are readily available e.g. in
browsers. In the comparison we used the libaom-av1
encoder via ffmpeg configured to 12bit internal process-
ing, each slice in the series is compressed individually.
AV1 [32] is a video codec in terms of quality approxi-
mately on the level of or slightly outperforming HEVC
but unlike HEVC its use is royalty-free, it is therefore
arguably the best video codec readily available today
(with production-level encoders and decoders available).
In our comparison, we used ffmpeg/libaom-av1 in
12bit mode and compressed each volumetric image as a
video sequence consisting of the individual slices. VVC
[33] (H.266) is the best existing video codec nowadays
but its development is still ongoing and the available en-
coders/decoders are on the prototype level and for most
practical use cases prohibitively slow. Its adoption in
practice, medical or otherwise, is also hindered by the
fact that its use is not royalty free. We used the VTM
18 reference implementation in 12bit mode and again
compressed each volumetric image as a video sequence
consisting of the individual slices. VVC-intra [33] is the
intra mode of VVC. For single-image compression, it is
the best available codec nowadays but currently inherits
the disadvantages listed above for VVC. We used it in the
same configuration as VVC video but compressed each
slice individually.

Results The rate-distortion curves of the benchmarked
methods on the CT-scan test set are in shown in Fig. 3,
their ranking and quantitative comparison with respect
to VVC-intra is in Tab. 2 and finally, Tab. 3 shows ap-
proximate relative runtimes required to process the test
set. In the testing we focused on high-PSNR range since
we envision the proposed method being used primarily
in the medical domain, where sliced volumetric images

6
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Table 2
Relative bitrate increase (BD-Rate [34], negative means sav-
ings) and quality gain (BD-PSNR [34], positive means improve-
ment) of the benchmarked methods compared to VVC-intra
in the range PSNR > 45dB.

Method BD-Rate [%] BD-PSNR [dB]
JPEG +248.2 -7.57
BPG +51.6 -2.40
AVIF +22.7 -1.26
Baseline +20.4 -1.14
AV1 +6.2 -0.40
VVC-intra 0.0 0.00
Proposed -11.4 +0.64
VVC -23.6 +1.44

are common. Let us provide some commentary on the
results.

The baseline learned method performs on the level of
AVIF – the curves almost overlap. Although AVIF is un-
doubtedly a better codec in a general setting, the learned
baseline exploits the advantage of domain specificity – it
has been trained on similar CT data. BPG generally per-
forms well on natural images where the target PSNR is
usually lower, but to achieve imperceptible distortion in
medical data we observed that the reconstruction PSNR
should be above 55dB (for typical images with sufficient
structure). We suspect there is some issue with the con-
figuration of the encoder at high bitdepth processing
because BPG obviously struggles with achieving high
PSNRs. It is no surprise that JPEG cannot compete with
the latest methods. VVC-intra does very well and outper-
forms AVIF by a large margin in the whole range. With
AV1 we experienced similar problems as with BPG – it
apparently “saturates” at higher bitrates and struggles
to achieve high PSNR, which is possibly again some is-
sue with the high bitdepth configuration of the encoder
(although we used the same encoder as for AVIF and
in that case it worked fine). But from comparison with
AVIF in low to mid bitrates we can see that the sequential
“video” processing of the image volume is clearly benefi-
cial with noticeable performance gain. This conclusion
is further strengthened by the results of the VVC (video)
codec, which on performance alone is a clear winner of
the whole comparison, outperforming all other methods
(including the proposed) by a margin in the whole range.

The proposed method is significantly better than the
baseline (compare green and orange curves in Fig. 3), on
average achieving almost 30% rate savings (for the same
quality) and 1.8dB quality increase (for the same rate).
It also outperforms all image codecs such as AVIF, BPG,
and especially VVC-intra, which is no small feat. This
is only due to the proposed sequential context because
the baseline alone is significantly below VVC-intra. It
is however still a relatively small and simple model and

Table 3
Approximate relative time required to encode and decode the
full test set at bpp = .3 compared to the proposed method
(𝑡 = 35 seconds). Times include file I/O where unavoidable.

Method Device Time [𝑡]
JPEG CPU 2e-1
Baseline GPU 7e-1
Proposed GPU 1.
BPG CPU 7e1
AVIF CPU 1.4e2
AV1 CPU 1e3
VVC-intra CPU 1.5e3
VVC CPU 5.5e3

therefore no match for VVC but we will see that in that
comparison it wins on runtime.

A clear and quantitative ranking of the methods is
provided in Tab. 2, which shows the average bitrate in-
crease/savings and PSNR quality loss/gain evaluated by
the BD-Rate and BD-PSNR [34], respectively. We posi-
tioned VVC-intra as the reference SOTA image codec
and compared all others to it, as they perform on the
test set. The table shows average bitrate savings and
performance gain in the middle and right column, re-
spectively. Only the proposed method and VVC video
achieve improvement (BD-Rate is negative and BD-PSNR
is positive).

Finally, in Tab. 3 we show the relative runtimes re-
quired for processing (encode and decode) the whole
test set (10 volumetric images consisting of 2184 slices)
with respect to the proposed method (i.e. value < 1
means the method is faster than ours, > 1 means it is
slower). These runtimes are listed for bpp = .3, ap-
proximately the middle of the tested range, since the
traditional methods are slower at higher bitrates (the
proposed has constant speed across the range). Here the
ranking is quite different than in the performance. JPEG
and of course the baseline are the only methods faster
than the proposed, all others are slower and some of them
quite significantly, especially the well-performing VVC
which is clearly prohibitively slow. We argue that the
video codecs are simply not fast enough for practical use.
In fairness, the proposed method and the baseline run
on GPU (though still each slice sequentially) while the
traditional methods are CPU-only without any external
parallelization. On the other hand, our implementation is
intended only as a proof of concept and we didn’t invest
much effort into runtime optimization. For example, in
both encode and decode the encoder and decoder process
each slice independently. In testing we really process
them sequentially for simplicity while it is possible to
“batch” them and process in parallel (as many as the GPU
memory permits), which would reduce the runtime.

Contrary to usual customs, we do not provide exam-

7
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ples and qualitative comparison of image reconstructions
because due to the high reconstruction quality and simi-
lar performance of the benchmarked methods we were
not able to come up with example images that demon-
strate any noticeable difference – on screen all the results
look identical.

5. Conclusion
We presented an extension of a single-image learned com-
pression method to volumetric multi-slice images with
an emphasis on the medical domain, where such type
of images is quite common. Although the modification
is relatively simple and straightforward, it provides sev-
eral benefits – namely using a context module without
introducing any problems with parallel processing in the
decode and using mean-subtracted quantization. Both of
these improve performance without compromising the
runtime. This we verified in the comparison with a num-
ber of established compression methods. The comparison
shows:
• Clear performance gain with respect to the baseline

due to the proposed sequential context.
• Good performance in absolute numbers with respect

to the established codecs.
• Very competitive runtimes (if GPUs are allowed).
The testing was carried out with emphasis on low-error
reconstruction and even at PSNR=55dB (in most cases
indistinguishable from the original) the proposed method
achieves an average compression ratio of 40:1 with re-
spect to the uncompressed original. We consider these
results a solid proof of concept for compression of volu-
metric medical data.

Nevertheless, there are a number of things which can
be improved or investigated further. For example, the
used baseline model is far from SOTA so higher absolute
performance can be gained by adopting one of the SOTA
single-image learned methods as a backbone and extend-
ing that with the proposed context model. In this work,
however, we focused more on investigating the relative
gains from the sequential context rather than absolute
performance. Next, in decode our method currently does
not permit random access (as in “show me slice 42”), the
whole volume needs to be decoded sequentially from
the beginning. But this can be remedied by introducing
intra-frames compressed by the single-image auxiliary
method we use for the first slice. If we use a GOP size of
8 (meaning at most 8 slices need to be decoded for any
chosen slice), we can estimate that the performance drop
in Tab. 2 would be approximately −11.4% → −7.5%
in rate and +0.64dB → +0.42dB in PSNR, which is
still solid improvement over VVC-intra with practically
usable runtimes in both encode and decode.

But by looking at the results of VVC we see that further
gains are undoubtedly possible and we hypothesize that
those can be achieved for example by a stronger context
module (ours is a rather simple stack of convolutions, not
in any way input-adaptive) and possibly by introducing
P-frames and B-frames as in video encoding. It is our
hope that this work will motivate further research into
such possibilities.
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