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Abstract

Event log anomaly detection and log repairing concern the identification of anomalous traces in an
event log and the reconstruction of a correct trace for the anomalous ones, respectively. Anomalies in
real-world event logs often appear according to specific patterns, since they are generated by a limited
number of root causes, such as poor resource behaviour or system malfunctioning. This paper proposes
PBAR (Pattern-Based Anomaly Reconstruction), a semi-supervised pattern-based anomaly detection
and log repairing approach that exploits the pattern-based nature of trace-level anomalies in event logs.
PBAR captures in a set of ad-hoc graphs the behaviour of clean traces in a log and uses these to identify
anomalous traces, the specific anomaly pattern that applies to them, and then reconstruct the correct
trace. The proposed approach is evaluated using artificial and real event logs against the traditional
trace alignment in conformance checking method, the edit distance-based alignment method, and an
unsupervised method based on deep learning.
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1. Introduction

Process mining [1, 2] is a research field at the crossroads of process science and data science
that focuses on improving business processes through the analysis of the data logged during
their execution in so-called event logs. To enable basic process mining analysis, event logs
must contain, for each task executed in a business process, an id of the process case to which it
belongs and an activity label. Events must also be ordered in time.

In practical situations, event logs are prone to errors [3, 4, 5, 6], which are caused by often
unavoidable or unexpected system failures or human errors. For instance, a doctor in a hospital
may forget to log the start time of a consultation with a patient, whereas a number of events in
a log may be missing because an application used in a process was unavailable due to a network
failure for a certain period. Low quality event logs can crucially disrupt process mining-based
analyses.
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The quality of data is a general concern in data science, where the statement “garbage in,
garbage out” is often adopted to highlight that low input data quality leads to low quality of the
results of the analysis [7, 8]. In this context, anomaly detection on input data is seen as a key
technique to improve their quality and, therefore, support higher quality analysis [5].

The follow-up of anomaly detection is log repairing, that is, the problem of reconstructing a
correct trace for the ones that have been identified as anomalous. Besides enabling the correct
reconstruction of specific anomalous traces, an effective method to repair a log may increase
the number of observations (traces) available for other process mining use cases, which can be
a particularly critical issue when a high number of traces in a log are anomalous because of
systematic logging errors.

Existing research on log repairing often does not consider the crucial fact that anomalies in
event logs are not completely random, but they stem from specific anomaly patterns [6, 9, 10].
For instance, sloppy or poorly trained human resources may forget to log some events, log
multiple times the same event, log a different task in place of the one actually executed, or log a
wrong timestamp for an event, which will result in an event moving before or ahead its correct
intended position in a trace [6].

In this paper, we propose PBAR (Pattern-Based Anomaly Reconstruction), a semi-supervised,
pattern-based, trace-level event log anomaly detection and log repairing approach. PBAR is a
pattern-based approach, because we assume that the type of patterns that determine anomalies
in a log are known a priori, and it is semi-supervised, because we assume that a set of clean
traces is available in an event log.

First, PBAR uses the clean traces to construct a set of directed graphs that capture the
sequential relations among events in a log in clean traces. Then, for each trace with unknown
label (normal v. anomalous), we propose an algorithm that, through a custom replay of a trace
on the directed graphs created at the previous step, yields an anomaly detection matrix. The
values in this matrix exhibit specific patterns depending on the anomaly pattern that affected
a trace. Since the reconstruction of a trace relies on the identification of the correct anomaly
pattern affecting a trace, the proposed approach is interpretable by the design, i.e., not only does
it return a reconstructed trace, but it also explains the reason why a trace has been identified as
anomalous and has been reconstructed in that particular way.

We have evaluated PBAR on artificial and real-life event logs publicly available and using
anomaly patterns commonly considered by other research works in this field. The performance
of the proposed model, both in term of reconstruction accuracy and run time, has been compared
against baseline reconstruction methods of different types, i.e., traditional and edit distance-
based trace alignment (model-aware), and DeepAlign [11], a model-agnostic approach that uses
deep learning.

The remainder of the paper is organised as follows. Section 2 presents the related work.
Sections 3 and 4 define the problem of event log anomaly detection and reconstruction and the
PBAR approach to solve it, respectively. PBAR is evaluated in Section 5, whereas conclusions
are finally drawn in Section 6.



2. Related work

Model-aware trace-level anomaly detection and repairing exploit a given reference process
model, such as a workflow net or a BPMN model. Since process models capture the control flow
of a process, these approaches mainly focus on reconstructing the correct order of events in
traces. Wang et al. [12] have introduced an approach that, using a workflow net model, exploits
a branch algorithm to yield multiple choices for reconstructing process execution flows with
missing events. Song et al. [13] have proposed a heuristic log repair strategy based on a Petri
net decomposition of the process model, which allows to identify the minimum recovery of
an incomplete sequence in one of several independent sub-processes. Rogge Solti et al. [14]
have introduced an alignment approach based on Petri nets to repair missing events in event
logs. Dixit et al. [15] have approached the handling of event log noise using temporal ordering
of events and repairing the noise through an alignment approach. In summary, model-aware
approaches repair missing events or infrequent traces in an event log by finding a complete trace
with minimum cost (distance) from a reference model, often exploiting compliance checking
techniques. In other words, model-aware approaches are helpful to reconstruct traces in an
event log under well-defined process specifications.

As far as model-agnostic approaches are concerned, Sani et al. [8] have introduced a proba-
bilistic method to define frequent context behaviour patterns in an event log, which then are
used to repair infrequent behavior patterns with more frequent patterns. Since the patterns
are defined using a threshold on the relative measure of behavioural context frequency, this
approach implicitly assumes that data with infrequent patterns are anomalous. Xu and Liu [16]
have introduced a distance-based method that uses the trace clustering of log profiles. The log
profiles cannot be applied to different anomaly patterns, such as moving events in a trace, since
they do not consider the order in control-flows. Similarly to model-aware approaches, most
model-agnostic approaches have focused on the issue of missing or infrequent events in a log.
The pattern-based approach to event log anomaly modelling, which we consider in this work,
has emerged only recently with the work of Nolle et al. [11]. Such an approach is also aligned
with recent work on event log data quality [10, 9, 5, 6], which has demonstrated that often in
real world situations most anomalies in an event log belong to few specific patterns determined
by a few specific root causes, such as human resource error or system malfunctioning.

3. Problem definition

Given a set X, we use X~ and B(X) to denote the set of all finite sequences over it and the set of
all multisets over it, respectively. Let A be a set of activity labels. A trace g; € A™ is the sequence
of the Iactivities ay j, ..., a; j, ... ar j executed in the j-th process case. An event log E € B(A™) is a
multiset of traces. For convenience, we consider an augmented version of traces with fictitious
start and end events at position i = 0 and i = I + 1, respectively, i.e., g = [start, aij .- A end].

Similarly to recent literature on event log anomaly detection [5, 10, 9], we consider 5 trace-
level anomaly patterns normally linked to poor resource behaviour as a root cause: Skip, Insert,
Rework, Replace, and Move one or more events in a trace. These are non-trivial anomalies that
cannot be easily identified by frequency-based filters typically available in commercial process
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Figure 1: Trace-level anomaly patterns considered in this work

mining tools. The 5 patterns are exemplified in Figure 1 and defined next:

« Skip: given a trace o; of the length  one activity q; ; € o is deleted from ;.

« Insert(M): given a trace o; of the length I'and a positive integer M, an integer value m is
first randomly chosen in [1, M]. Then, m activities ai ; € o}, with k € [1,m], are randomly
chosen. Finally, m activities are generated using random activity labels in o; after the
activity a; ; € oj.

« Rework(M): given a trace o of the length I and positive integers M, an integer value m
is randomly chosen in [1, M]. Then, one activity g;; € 0j is repeated m times after its
occurrence.

* Replace: given a trace o; of the length I, one activity g;; € o; is changed to a different
activity label.

« Move(M): given a trace o of the length I and a positive integer M, an integer value m # 0
is randomly chosen in [-M, M]. Then, one activity a; ; € o; is moved of m events from its
current location.

In a semi-supervised anomaly detection approach, a set of clean observations is available.
Therefore, we define a labelling function L : A* — {n, a} that associates a trace o € A” to its
label: normal (n) or anomalous (a). We assume that an event log E is partitioned into a (normally
small) log containing only clean traces E, i.e., Vo € E., L(c) = n, and the set of the remaining
traces E, = E \ E,. While the label of the traces in E_ is known, the label of the traces in E, is a
ground truth generally unknown.

The reconstruction accuracy entails a strict notion of correctness: if the reconstructed trace
matches exactly the original one, then the accuracy is 1, otherwise it is 0, i.e., match(oy, 05) —
{1,0}. A more grey-shading notion of accuracy can be introduced by considering the distance
between traces. Following similar work in event log anomaly detection [11], in this work
we consider a distance d : A* x A* — [0, 1] between two traces o7 and o, defined using
the Levensthein string distance lev(-) [17]. Specifically, given a bijective mappingn : A — S
between the activity labels A and an alphabet S, and a function N : A* — S§* translating a trace
o into a string defined over S, d(o7,03) = lev(N(07), N(0)).

Now, a trace repair function R : A* — A” can be defined to associate a trace o to a
reconstructed trace R(c). Given a trace o with L = a, the accuracy of the trace reconstruction
is assessed by using the two notions of accuracy defined above: match(c, R(c)) and d(o, R(0)).
Specifically, the lower the distance, the more accurate the reconstruction for the distance
d(o, R(0)).
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Figure 2: Framework of PBAR

Algorithm 2: [Step 2.] Compiling the
content of D/

Inputs: 0;, T < uyTx

Output: D;
Algorithm 1: [Step 1.] Processing 1 Vp.qdpg €D/ 0 b Initialise D'
t t te T, 2 p<0 > a, current activity in g;
races to create x 3 while p<I+1do
Inputs: E, a; 4 [<0
Output: T 5 qep
1 Ty — (Vi < QB < ) > empty graph 6 while g = 0 > replay prefix
2 10 > level 7 e ((a1,1-1).(a, D)
forallo, € E, : a.€o0; ;
3 forallo; € £ = a € 0j 8 ifeeT,
4Pl €05 =0 9 myg <0 > replay correct
5 while a,; # start > process prefix ’
. 10 else
6 Vi « Veu(apDulay1,l-1) » My < 1
7 Ep < Epu((ap-y, 1= 1),(a, D) 12 Vx 1 0< x <gq, my, < DC
8 pe—p-1 13 l<1-1
9 l<1-1 14 q<—qg—1
10 [+<0 15 l<o0
11 peiiajco;=a 16 q<—p
12 while a,,; # end > process suffix 17 whileg#1+1 > replay suffix
13 Vi < Vieu (@, 1) v (@pay, 1+ 1) 18 e < ((ag D), (ags1,1 + 1))
14 Ep < Eeu((ap D). (aper, 1+ 1) 19 ifeeT,,
15 pep+1 20 Mpg <0 > replay correct
16 l<1+1 21 else
17 return T 22 Mpg <1
23 Vx :q<x<I+1 m,, < DC
24 l<~1-1
25 q<—q—1
26 p—p+1 > process next activity

27 return D/

4. Framework

Figure 2 depicts the overall framework of PBAR. The input is an event log, from which a set E,
of normal traces is separated from a set E, of traces with unknown label (we only assume that
the label of E, is known when evaluating the proposed approach). Then, PBAR comprises 3
phases: (i) creating a set of directed graphs that capture the sequential relations among activities
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in clean traces (the Normal Behaviour Graphs - NBGs), (ii) calculating, for each trace in E,,
an anomaly detection matrix by replaying traces on the NBGs obtained at the Step (i), and
(iii) detect anomalous traces and reconstruct them through the pattern-based analysis of the
anomaly detection matrix.

4.1. Normal Behaviour Graphs

As a semi-supervised learning method to obtain a reference model representing normal be-
haviours, PBAR creates a normal behaviour graph T = (V}, E;) for each activity a; € A using
the traces in E,, where V} is a set of nodes and Ej, is a set of edges, with Ej C Vi x Vi.. The nodes
in Tj are identified by an activity label and a level | € Z, i.e., V}; C Ax Z.

Given a trace oj, the prefix function prefix : A" x A — A" and the suffix function suffix :
A" x A — A" return the events in o; before and after an activity a, € oj, respectively:
preﬁx(crj, ap) = {start, ayjs e s ap,l,j} and suﬁx(aj, ap) = {apﬂ)j, Ay end}.

The graph T;. for an activity ay is created by processing all the traces in E, that contain the
activity g as shown in Alg. 1. A trace o} that contains a is split into a prefix and a suffix where
aj. occurs, which are processed separately. The prefix is processed from g; backward to the start
of oj. At each iteration, an edge e € Ey, i.e., a pair of consecutive events ((g;_1,1 — 1),(g;,1)) at a
certain level [ is created if does not exist already. The level [ is set to 0 initially and it decreases
as the trace o; is scanned backward. The processing of suffix part entails a similar logic, with the
only difference that a suffix is processed from g forward until the end of o; and that, therefore,
the value of the level /is increased as the suffix of o} is scanned forward.

Figure 3 shows an example of how T, is created for the activity g = ¢, given 3 normal
traces, i.e., E. = {0y,09,03}, with oy = [start,a,b,c,d,e,end], oy = [start,a,c,c,d, g,end], and
o3 = [start,b,c, e, end].

4.2. Anomaly Detection Matrix

The anomaly detection analysis relies on a custom replay of a trace in E, on the NBGs T.
Given a set of NBGs obtained at the Step 1 of the PBAR framework, such a replay of a trace
of yields a matrix D/. In this matrix, rows are identified by the ordered activities in a trace,
whereas columns are identfied by the directly-follows relations in the trace: given a trace
oj = {start,a; joeee s AL end}, the matrix D' has I + 2 rows, and I + 1 columns, identified by the

directly follows relations in aj, e.g., start — a, j or aj j — ay ;. Each element dé,m € D’ of this
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Figure 4: Anomaly detection matrix by different anomaly patterns

matrix assumes one of three values [0, 1 or DC (do not care)] as a result of the custom replay of
o, which is presented in Alg. 2.

Similarly to creating the NBGs, the replay of o; is split between replaying the prefix (lines
6-14) and the suffix (17-25). In either case, when replaying an activity g;; € o;, the NBG T,
is considered. Starting from the level 0 in T, , the prefix of ; is replayed backward, almmg
to reach the start of o;, whereas the suffix is replayed forward, aiming to reach the end of g;.
When scanning the prefix [suffix], if an edge ((a;_1,0), (a;, 1)) [((a;, D), (a;41,1))] exists in Taw_, then
the corresponding value in the matrix D is set to 0. Otherwise, the corresponding value in the
matrix is set to 1. Since, after a value 1 is set in D/, a trace can no longer be replayed on Tai,,-’
then all the preceding [subsequent] values to 1 in the same row are set to DC’s.

4.3. Anomaly Reconstruction

In this section, we show how the anomaly detection matrix is used for detecting anomalies
and reconstructing them. Note that, as introduced before, we assume that there are 5 possible
trace-level anomaly patterns, i.e., skip, insert, rework, replace, and move, in event logs, and that
an individual trace is affected by at most one anomaly pattern.

Detecting anomalies is straightforward: a trace is anomalous if its anomaly detection matrix
D/ contains at least one element d,Jl,m = 1, that is, if at least one activity in a trace could not be
replayed correctly according to the procedure described in Alg. 2. By design, the values dj, = 1
in the anomaly detection D' follow specific patterns, which is the property exploited in the



trace reconstruction phase. Next we present in detail how each anomaly pattern is detected
and reconstructed.

Skip pattern. The skip pattern [see Fig. 4(a)] is clearly identifiable in an anomaly detection
matrix when a column has only values equal to 1. Such a column identifies that one activity
between g; and g;, ; has been anomalously skipped. Regarding the reconstruction of this type of
traces, following the approach proposed by Sani et al. [8], the reconstruction occurs by inserting
into o; the most frequent activity at position between i and i + 1.

Note that, in general, the anomaly detection matrix is recalculated for every reconstructed
trace: if this matrix does not signal any anomaly, then the next trace can be considered, i.e., the
reconstruction has been successful; if this matrix signals an anomaly, i.e., it contains a value
equal to 1, then the pattern-based analysis is run again.

Insert pattern. Figure 4(b) shows the pattern in the anomaly detection matrix identifying
the insertion of S unexpected events in a trace between the events @; and a;;5,¢. For the
reconstruction, the S events inserted are deleted from the trace.

Rework pattern. The rework pattern is a special case of the insert one in which all the events
inserted have the same activity label (see Figure 4(c)). As such, the detection and reconstruction
of this pattern is already captured by what described above for the insert pattern.

Replace pattern. From the standpoint of anomaly injection, replacing an activity in a trace is
equivalent to skipping it, i.e., deleting an existing activity, and inserting a different one in its
place. The anomaly detection and reconstruction heuristic inverts this logic, by first identifying
whether an anomalous activity has been inserted in a trace and then checking whether it should
be replaced (or simply deleted). Hence [see Figure 4(d)], detecting the replace pattern starts by
detecting the insert pattern (with S = 1) in the anomaly detection matrix. Once the inserted
activity has been deleted, the anomaly detection matrix is recalculated, highlighting the skip
pattern at position a;. Then, following the reconstruction of the skip pattern, a correct activity
to be inserted at position g; is determined.

Move pattern. From an anomaly injection standpoint, the move pattern can be seen as the
sequential application of the skip (i.e., an activity is removed from its normal place) and insert
(i.e., the same activity is inserted at a different place) patterns. As such, this pattern is identifiable
in the anomaly detection matrix through a combination of the insert and skip patterns described
above [Figure 4(e)].

More details about exceptional cases in the anomaly reconstruction process are discussed in
an online github repository that accompanies this paper. !

5. Evaluation

5.1. Experimental Datasets

For the evaluation of the proposed approach, we have considered the 5 artificial logs used in [5]
and 2 publicly available real-life event logs. Regarding real-life event logs, we consider the
Hospital Billing event log, which collects events from a billing of medical services process in a

'https://github.com/paai-lab/Pattern-based-Anomaly-Reconstruction-2022
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regional hospital and the Road Traffic event log, which collects events about a road traffic fine
management process at a local police authority in Italy.

The anomaly injection process is supported by AIR-BAGEL [6], a tool developed by the
authors that simulates anomalies in event logs based on two different types of root causes, i.e.,
sub-optimal resource behaviour and system malfunctioning. More details about the event logs
considered, the anomalies injected in them, together with details of additional experimental
results not discussed in the remainder of this section are available in the online companion
github repository.

5.2. Evaluation Metrics and baseline models

As defined in Section 3, we evaluate three aspects of PBAR, which answer two different research
questions:

« “How accurate is PBAR, given an anomalous trace, at reconstructing the correct one?”
(Anomalous trace reconstruction accuracy).
« “How long does it take to execute PBAR on all the traces of an event log?” (Run time).

Regarding baseline models, we consider three approaches: (i) the traditional alignment method
in conformance checking (Alignment.TR) [18], (ii) the edit distance-based alignment method
(Alignment.ED) proposed by Schuster et al. [19], and (iii) DeepAlign [11]. For Alignment.TR, we
first use the clean traces in an event log to discover a process model using the inductive miner [20]
implementation in the Python module PM4Py [21]; then we align — using the alignment
implementation available in PM4Py - the discovered process model and the anomalous traces,
considering the aligned traces as the reconstructed ones. Both process discovery and alignment
are run using the default parameter values. Since we use only clean traces for process discovery,
the parameter of noise threshold in the inductive miner is set to 0. For Alignment.ED, we
consider the implementation of the edit distance-based version of alignment based on the
Levenshtein distance [17] available in the Python module PM4Py. In DeepAlign, sequence
alignments are calculated exploiting a predictive model of next event in a running trace based
on a Recurrent Neural Network (RNN). We use the same hyperparameter values adopted in
the original paper [11]: epochs = 50 and batch_size = 100, obtained from the Adam optimizer
with standard parameters, max_iterations = 10, beam size K = 5 and maximum deletion size
N = 3. Note that the traditional alignment methods are model-aware approaches to anomaly
reconstruction, whereas DeepAlign is a model-agnostic one (i.e., it does not discover a process
model explicitly).

5.3. Experimental Results

While in this section we concentrate on the results that answer the research questions, results
regarding the accuracy of PBAR broken down by type of anomaly pattern are available in the
companion github repository.

Table 1 compares the reconstruction accuracy, calculated using both the classification accuracy
and the average distance, and the run time of PBAR and the baselines. Note that, since DeepAlign
is an unsupervised approach, which does not require a case label in the input dataset, for it we



Table 1
Trace reconstruction accuracy, error and run time. For reconstruction accuracy, the higher the better,

for distance accuracy, the lower the better. The best performance for each metric and event log is
highlighted in bold.

Perfqrmance Method Small Medium Large Huge Wide Hos.pl.tal Roa.d Average
metric Billing Traffic
PBAR 0.991 0.936 0.957 0.977 0.947 0.540 0.554 0.787
Alignment.TR 0.996 0.922 0941 0975 0.944 0.168 0.183 0.597
ACC Alignment.ED 0.977 0.919 0.938 0.950 0.934 0.303 0.523 0.717

DeepAlign (normal)  1.000 1.000 1.000 1.000 1.000 0.573 0.842 0.870
DeepAlign (anomaly) 0.921 0.773 0.883 0.905 0.842 0.589 0.693 0.771
Before reconstruction  2.410 2.141 1.511 1.647 2.536 3.674 4.398 2.735

PBAR 0.021 0.083 0.062 0.037 0.075 0.812 0.635 0.340
Error: Alignment.TR 0.008 0.078 0.060 0.025 0.058 1.241  1.231 0.580
Levenshtein Alignment.ED 0.054 0.087 0.063 0.070 0.078 1.178 0.717 0.432

Distance DeepAlign (normal)  0.000 0.000 0.000 0.000 0.000 0.669 0.317 0.220
DeepAlign (anomaly) 0.261 0.397 0.121 0.141 0.242 0.933 0.825 0.496

PBAR 1.74 1.23 321 177 1.6 0.51 14.62 4.17
Run time Ali.gnment.TR 0.04 0.04 0.12 0.08 0.03 0.03 0.43 0.13
(minute) Alignment.ED 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00
DeepAlign 5.64 383 7.62 684 291 113.02 453.34 107.517

show separately the reconstruction accuracy on normal traces and anomalous traces. That is,
an unsupervised method may generate errors even on normal traces. Otherwise, since both the
proposed approach and the alignment baselines are semi-supervised, i.e., they require a set of
clean labelled traces in input, the reconstruction accuracy of both approaches on normal traces
is obviously perfect. Finally, note that, for the distance accuracy, we also report the average
distance between normal and reconstructed traces before the reconstruction as a reference.

When compared with the baselines, PBAR shows the highest classification accuracy on most
artificial logs, whereas DeepAlign emerges as the best performer in classification accuracy on
real-world event logs. Note, however, that, because of its unsupervised nature, DeepAlign does
not have perfect reconstruction accuracy on normal traces. This phenomenon is not negligible
in the case of some real-world event logs. For instance, DeepAlign classifies incorrectly 42.7%
of the normal traces in the Hospital Billing event log. Regarding the distance accuracy, PBAR
is the top performer on the real world event logs, while achieving a performance comparable
with the baselines on the artificial logs.

Finally, regarding run time, both PBAR and the alignment baselines execute more quickly
than DeepAlign, particularly with real-world event logs. Note that the implementations of
the alignment baselines in PM4Py are optimised to exploit parallel processing in multi-core
architectures, which justifies the short run time (always less than a minute, down to few seconds
for Alignment.ED). Our implementation of PBAR is not optimised for multi-core architectures
and, therefore, it is characterised by higher run time than the alignment baselines, but still
lower than the one of DeepAlign.

To conclude, since the alignment method works effectively with logs generated from well-
structured processes [22], the experimental results show that the alignment baselines are often



not effective at reconstructing correctly the traces generated by real world event logs, which
are generated by less structured and more flexible business processes. As a consequence,
while the alignment baselines shows high reconstruction accuracy on the artificial logs, their
overall performance is relatively lower than the one of PBAR or DeepAlign because of the
low performance on real logs. The DeepAlign method shows overall fine performance while,
however, it may mis-classify normal traces as anomalous, particularly in real world event logs.

6. Conclusions

We have presented PBAR, a pattern-based semi-supervised approach to identify trace-level
anomalies in event logs and reconstruct correct traces. The proposed method uses the normal
traces in a log to generate a set of activity-specific directed graphs capturing the correct process
behaviour and then exploits these graphs to classify and reconstruct the unlabelled traces. We
have evaluated the method against the traditional alignment method in conformance checking,
the edit distance-based alignment method, and DeepAlign, which is a RNN-based unsupervised
method, using both artificial and real-world event logs. As far as trace reconstruction is
concerned, PBAR achieves the best performance on artificial logs. While PBAR is outscored by
DeepAlign regarding the reconstruction classification accuracy, it achieves the highest distance-
based average reconstruction accuracy. One of the main features of PBAR is that is interpretable,
that is, the information generated during the anomaly detection and reconstruction process,
i.e., the anomaly detection matrices, provide additional insights for decision makers regarding
which anomaly pattern has affected a trace. To enhance the practical applicability of anomaly
detection methods in practice, future extensions should also tackle the issue of handling multiple
anomalies pattern applied to a single trace. This is in fact a situation that has not been considered
by any of the approaches in the literature that we have reviewed, including the ones considered
in the experimental evaluation of this paper.
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