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Abstract
Predictive machine learning models nowadays are often updated in a stateless and expensive way. The two main future
trends for companies that want to build machine learning based applications and systems are real-time inference and continual
updating. Unfortunately, both trends require a mature infrastructure that is hard and costly to realize on-premise. This paper
defines a novel software service and model delivery infrastructure termed Continual Learning-as-a-Service (CLaaS) to address
these issues. Specifically, it embraces continual machine learning and continuous integration techniques. It provides support
for model updating and validation tools for data scientists without an on-premise solution and in an efficient, stateful and
easy-to-use manner. Finally, this CL model service is easy to encapsulate in any machine learning infrastructure or cloud
system. This paper presents the design and implementation of a CLaaS instantiation, called Continual Brain, evaluated in two
real-world scenarios. The former is a robotic object recognition setting using the CORe50 dataset while the latter is a named
category and attribute prediction using the DeepFashion-C dataset in the fashion domain. Our preliminary results suggest
the usability and efficiency of the Continual Learning model services and the effectiveness of the solution in addressing
real-world use-cases regardless of where the computation happens in the continuum Edge-Cloud.

1. Introduction
Machine Learning (ML) has become a fast-growing, trend-
ing approach in solution development in practical sce-
nario. Deep Learning (DL) which is a subset of ML, learns
using deep neural networks to simulate the human brain.
Nowadays, the latter is widely adopted in a variety of
applications, especially in Computer Vision (CV) [1] [2]
and Natural Language Processing (NLP) [3] [4]. Both
academia and industrial research are investing signifi-
cant efforts in developing ML-as-a-Service (MLaaS) tools
to build and monitor a variety of smart applications [5]
[6].

Current technical issues related to software develop-
ment and delivery in organizations that work on ML
projects have brought novel practicals and concepts. In
particular, the integration of Machine Learning practices
that support data engineering, with the Development
and Operations (DevOps) practices based software devel-
opment, has resulted in Machine Learning Model Opera-
tionalization Management (MLOps) [7]. MLOps princi-
ples have been proposed and used to deploy and main-
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tain machine learning models in production reliably and
efficiently. It incorporates ML models for solution devel-
opment and maintenance with continuous integration
(CI) to provide efficient and reliable service. Different
roles such as data scientists, DevOps engineers, and IT
professionals are involved in different MLOps process.

The accuracy of the predictions made by ML applica-
tions depends on many factors such as data type, training
algorithm, hyperparameters, learning rate and optimiz-
ers. Different edge or cloud based applications need the
latest real-time data and are retrained frequently to pro-
duce more accurate and precise predictions. Thus, the
training models should be retrained without human in-
tervention using reproducible and automating pipelines
in a continuous manner. It is challenging to automate
these decisions making processes using current MLOps.
Moreover, these MLOps toolkits should be user-friendly,
reliable, and efficient to use in industrial and practical
scenarios.

Currently, we note also that ML serving systems are
not able to handle the dynamic and non-stationary pro-
duction environments adequately. The principal causes
come from the concept drift [8] issue of real-life data. One
of the main consequences is decay in the performance of
the model. The second is monitoring data to understand
when a drift distribution happens. To overcome these
issues, we note that the companies innovative trend is
toward real-time inferences and Continual Learning (CL)
update models [9]. The first to generate more accurate
predictions, and the latter to adapt models to changing
non-stationary production environments [10].

To support the generation of CL solutions for research
and practical applications, several systems have been de-
veloped, as summarized in Table 1. However, most of
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Table 1
Comparison of several (continual) machine learning operations toolkits. HPO: hyper parameter optimization in training stage;
MLOps: Model Operationalization Management; CM: Continuous Monitoring; CT: Continuous Training.

Tools Drift data CL zoo CL CM CT Portability auto
detection algorithm metrics (MLOps) (MLOps) (edge-cloud) HPO

Continual [11] � - - � � - �
AutoML (AWS)

AWS Sagemaker � - - � � � �
[12]

Avalanche [13] - � � - - - -

ModelCI-e [14] � � - � � � -

CLaaS � � � � � � �

Continual Brain - � � - � � -

these solutions do not support CL strategies for contin-
uous training (CT). Several CL tools are widely used by
research communities, but few of them meet the require-
ments of real industrial scenarios.

1.1. Proposal Solution and Scientific
Value

In this paper, we propose a new model service paradigm
named Continual-Learning-as-a-Service (CLaaS) with the
following guidelines. First, CLaaS should be easily in-
tegrated with existing ML serving systems and MLOps
toolkit either on-primes edge or cloud-based. Second,
we are interested not only for research purposes but also
in fast R&D prototype projects. Therefore, it allows for
training and updating ML models in existing serving sys-
tems in an efficient, scalable and adaptablemanner. Third,
this model service can allow the building and maintain-
ing of low-cost smart infrastructure without particular
knowledge of Continual Learning.

We start to define CLaaS paradigm and compare it to
existing related continual ML model services (Section
3). Then, the architecture and system implementation
details of a possible CLaaS instance we called Continual
Brain are described (Section 4). Some preliminary studies,
comparing the Cumulative (when a new batch of data
becomes available, prediction models are re-trained from
scratch) [10] approach and well-known CL strategies,
are also executed in two particular practical domains to
demonstrate the potential advantages in terms of effi-
ciency (Section 5). To sum up, future improvements and
optimization directions are presented (Section 6).

2. Related Work and Background
This section first summarizes MLOpsmethodologies with
a brief overview of the tools support. Then, it describes
Continual Learning and its effectiveness in real-world
contexts.

2.1. Machine Learning Operations
(MLOps) and Tool support

MLOps is a set of scientific principles, tools, and tech-
niques of Machine Learning and traditional Software
Engineering to design and build complex computing sys-
tems. It encompasses all stages from data collection, to
model building, to making the model in SW production
system. MLOps emerges from the understanding that
separating the ML model development from the process
that delivers it, named ML operations, lowers the quality,
transparency, and agility of the whole intelligent soft-
ware [7]. For More detail, challenge and commercially
available MLOps tool support in software development
are well described in [15] and [16].

Typical workflow for machine learning-based software
development includes three primary subjects. They are
data, ML model, and code and this workflow consists of
three main phases

• Data Engineering, concerned with data acquisi-
tion and data preparation

• MLModel Engineering, in which the process starts
from model training, evaluation and serving

• Code Engineering, which it is integrated the ML
model into the final product

There are three main problems that influence the value
of ML models once they are in production. First, ML



Figure 1: Graphical representation of MLOps, an end-to-end Machine Learning life-cycle management. It is an Iterative-
Incremental Process mainly based on 3 stages: Data, Machine Learning (ML) and DevOps. The latter has two principles named
Continuous Integration (CI) and Continuous Delivery (CD). MLOps adds other two practices named Continuous Monitoring
(CM) and Continuous Training (CT). This work is focused on the Machine Learning development stage to train and validate
the models with MLOps practices and Continual Learning methodologies.

models are sensitive to the semantics, amount and com-
pleteness of incoming data (data quality). Second is the
performance degradation of ML models in production
over time (model decay). In fact, real-life data are non-
stationary and most of the time they have not been seen
during the model training. Third, when transferring ML
models to new business customers, these models, which
have been pre-trained on different user demographics,
might not work correctly according to quality metrics
(locality).

MLOps try to establish effective practices and pro-
cesses around designing, building, and deploying ML
models into production. Currently, MLOps tools range
from using a machine-learning platform to implement-
ing an on-premise solution by composing open-source
libraries.

MLOps platforms should support languages, frame-
works and libraries in an easy-to-use unique environ-
ment. Although cloud service providers have similar
platforms, they are costly and are not addressing the ML
problem itself through a single dashboard. In addition
to that, some of the platforms do not offer free licenses
to use as embedded systems. The accuracy of the pre-
dictions made by DL models depends on many factors
and some applications need the latest real-time data that
are retrained frequently to produce more accurate and

precise predictions. Thus, the training models should be
retrainedwithout human intervention using reproducible
pipelines and in a continuous manner. It is challenging to
automate these decisions making processes using the cur-
rent MLOps tools. Continuous training and evaluation
techniques and strategies have to take into account the
non-stationarity nature of the data. Continual Learning
methodologies could be beneficial for these MLOps tools.

2.2. Continual Learning and Real-World
Applications

In a classical Continual learning problem, a single neural
network model needs to sequentially learn a series of
tasks. During training, only data from the current task
is available and the tasks are assumed to be clearly sepa-
rated. Continual learning methodologies deal with ML
problems in a non-stationary data setting. They try to
train models in a sequence of tasks to acquire new knowl-
edge without forgetting what has been trained in the past.
This problem has been actively studied in recent years
and many methods for alleviating catastrophic forgetting
have been proposed [17]. Unlike closed or simulation
environments the data does not follow a stationary dis-
tribution in real applications. In a real-world application,
we have a constant flow of information, where the dis-



Figure 2: Graphical representation of a typical Machine Learning pipeline. This approach includes three procedures: (1)
collection, selection and preparation of data to be used in model training, (2) finding and selecting the most efficient model
after validation and (3) sending the selected model to the serving system. CLaaS is a service model approach that helps data
scientists and engineers to monitor and update continually and efficiently the models over time.

tribution can change due to various external or internal
factors. This problem creates the need to update the
model continually efficient and adaptively manner.

Recent and relevant continual learning studies for dif-
ferent applications have been done. From surveillance
videos, robotics and machine vision, clinical and medical
sector, to the industry with edge and cloud computing
[18] [19] [20]. These works demonstrate the usability
and the effectiveness of CL in practical several domains.

At the same time, there are also many real-world and
application-research directions unexplored with Contin-
ual Learning. Currently, companies interested to explore
CL for their business purpose are dealing with costly
and quite challenging approaches. It is required a re-
search team and toolkit for expert of the CL domain.
Furthermore, enabling CL in production is still a chal-
lenging problem. These problems motivated the design
of a new service paradigm that embrace Continual learn-
ing Methodologies and tool in a cheaper and easy-to-use
manner for real-world scenarios.

2.3. Avalanche, End-to-End Library for
Continual Learning

In [13] it is proposed Avalanche, an open-source end-
to-end library for continual learning research based on
PyTorch. Avalanche provides a shared and collaborative

codebase for fast prototyping, training, and reproducible
evaluation of continual learning algorithms [13].

Avalanche is designed with five main principles impor-
tant to CL research and real-world applications. These
principles are Comprehensiveness and Consistency;Ease-
of-Use; Reproducibility and Portability; Modularity and
Independence; Efficiency and Scalability. At the current
stage of development, the library is organized into five
main modules: Benchmarks, Training, Evaluation, Models
and Logging.

Avalanche implements a system of Plugins to facili-
tate the customization of strategies, metrics and logging.
This is used by strategies, metrics, and loggers. It allows
them to interact with the training loop and execute their
code at the correct points using a simple interface. In
particular, SupervisedPlugin is the base class for plugins
for a supervised scenario, from which loggers inherit,
and PluginMetric, a base class for metrics.

3. Continual-Learning-as-a-
Service
Paradigm

Continual-Learning-as-a-Service is a service model
paradigm mainly based on Continual Learning method-



ologies to continuously monitor data distribution shifts
and update the model in an efficient fashion. As pre-
sented in Figure 3, CLaaS are based on MLOps principles.
In particular, Continuous Training (CT) and Continuous
Monitoring (CM) are Continual Learning based. It is easy
to use in an on-demand manner for both edge and cloud-
based systems. This Section start from a comparative
description of (continual) machine learning operations
toolkits and follow with the motivations and benefits of
the use of the CL features in this paradigm

3.1. Comparison of (continual) machine
learning operations toolkits

The main features and differences between the other
(continual) Machine Learning tools for MLOps are sum-
marized in Table 1. Most of monitoring solutions are fo-
cused on analyzing statistics of a feature and alert when
significant changes in these statistics happen. The level
of automation of the ML pipeline defines the maturity
of the ML process, which reflects the velocity of train-
ing new models given new data or training new models
given new implementations. However, most of these
tools do stateless retraining, where the model is trained
from scratch each time without leveraging efficient and
adaptable ways to continually evaluate models.

Instead, CLaaS infrastructures are set up to do state-
ful training. The latter is when you continue training
your model on new data instead of retraining your model
from scratch. Therefore, instead of updating your models
based on a fixed schedule, continually update your model
whenever data distributions shift and the performance
of the model decay. The training frequency is triggered
by the drift detector. Continual Learning strategies are
applied to re-training the model in an efficient and adapt-
able manner. Furthermore, with the Continual Learning
metrics, we can monitor model performance over time.

3.2. Continual Learning featured in
CLaaS

The increasing demand for overcome classical machine
learning process is leveraging the emergence of new so-
lutions. For a company, CLaaS is a set of toolkit tools
aimed to support the daily work of data scientists and
data engineers in the machine learning development pro-
cess. In particular, CLaaS provide features thought to
manage the designing, building and managing of repro-
ducible, testable ML-powered software. It is specialized
to guarantee Continuous Monitoring and Training using
Continual Learning solutions. In this subsection, it is de-
scribed how CL methodologies are featured in the CLaaS
paradigm with a brief review.

Detection of data drift distribution. In the classical
ML, the data used in training follows a distribution sup-

posed stationary. Based on this assumption, the general-
ization of model can be limited by the distribution of data
on which it was trained. Nevertheless, In a real-world ap-
plication, we have a constant flow of information, where
the distribution can change due to various external or
internal factors. These changes in the input data distri-
bution cause issues in previously trained models, mainly
because their weights are not prepared to face the drift
concerning the training data. This problem creates the
need to detect distribution shifts and update the model
continually.

There are many types of concept drift that have been
identified [21], each of which can affect model perfor-
mance. Different approaches were developed for the
different kinds of shifts. The CLaaS toolkit exploits both
base and advanced approaches. In fact, the user can
select among two main categories, supervised and unsu-
pervised or build custom data drift approaches (for more
detail of data drift solutions see Appendix in [11]).

Continual Learning zoo algorithms. There are
many continual learning strategies in the literature devel-
oped for the neural network models. For a more in-depth
overview, we refer the reader to the recent overviews
in [10] and [22]. The latter additionally exposes the bio-
inspired aspects of existing continual approaches. To
roadmap in the CL strategies, it is useful to classify them
into three main groups. First, the Memory-based Contin-
ual Learning Methods, in which gather all methods that
save raw samples as the memory of past tasks in episodic
memory. Second, Architecture-based Continual Learn-
ing Methods, in which they use the model to overcome
catastrophic forgetting and learn over time. Typically,
these classes of strategies exploit the dynamic neural net-
work architecture changes that can be explicit or implicit.
Finally, Regularization-based Continual Learning Meth-
ods consist in modifying the update of weights when
learning in order to keep the memory of previous knowl-
edge. The literature on CL strategies propose also hybrid
solutions [10].

All these CL strategies allow the update of the model
over time avoiding catastrophic forgetting and are in
CLaaS. In fact, the user of the CLasS can select among
these different continuous learning approaches for dif-
ferent practical scenarios. Most of real-world use cases,
Memory-based Methods can be performant at the cost
of the major memory usage. If data preservation is a
constraint, the user could select CL strategies that are
Memory-free like Architectural or Regularization strate-
gies. Furthermore, in the edge computing context, the
user can select efficient on-device CL strategies like [18]
and [23].

Continual Learning metrics. A core feature not
present in machine learning tools for the MLOps pro-
cess is the use of the Continual Learning metric to detect
model of the performance decay over time. It is crucial



Figure 3: Graphical representation of the CLaaS paradigm. It is mainly based on MLOps practices and Continual Learning
methodologies.

to have a set of good evaluation metrics to monitor the
model performance, i.e. the model forgets the past or
does not learn new skills. Detailed on CL evaluation
protocols are well described in [10] [24] [25].

Using Continual Learning strategies in CLaaS, it is
possible to trainmodels in a sequence of tasks and acquire
new knowledge without forgetting what has been trained
in the past. The evaluation criteria have to cover the
whole aspect of the full (continual) learning problem.
It is not enough to observe good final accuracy on an
algorithm to know if it is transferable to a serving system.
We should also evaluate how fast it learns and forgets,
if the algorithm is able to transfer knowledge from one
task to another and if the algorithm is stable and efficient
while learning and predict.

4. Continual Brain: System
Architecture and
Implementation

4.1. Design Principles
Continual Brain starts with a simple idea: extend the
library Avalanche as a service model with a set of de-
sign guidelines: modular and independent Building-Block
view, backend flexible and expandable, portability, ease-

of-use, efficiency and scalability. We believe that these
principles are important first steps for reliable Continual
Learning tools in real-world applications.

Modular and independent Building-Block view
The main design principle for Continual Brain follows
from the concept of modular building blocks, the idea of
providing a set of services independent of each other and
a baseline for further improvements. This particular fo-
cus on module independence is maintained to guarantee
the stand-alone individual module services. Moreover,
the user can pick up a particular set of services and make
use of a customize the others. For instance, the user can
select CL strategy services and customize services of CL
metrics or CL models.

Backend flexible and expandable Continual Brain
is based on the principle of the API interface indepen-
dent of the backend and easy to extend. Therefore, it
is possible for the maintainers to expand the backend
and add more services API exposed to the user. In this
way, it allows also to employ of different environments,
technologies and methods and guarantees flexibility of
execution.

Portability A critical design objective of Continual
Brain is to allow experimental results to be seamlessly
portable in both edge and cloud resources. As the first
step, we have decided to allow data scientist and engineer
to simply integrate their own research and code into



Figure 4: Example of user’s request Restful API in JSON body (POSTMAN interface). Part of the configuration file to set up a
typical experimental task in Continual Brain.

the platform to speed up the development of original
continual learning solutions in practical scenarios.

Efficiency and scalability These two designing prin-
ciples are fundamental in modern DL research experi-
ments. Like current DL frameworks, we offer the end-
user a seamless and transparent experience regardless of
the use case or the hardware platform that the platform
is run on.

Ease-of-use The last principle presented is the focus
on simplicity. All the Continual Learning services in
Avalanche are given in a simple set of calls. In particular,
our efforts were focused on the design of an intuitive
Application Programming Interface (API) and SW Devel-
opment Kit (SDK) for data scientists and engineers.

4.2. SystemWorkflow
The complete workflow of Continual Brain system can
be split into two phases, the offline preparation phase
and the online execution and monitoring phase.

In the offline phase, researchers first leverage the built-
in APIs or SDK of the CL zoo strategies to use or cus-
tomize a CL model. Meanwhile, engineers can prepare
a configuration file to set up the trigger rule and the
frequency of the retrain/fine-tuning according to our
provided template.

In the online monitoring phase, the system follows
the predefined rules in the configuration file to schedule
model updating tasks. The main operation of monitor-
ing model performance is based on CL metrics and it is

executed in an automated manner with the user’s config-
uration rules.

4.3. Architecture
The architecture of Continual Brain can be split into three
main layers: Interface, Middleware, CL-Backend. Further
internal components and frameworks model the overall
structure, while the middle-layer endpoints are linked to
the outermost components.

Interface, written in Flask python micro-framework,
and helps the data scientist to interact with the CL-
Backend. In particular, this layer manages communi-
cation with clients in RESTful APIs way or through an
SDK (see Figure 4). This top layer interfaces with custom
user code to run experiments or evaluate the performance
with data tests.

Middleware, a Python package that manages the
monitoring and update stages, and controls model ver-
sioning. Moreover, this middle layer is set up as a proxy
to access external storage services or for lower-level stor-
age. In this way, the logic of the lower-level storage is
decoupled and flexible from the user storage preferences,
making it possible also multiple storage services for the
same user. These middle-level components allow also ser-
vices external to the application. The latter can be either
integrated into the application or completely external.
For example, data storage services and the database can
be provided in the CL-backend or can be out cloud ser-
vices. Here, it is not used libraries but a custom codebase



Figure 5: Cumulative and Replay CL-based strategy compari-
son (averaged on 3 runs) on CORe50 dataset: Computation in
terms of time (min); memory in terms of the number of image
patterns.

implementation.
CL-Backend, leverages the Avalanche CL library [13]

and PyTorch machine learning framework. The func-
tionality of the Avalanche library in the Continual Brain
service used are the CL zoo strategies, the CL models,
the CL evaluation protocols and the easy set-up of CL
scenarios (Table 1).

Finally, Continual Brain was designed as a microser-
vice architecture and implemented using the Docker
Compose tool. The motivation is into the advantage
of the architecture and tool for managing the applica-
tion as a set of containers, giving the possibility to create
multiple instances of the same service. The latter is im-
portant to guarantee the Continuous Training property
in an MLOps manner.

5. Empirical Evaluation
Computer Vision (CV) and Deep Learning in robotics
vision and fashion domain have become hot topics and
received a great deal of attention in both academia and
the industrial landscape [10] [26]. This section illustrates
the advantage of CL as a model service in automating
continuous model updating. In particular, we explore
both object recognition in robotics and fashion real-world
applications [27], by discussing system efficiency when
using a Continual Brain implementation.

5.1. Experiment Setup
All experiments are conducted with the following set-
tings. We use common CL benchmark named CORe50
[28] for Computer Vision object recognition application.
We also employ an instance of fashion analysis named
categories prediction to evaluate both performance and

Figure 6: Cumulative and Replay CL-based strategy compar-
ison (averaged on 3 runs) on DeepFashion-C dataset: Compu-
tation in terms of time (min); memory in terms of the number
of image patterns.

efficiency. The latter is an enabling task for several fash-
ion applications like visual search or visual recommen-
dation [27]. We use the DeepFashion-C dataset [29] to
build a new CL-benchmark in the fashion domain. Af-
ter splitting the dataset in train and test set, to simulate
the CL process, we build a New Classes (e.g. NC, also
known as Class-Incremental Learning) scenario with 10
experiences. Therefore, the first experiences contain 10
classes while the rest contain 4 classes. The metric that
is used to evaluate the clothing recognition models is the
top-k accuracy. The state-of-the-art methods to solve
category and attribute prediction task in DeepFashion-C
are summarized in [27].

To demonstrate the efficiency of the CL strategies in
these practical domains, we compare a Cumulative ap-
proach with the Replay CL-based strategies [22]. Cumu-
lative is a stateless and time-consuming update process
where all the data encountered through time are used to
train the model in an offline manner. We ran the experi-
ments on a Multi-GPU NVIDIA-SMI server with 80-core
Intel Xeon CPU E5-2698 v4 and 4 Tesla V100 GPUs 11.2
CUDA Version.

5.2. Results
As Figures 7 and 8 show, the strategies based on Contin-
ual Learning are very efficient at the cost of a small decay
in predictive performance. As predicted, the Cumulative
strategies achieve similar results of the upper bound but
the cost grows with the number of encountered experi-
ences. In Figure 5 we note that the time and memory
saved by the CL approaches are up to a ×6 factor for a
stream of 9 experiences. In Figure 6 this nears an ×8 factor
in 10 experiences. The performance-efficiency trade-off
is evident for the Replay CL strategy. Finally, the Replay
Continual Learning strategy has a stable training time in



the growth of experiences. For this CL strategy the value
15000 is used for the memory_size hyper-parameter in
DeepFashion-C dataset. For CORe50 dataset the value of
the memory_size are setting to 5000.

These results demonstrate that the automation of
the ML pipeline can be achieved efficiently and in an
adaptable manner with this CL-tool. Therefore, in non-
stationary production environments CL strategies might
prove essential to attain efficient stateful training.

6. Conclusion and Discussion
In this paper, we have described CLaaS, a novel software
as a service and licensingmodel mainly based on a contin-
ual learning approach. A first version, named Continual
Brain, has been implemented by extending the function-
alities of Avalanche as a set of micro-services. We have
demonstrated the usability and efficiency of the system
with representative case studies in machine vision and
fashion domains.

Nowadays,the industrial and company applications
could help to direct new CL research directions toward
more practical scenarios. There are various practical
fields that researchers and companies have investigated
with Continual Learning. The literature has proposed
different CL real-world applications. For instance, in
MLOps, surveillance videos, robotics and machine vision,
clinical and medical sector, industry and edge computing.
Anyway, there are also many real-world and application-
research directions unexplored with Continual Learning.

Prevalent scenarios of Continual Learning are Class
Incremental Learning (CIL). They assume disjoint sets
of classes as tasks but are less realistic in a real-world
application. Recent works [30] and [31] focus the atten-
tion to address a more realistic CL setup which occurs
frequently in real world AI deployment scenarios. The
request to practical CL setting seems also start from the
companies that use CL for core business.

Finally, deploying CL to real-world applications is still
quite challenging. The absence of CL tools in ML sys-
tem workflow and the poor investigation of real-world
applications are the main reasons. We believe the CLaaS
paradigm can narrow the gap between research and its in-
dustrial application, and speed up companies innovative
trend towards Continual Learning.

Figure 7: Cumulative and Replay CL-based strategy com-
parison (averaged on 3 runs) on CORe50 dataset: predictive
performance in term of Accuracy using the entire test data
for each experience.

Figure 8: Cumulative and Replay CL-based strategy compari-
son (averaged on 3 runs) on DeepFashion-C dataset: predictive
performance in term of Top-k accuracy with 𝑘 = 5 accumulat-
ing the test stream during the experiences.
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