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Abstract
Embedded devices are frequently used to deploy adaptive learning systems for several applications, such
as anomaly detection models in automotive or aerospace domains. These models can detect anomalous
data from the sensors to predict hazardous situations ahead of time. However, training on-the-edge
requires the use of efficient learning algorithms, able to run on low-powered devices while keeping a
high accuracy. In this paper, we propose the use of Echo State Networks (ESN), a randomized family of
efficiently trainable recurrent networks, for anomaly detection on-the-edge in aerospace applications.
The anomaly detection method uses a nonparametric dynamic threshold to detect anomalous behaviours
from the observed data by comparing it to the model’s predictions. The proposed model is empirically
assessed on aerospace data against state-of-the-art LSTM networks. The results show that the proposed
method grants a 6x speedup in training time, while also improving the outlier detection performance.
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1. Introduction

On-the-edge applications of machine learning (ML) systems are becoming ever more frequent,
and especially crucial to the success of human-centric cyber-physical applications [1, 2, 3].
Deploying ML models on edge devices requires solving a number of challenges, among which
stands out the ability of performing training and inference on low powered devices with a
limited memory and computational budget. Anomaly detection is a popular application for
embedded devices, such as in the automotive or aerospace domains. The objective is to train a
model that can detect anomalous data from the sensors and predict hazardous situations ahead
of time.

One usual approach for performing anomaly detection consists in training a model to predict
the data under a non-anomalous behaviour, and measure the deviation of the observed values
with respect to the prediction. This approach typically leverages on the expressiveness of
the Recurrent Neural Networks (RNNs) [4] to model the non-anomalous sequences. In RNNs,
the parameters are typically learned by gradient descent, with the gradient computed by
backpropagation through time. Unfortunately, a well-known issue of this learning approach
is the vanishing gradient problem [5], which results in difficulty in converging towards good
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solutions. Several alternatives have been proposed tomitigate this issue [6, 7, 8], and in particular,
gated architectures such as LSTMs [6] and GRUs [9] are among the most popular solutions.
Due to the effectiveness of LSTMs to model multidimensional time series without the need for
fixed windows size, they were used in several anomaly detection applications [10, 11, 12].
However, these models are typically characterized by a high computational cost for the

training phase, and their expressiveness may be lost in the attempt of reaching a trade-off
between the model’s complexity and the computational cost. These two issues make them
unsuitable for their use on embedded devices and on-the-edge applications. For solving this
kind of limitations, an orthogonal approach is provided by Echo State Networks (ESNs) [13],
a family of recurrent networks where the recurrent parameters are initialized randomly and
are not updated during training. The only parameters that are learned during training process
are those of the readout, the model which computes the transformation from the recurrent
hidden state to the output. ESNs are widely applied in several applications [14, 15, 16], and
they are especially competitive in embedded applications thanks to their low computational
requirements.
In this paper, we address the problem of performing efficient anomaly detection on temporal

data while training on-the-edge. In particular, we focus on the task of detecting contextual
anomalies on multivariate telemetry data: single values within the time-series which do not
fall in a low density region of the data distribution, while exhibiting an anomalous behaviour
with respect to the context of observation (i.e., their surrounding subsequence) [17]. The work
in [18] addressed such problem by proposing a semi-supervised framework which leverages
Long Short-Term Memory networks for performing value predictions of the telemetry data
(supervised), along with a Nonparametric Dynamic Thresholding technique for detecting anoma-
lous behaviours from the observed data with respect to the predicted values (unsupervised).
Our proposed solution consists in a more efficient version of such framework, which allows to
overcome the computational limitations of LSTMs by replacing them with Echo State Networks
(ESNs), and perform both training and anomaly detection directly on-the-edge. Experiments
show that, at parity of memory resources exploited by the models, ESNs can achieve a better
trade-off between expressiveness and computational cost with respect to LSTMs, confirming
their validity for their use on on-the-edge applications.
The rest of this paper is organized as follows. Section 2 describes the proposed anomaly

detection method. Section 3 describes the experimental setup. Section 4 shows the results of
the experiments. Finally, in Section 5 we draw the conclusion of the work.

2. Efficient Anomaly Detection via Nonparametric Dynamic
Thresholding

In this section, we provide the details of the anomaly detection method used in this work,
which is composed of two parts: an Echo State Network for predicting the data under a normal
behaviour (Section 2.1), and the dynamic thresholding technique (Section 2.2) for detecting
anomalies with respect to the prediction of the ESN.



2.1. Echo State Networks

Echo State Networks (ESNs) [19, 20] are an efficient ML approach for temporal data. They
belong to the family of Recurrent Neural Networks (RNNs), but are based on the exploitation of
the network activations from the standpoint of a discrete-time dynamical system. Broadening
the perspective, leveraging on the evolution of a recurrent network as a dynamical system
represents the core idea of the so-called Reservoir Computing paradigm [21, 22].
The architecture of ESNs is made up by two main components: the first is the recurrent

network that holds an internal state which evolves over time, which is called reservoir ; the second,
called readout, is a linear layer that takes as input a state of the reservoir and emits a prediction.
Formally, let 𝑥(𝑡) ∈ ℝ𝑁𝑅 denote the state of a reservoir with 𝑁𝑅 recurrent units at a given time
step 𝑡. Then, the evolution of the state for an input sequence of vectors u(1), … ,u(𝑡) ∈ ℝ𝑁𝑈 in a
reservoir of leaky-integrator neurons [23] can be described as

𝑥(𝑡) = (1 − 𝑎) 𝑥(𝑡 − 1) + 𝑎 tanh (W𝑖𝑛u(𝑡) + 𝜃 + Ŵ𝑥(𝑡 − 1))

𝑦(𝑡) = W𝑥(𝑡) + 𝜃𝑜𝑢𝑡 .
(1)

where W𝑖𝑛 ∈ ℝ𝑁𝑅×𝑁𝑈 is the input-to-reservoir weight matrix, Ŵ ∈ ℝ𝑁𝑅×𝑁𝑅 is the recurrent
reservoir-to-reservoir weight matrix, 𝜃 ∈ ℝ𝑁𝑅 is the reservoir bias term, W ∈ ℝ𝑁𝑌×𝑁𝑅 is the
readout weight matrix, 𝜃𝑜𝑢𝑡 is the output bias term, 𝑎 ∈ (0, 1] is the leaking rate and 𝑥(0) = 0, y(t)
is the output of the model at timestep t.. ESNs were generalized to deep architectures with Deep
Echo State Networks (DeepESN) [24], in which multiple reservoir layers are stacked one on
top of each other. With such generalization, the state transition function of reservoir becomes
layer-dependent, i.e. at layer 𝑙, the input of the reservoir is the input sequence itself for 𝑙 = 1,
and the sequence of hidden states of the layer 𝑙 − 1 for 𝑙 > 1.
The main advantage of shallow and deep ESNs is that, instead of backpropagating the

error signal through time [25], the input-to-reservoir W𝑖𝑛 and the reservoir-to-reservoir Ŵ
matrices are left fixed, and only the readout parameters W are trained. This comes at the single
cost of constraining the spectral radius1 of the reservoir-to-reservoir matrix 𝜌(Ŵ) to a value
smaller than 1 to meet the necessary condition for ensuring stability of the reservoir dynamics
[19, 26]. This constraint implies a commonly used naïve approach for reservoir initialization,
consisting in a random generation of the weight values in Ŵ, followed by a re-scaling by a term
𝜌𝑑𝑒𝑠𝑖𝑟𝑒𝑑 / 𝜌(Ŵ), to finally achieve a randomized Ŵwith a desired spectral radius 𝜌(Ŵ) = 𝜌𝑑𝑒𝑠𝑖𝑟𝑒𝑑.
This approach requires the computation of eigenspectrum of the recurrent reservoir matrix Ŵ,
which might become a costly operation and a computational bottleneck in real-world complex
applications requiring large reservoirs. To overcome this difficulty, the authors of [27] proposed
a fast spectral radius initialization rooted in random matrix theory and based on the circular
law. Specifically, the reservoir initialization strategy proposed in [27] consists in randomly
drawing the weights in Ŵ from a uniform distribution over [−𝜌𝑑𝑒𝑠𝑖𝑟𝑒𝑑√3 /𝑁𝑅, 𝜌𝑑𝑒𝑠𝑖𝑟𝑒𝑑√3 /𝑁𝑅],
which ensures a value of 𝜌(Ŵ) → 𝜌𝑑𝑒𝑠𝑖𝑟𝑒𝑑 in the 𝑁𝑅 → ∞ limit. In this paper, we take advantage
of this simplification and concretely show the computational benefit in the tackled application
scenario. Furthermore, notice that the forward computation efficiency is provided by the fact

1The maximum of the eigenvalues in modulus.



that bothW𝑖𝑛 and Ŵ are typically sparse matrices, which allows performing efficient matrix
operations.
Finally, both ESN and DeepESN have proven to be much more efficient than the popular,

end-to-end trainable recurrent models, often with the gain of better performance on the task at
hand [28]. For this reason, they represent our models of choice for providing a more efficient,
yet effective, prediction on the telemetry data.

2.2. Anomaly Detection via Nonparametric Dynamic Thresholding

In this section, we describe the dynamic thresholding technique proposed by [18] and used in
this paper. The algorithm detects anomalous behaviours of spacecrafts by processing a stream
of multivariate telemetry data. The algorithm for performing outlier detection consists in three
major steps: (1) telemetry value prediction; (2) dynamic error thresholding; (3) false positives
mitigation.

Telemetry Value Prediction. This step consists in a supervised learning task for predicting
the telemetry data. Formally, the telemetry data is modelled as a set of 𝐶 channels. Each
channel 𝑐 ∈ [1, … , 𝐶] is a time series 𝑋 𝑐 = {𝑥(1), 𝑥(2), … , 𝑥(𝑛𝑐)} where each step 𝑥(𝑡) ∈ ℝ𝑚

𝑐
is

an 𝑚𝑐-dimensional vector [𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑚𝑐(𝑡)], whose elements correspond to scalar input
variables. When performing a prediction task in the temporal domain, we must consider
three main parameters: the length of the sliding window 𝑙𝑠 for the input subsequence 𝑋 𝑐

𝑙𝑠 =
{𝑥(𝑡−1−𝑙𝑠), 𝑥(𝑡−𝑙𝑠), … , 𝑥(𝑡−1)}; the temporal horizon 𝑙𝑝 for denoting the length of the subsequence
𝑋 𝑐
𝑙𝑝 = {𝑥(𝑡), 𝑥(𝑡 + 1), … , 𝑥(𝑡 + 𝑑 − 1)} to be predicted; the number of dimensions 𝑑 ∈ {1, … , 𝑚𝑐} to

be predicted for each time step.
In our scenario, we employed Echo State Networks for predicting values under a normal

behaviour, which are then used as a proxy to perform contextual outlier detection. As already
pointed out by [18], recurrent models typically struggle when dealing with the prediction of
high-dimensional outputs, implying that it is not feasible to model all the 𝐶 channels with a
single model. For this reason, we model each channel of the telemetry data independently
by instantiating one ESN for each of them. As a result, our sequence prediction model will
be instantiated as an ensemble of 𝐶 ESNs, each with 𝑁 𝑐

𝑅 = 𝑚𝑐. This setting provides a more
granular view of spacecraft anomaly patterns, and allows to model all the 𝐶 learning tasks
independently. For all the models, the value of 𝑑 is fixed to 1 for predicting only the actual
telemetry value, 𝑙𝑝 is fixed to 1 for performing next-step prediction, and 𝑙𝑝 is fixed to 250.

Dynamic Error Thresholding. The second step is an unsupervised learning task based on
a nonparametric method, which employs the cumulative error between predictions and the
observed values for performing outlier detection. In particular, considered a single channel and
given a predicted value ̂𝑦 (𝑡), the prediction error at time 𝑡 is computed as 𝑒(𝑡) = |𝑦(𝑡) − ̂𝑦(𝑡)|,
where 𝑦(𝑡) = 𝑥𝑖(𝑡 + 1) with 𝑖 corresponding to observation of the 𝑖-th dimension of the telemetry
data. Errors 𝑒(𝑡) are accumulated in a vector of errors, i.e., 𝑒 = [𝑒(𝑡−ℎ), … , 𝑒(𝑡−𝑙𝑠), … , 𝑒(𝑡−1), 𝑒(𝑡)]
where ℎ ≥ 𝑙𝑠 is the number of historical error values used to evaluate the current errors. In
order to ensure the consistency of the error evaluation technique in the face of sharp spikes



in error values, we apply an exponentially-weighted moving average (EWMA) to produce a
smoothed vector of errors 𝑒𝑠 = [𝑒𝑠(𝑡 − ℎ), … , 𝑒𝑠(𝑡 − 𝑙𝑠), … , 𝑒𝑠(𝑡 − 1), 𝑒𝑠(𝑡)].

The thresholding technique works under the assumption that the errors, under either anoma-
lous or non-anomalous behaviour, follow two distinct normal distributions respectively. For-
mally, a set of possible thresholds 𝜖 = {𝜖(𝑧1), 𝜖(𝑧2), … , 𝜖(𝑧𝑘)} is defined. Each threshold 𝜖(𝑧𝑖) ∈ 𝜖 is
formulated as 𝜖(𝑧𝑖) = 𝜇(𝑒𝑠)+𝑧𝑖𝜎(𝑒𝑠) , where 𝑧𝑖 represents the tolerance of the threshold, i.e., the
number of standard deviations above 𝜇(𝑒𝑠). The different values 𝑧𝑖 allow to scale the tolerance
of the threshold to potentially anomalous observations: lower values make the threshold more
restrictive, while larger values make it more tolerant. In [18], they found that an optimal range
of values of 𝑧𝑖 for their task was [2, 10] (i.e., values outside the range led to many false positive
or false negatives). Then, the current optimal threshold is determined by the following formula:

𝜖∗ = argmax
𝑧𝑖

Δ𝜇(𝑒𝑠, 𝑧𝑖)/𝜇(𝑒𝑠) + Δ𝜎(𝑒𝑠, 𝑧𝑖)/𝜎(𝑒𝑠)

|𝑒𝑎(𝑧𝑖)| + |E𝑠𝑒𝑞(𝑧𝑖)|2
(2)

such that

Δ𝜇(𝑒𝑠, 𝑧𝑖) = 𝜇(𝑒𝑠) − 𝜇({𝑒𝑠 ∈ 𝑒𝑠 | 𝑒𝑠 < 𝜖(𝑧𝑖)})

Δ𝜎(𝑒𝑠, 𝑧𝑖) = 𝜎(𝑒𝑠) − 𝜎({𝑒𝑠 ∈ 𝑒𝑠 | 𝑒𝑠 < 𝜖(𝑧𝑖)})
𝑒𝑎(𝑧𝑖) = {𝑒𝑠 ∈ 𝑒𝑠 | 𝑒𝑠 > 𝜖(𝑧𝑖)}
E𝑠𝑒𝑞(𝑧𝑖) = number of continuous sequences of 𝑒𝑎 ∈ 𝑒𝑎(𝑧𝑖)

The optimal threshold 𝜖∗ is the one providing the best separation between the distributions of
non-anomalous and anomalous data (numerator), while penalizing an excessive skewing of the
data on the distribution of outliers (denominator) to prevent an overly greedy behaviour. Once
𝜖∗ is determined, each resulting anomalous sequence of smoothed errors 𝑒𝑠𝑒𝑞 ∈ E𝑠𝑒𝑞 is given an
anomaly score 𝑠𝑖 = (max(𝑒𝑖𝑠𝑒𝑞) − 𝜖∗)/(𝜇(𝑒𝑠) + 𝜎(𝑒𝑠)), indicating the severity of the anomaly.

Pruning False Positives. The purpose of this last step is to trade-off between (1) the num-
ber of historical errors ℎ to query from for keeping a good efficacy in prediction, and (2) a
feasible false positive rate. In particular, we introduce an additional vector 𝑒𝑚𝑎𝑥 which con-
tains the maximum value of each anomalous subsequence sorted in descending order, i.e.,
𝑒𝑚𝑎𝑥 = [max(𝑒𝑠) for all 𝑒𝑠 ∈ E𝑠𝑒𝑞] such that 𝑒𝑚𝑎𝑥[𝑖] ≥ 𝑒𝑚𝑎𝑥[𝑗] if 𝑖 > 𝑗. At the end of the vector, the
maximum smoothed error which is not anomalous is appended, i.e.,max({𝑒𝑠 ∈ 𝑒𝑠 ∈ E𝑠𝑒𝑞 | 𝑒𝑠 ∉ 𝑒𝑎}).
Then, the sequence is stepped through incrementally, and for each step 𝑖 ∈ {1, 2, … , (|E𝑠𝑒𝑞| + 1)},
we compute 𝑑 𝑖 = 𝑒𝑖−1𝑚𝑎𝑥 − 𝑒𝑖𝑚𝑎𝑥/𝑒𝑖−1𝑚𝑎𝑥, which denotes the percentage decrease between subsequent
errors in 𝑒𝑚𝑎𝑥. We define another threshold 𝑝 as the minimum percentage decrease expected. If,
at some step 𝑖, 𝑝 is exceeded by 𝑑 𝑖, then all the errors 𝑒𝑗𝑚𝑎𝑥 ∈ 𝑒𝑚𝑎𝑥 | 𝑗 < 𝑖 and their corresponding
anomaly sequences are confirmed to be anomalies. Otherwise, if 𝑑 𝑖 < 𝑝 and the same condition
holds for all 𝑑 𝑖+1, … , 𝑑 |E𝑠𝑒𝑞|+1, the corresponding error sequences are reclassified as nominal. A
correct choice of the threshold 𝑝 provides a good distinction between errors which are caused
by regular noise within the stream, and the actual anomalies which occurred in the system.



3. Experimental Setup

In this work, we addressed the problem of performing anomaly detection in on-the-edge appli-
cations, which typically leverage low-powered devices with limited memory and computational
budget. For this reason, we experimented with LSTMs, one of the most popular choices in the
literature, and ESNs, which are known to be much more efficient to train. The objective is to
evaluate the trade-off between the performance on the task and computational cost achieved by
the two models in the face of computational constraints.

The experimental setup was tailored to fit the same workflow of the methodology described
in Section 2. In particular, we split the experimental assessment in two main phases. In the
Telemetry Value Prediction phase, we select the best model for performing the supervised task
of telemetry value prediction on the training set. We evaluate LSTMs and ESNs in both shallow
(1-layer) and deep (2-layer) versions, and for the four resulting architectures we set an upper
bound to the number of free parameters to simulate hardware constraints.

In the Anomaly Detection phase, we evaluate the performance of the method on the anomaly
detection task on the test set by following the same workflow of [18]: after a retraining phase,
we apply the nonparametric method with different values of 𝑝 for mitigating false positives.

3.1. Dataset Description

To provide a fair comparison with the existing method based on LSTMs [18], we based our
experiments on the dataset derived from Incident Surprise, Anomaly (ISA) reports from NASA, in
which experts annotated unexpected events (anomalies) which could put at risk the operations
of the spacecrafts. In particular, we consider the reports for the Soil Moisture Active Passive
(SMAP) satellite, and the Mars Science Laboratory (MSL) rover (known as Curiosity)2.

The dataset consists in 82 telemetry channels identified with an alphanumerical ID which
determines the channel type (e.g., P-1= First Power channel). Each channel is a matrix where the
first dimension indicates the timesteps and the second dimension indicates the input features. In
particular, the first feature represents the values of the telemetry, while the others are commands
sent or received by the module delegated for gathering such data. All the numerical values are
normalized to lie in the range (−1, 1), while commands are one-hot encoded. There is neither
information about the sampling frequency of the channel, nor the nature of the commands.
The dataset is provided with a training and test split, where the training set contains only

non-anomalous sequence, while the test set contains anomalous subsequences for evaluating
the method on the anomaly detection task. At the time when we performed the experiments,
anomalies for the channel 𝑇 − 10 were not provided. Therefore, we decided to exclude it from
the following evaluation. In Table 1 we provide a summary of the main statistics of the dataset.

3.2. Phase I: Telemetry Value Prediction

In this phase, we select the best model for performing the supervised task of telemetry value
prediction on the training set. As previously mentioned, we assessed a shallow (1-layer)

2More detailed descriptions of the operations are available at https://smap.jpl.nasa.gov/mission/description/ and
https://mars.nasa.gov/msl/mission/overview/.

https://smap.jpl.nasa.gov/mission/description/
https://mars.nasa.gov/msl/mission/overview/


Table 1
Dataset information summary.

SMAP MSL Total

Total anomaly sequences 69 36 105
Point anomalies (% tot.) 43 (62%) 19 (53%) 62 (59%)

Contextual anomalies (% tot.) 26 (38%) 17 (47%) 43 (41%)
Unique telemetry channels 55 27 82

Unique ISAs 28 19 47
Telemetry values evaluated 429,735 66,709 494,444

Table 2
Hyperparameter employed in the model selection

LSTM

Hidden layers 1 2
Hidden layer units 10 - 67 10 - 42

Dropout 0.1 - 0.5
Learning rate 0.01, 0.001, 0.0001

ESN

Hidden layers 1,2
Hidden layer units 100 - 2550

Input Scaling 0.01 - 1.0
Spectral Radius 0.1 - 0.99
Learning rate 0.01, 0.001, 0.0001

configuration of LSTMs and ESNs, as well as a deep one (2-layer), resulting on four configurations.
All the hyperparameters were chosen under a simulated hardware constraint. In particular, the
maximum number of free parameters for each model, set to 25 000, is equal to provide a fair
comparison. As a result, for ESN networks the maximum number of units was set to 𝑁𝑅 = 2550,
for networks with one or two layers, since having multiple hidden layers does not change the
number of free parameters (i.e., the readout is applied to the last reservoir only). Instead, LSTMs
with a single layer use up to 67 units, while LSTMs with two hidden layers have a maximum
of 42 units. The values of hyperparameters are summarized in Table 2. We optimized all the
models by applying Adam [29] on the Mean Squared Error (MSE) as loss function with the use
of early stopping, for a maximum of 150 epochs.

As mentioned in section 2.2, we istantiate one model for each channel to fit its own dynamics.
Thus, we performed a model selection for each channel, consisting in a Random Search [30] with
50 random configurations on the hyperparameters’ space. The model selection was implemented
and performed with Keras Tuner [31].
The data was preprocessed as in [18]. We processed each channel with sliding windows of

length 250 to create a training and test set consisting of 𝑛 sub-sequences extracted from the
original channels.

3.3. Phase II: Anomaly Detection Assessment

In this phase, for each channel, we first retrained the configurations chosen uponmodel selection
for 5 times to average the performance in the face of bad initializations3, and fed the test data

3To guarantee the reproducibility of this phase, all the random seeds for initializing the models’ weights were stored



to the resulting models for producing the sequence of predicted values. Then, we applied
the thresholding technique on the resulting sequence of errors. For this purpose, the method
requires the definition of a set of threshold parameters z, which, informally, determine the
tolerance of error between the predicted and the observed values. As reported in [18], values of
𝑧𝑖 ∈ z less than 2 are too restrictive, resulting in a high number of false positives. In our study
the possible values for 𝑧𝑖 are within a range [2.5, 12]. Finally, we applied the false positives
mitigation technique, which requires the definition of a threshold parameter 𝑝. We evaluated
the performance in the anomaly detection task with respect to values of 𝑝 in the range [0.01, 1].

4. Experimental Results

In this section, we show and compare the results obtained for both the telemetry value prediction
and anomaly detection tasks (Section 4.1), as well as the computation efficiency (Section 4.2) of
the four architectures.

4.1. Prediction Performance

All the results concerning the performance on the predictions of the telemetry values, as
well as anomalies, are summarized in Table 3. In particular, we want to stress that the aim
of the experiments is to compare the performance of the different models under the same
computational resource and memory constraints. This is highlighted by the second column of
the table, in which we show the number of parameters for each of the models.

Telemetry Value Prediction. In Table 3 we report the average and standard deviation of
the Mean Squared Error on the validation set over 5 training processes of the best configuration
for each architecture. We can observe that, at parity of free parameters, all the architectures can
reach a good quality in the prediction of the telemetry data values. Also, we can observe that
the performance of the ESNs is almost the same, independently from the number of layers.

Table 3
Summary of the results. For the telemetry value prediction task, we report the MSE on the validation
set averaged over 5 training processes of the selected configuration. For the anomaly detection task, we
report the number of True Positives (TP), False Positives (FP), False Negatives (FN), the precision, recall
and 𝐹1 score on the final run, which is performed with the best value of 𝑝 and the best configuration for
the corresponding architecture.

Model Max Params
Telemetry Value Prediction Anomaly Detection

MSE×103 𝑝 TP FP FN Precision Recall 𝐹1 score

LSTM 1-layer 25 604 6.91 ± 0.55 0.11 72 34 33 0.68 0.69 0.68
LSTM 2-layer 26 134 5.78 ± 0.27 0.09 79 42 26 0.65 0.75 0.69
ESN 1-layer 25 510 8.41 ± 0.26 0.07 78 34 27 0.70 0.74 0.71
ESN 2-layer 25 510 8.53 ± 0.31 0.07 78 23 27 0.77 0.74 0.76



(a) LSTM 1 layer. (b) LSTM 2 layers. (c) ESN 1 layer. (d) ESN 2 layers.

Figure 1: Precision and recall for different values of 𝑝. Candidates values of 𝑝 which present the best
precision-recall trade-off are highlighted in red.

Anomaly Detection. We evaluated the anomaly detection performance with respect of
different threshold parameters 𝑝, which, as mentioned in Section 2.2, represents the minimum
decrease in percentage that is expected between two points marked as anomalous. Changing
this threshold adjusts the ratio of false positives and false negatives and influences the model’s
precision and recall. For this application, it is preferable to use a threshold value which balances
the trade-off such that as many anomalies as possible are identified, therefore preferring recall,
but trying to keep precision high at the same time so as not to have too many false positives.
Therefore, we set a threshold for precision and recall of 70% when possible, at 65% otherwise.
Figure 1 shows the precision/recall ratio for the first 20 threshold values which provide the best
trade-off for our scenario. For each of the architectures, we chose a threshold 𝑝 for re-evaluating
the anomaly detection pipeline. In particular, for LSTM networks with one layer is 0.11, while
the value chosen for LSTM networks with a two layers is 0.09. For ESNs, we chose a threshold
of 0.07 for both the shallow and deep architectures. The chosen values of 𝑝 are summarized in
Table 3.

Pipeline re-evaluation. After conducting the model selection for the networks and finding
the ideal threshold parameter we proceed with a final run that includes the training, prediction,
and anomaly detection phases. The results are summarized in Table 3, which includes false
positives, false negatives and true positives, precision, recall and 𝐹1. From these results, we can
observe that the similar behaviour of the four architectures in the telemetry value prediction
is not supported by the same behaviour in the anomaly detection task. In particular, we
can observe that, at parity of free parameters, the ESN with two reservoir provides the best
performance, with precision 0.77, recall 0.74 and 𝐹1 0.76. The differences between the models
highlight that ESNs, with constrained hardware resources and model complexity, are more
capable of modelling the dynamics of the channels under a non-anomalous behaviour of the
input sequence.

4.2. Computational Efficiency

For each phase of the anomaly detection pipeline, we measured the corresponding elapsed time
for each architecture, and are summarized in Table 4.



Initialization time. The use of the circular law allows to initialize the reservoir efficiently
(Section 2.1). The results show large computational savings, with the build time going from
more than half an hour to less than one second when using the circular law. This is due to the
computation of the eigenspectrum of the reservoir weight matrix, which is needed to rescale
the matrix to the desired spectral radius value. This is an expensive operation that dominates
the network’s initialization cost.

Training time. Table 4 shows a summary of the training times for each architecture. Notice
that the times shown in the table sums of the training times for all the channels. In particular,
we measured that a single SGD step costs ∼3ms for ESNs with two stacked reservoirs, which is
almost an order of magnitude faster than the ∼20ms of LSTMs with two recurrent layers. This
was possible by feeding all the sequences to the reservoirs once, and, training only the readout
by taking in input the pre-processed sequences.

Table 4
Computational efficiency of the four models. For the reservoir initialization and training times, we
report the median time. For model selection and re-evaluation we report the corresponding times for
their single execution.

Model Training Model Selection Re-evaluation

LSTM 1 layer 0h:17m 18h:25m 23m:23s
LSTM 2 layer 0h:29m 33h:32m 36m:39s
ESN 1 layer 0h:03m 2h:49m 14m:43s
ESN 2 layer 0h:04m 3h:40m 23m:04s

Reservoir matrix build times

Units 2550
Layers 1
No Circular Law 32m:20s.435ms
Circular Law 00m:00s.146ms

5. Conclusion

In this paper, we showed how to perform anomaly detection efficiently by exploiting ESNs to
model the normal behavior of temporal data, and dynamic thresholding to detect anomalies. In
particular, we showed that ESNs are 6x faster to train compared to similar LSTMs in anomaly
detection applications. More importantly, despite the lower computational cost, the model also
achieves better precision and recall. These results enable embedded application with training
on-the-edge, which may be impractical with more expensive models such as LSTMs. Even
outside the embedded domain, more efficient training algorithms can enable novel application
of anomaly detection systems. Such models can enable human-centric applications, such as
suggestions for pilots during flights, or stress monitoring of passengers for autonomous driving
vehicles [1, 2].

In the future, we plan to extend this work to different cyber-physical systems applications,
such as those in the automotive and avionics domain. We also plan to integrate the ESN-based
anomaly detection system into an AI-as-a-Service system, where the computational advantages
can be exploited on distributed hardware such as the NVIDIA Jetson Nano and the NXP i.MX 8
boards, both carrying System on a Chip (SoC) processors.
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